
IMPROVED ALGORITHMS AND ANALYSIS FOR SECRETARY
PROBLEMS AND GENERALIZATIONS∗

MIKLOS AJTAI† , NIMROD MEGIDDO‡ , AND ORLI WAARTS§

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 14, No. 1, pp. 1–27

Abstract. In the classical secretary problem, n objects from an ordered set arrive in random
order, and one has to accept k of them so that the final decision about each object is made only on
the basis of its rank relative to the ones already seen. Variants of the problem depend on the goal:
either maximize the probability of accepting the best k objects, or minimize the expectation of the
sum of the ranks (or powers of ranks) of the accepted objects. The problem and its generalizations
are at the core of tasks with a large data set, in which it may be impractical to backtrack and select
previous choices.

Optimal algorithms for the special case of k = 1 are well known. Partial solutions for the first
variant with general k are also known. In contrast, an explicit solution for the second variant with
general k has not been known. It seems that the fact that the expected sum of powers of the ranks
of selected items is bounded as n tends to infinity has been known to follow from standard results.
We derive our results by obtaining explicit algorithms. For each z ≥ 1, the resulting expected sum
of the zth powers of the ranks of the selected objects is at most kz+1/(z + 1) + C(z) · kz+0.5 log k,
where log k ≡ max{1, log2 k}, whereas the best possible value at all is kz+1/(z + 1) + O(kz). Our
methods are very intuitive and apply to some generalizations. We also derive a lower bound on the
trade-off between the probability of selecting the best object and the expected rank of the selected
object.

Key words. dynamic programming, optimal stopping, expected rank maximization

AMS subject classifications. 65C50, 90C39

PII. S0895480195290017

1. Introduction. In the classical secretary problem, n items or options are pre-
sented one by one in random order (i.e., all n! possible orders being equally likely). If
we could observe them all, we could rank them totally with no ties, from best (rank
1) to worst (rank n). However, when the ith object appears, we can observe only its
rank relative to the previous i − 1 objects; the relative rank is equal to 1 plus the
number of the predecessors of i which are preferred to i. We must accept or reject
each object, irrevocably, on the basis of its rank relative to the objects already seen,
and we are required to select k objects. The problem has two main variants. In the
first, the goal is to maximize the probability of obtaining the best k objects. In the
second, the goal is to minimize the expectation of the sum of the ranks of the selected
objects or, more generally, for a given positive integer z, minimize the expectation of
the sum of the zth powers of the ranks.

∗Received by the editors August 7, 1995; accepted for publication (in revised form) February 28,
2000; published electronically December 28, 2000.

http://www.siam.org/journals/sidma/14-1/29001.html
†IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099

(ajtai@almaden.ibm.com). The research of this author was supported in part by ONR contract
N-00014-94-C-0007.

‡IBM Research Division, Almaden Research Center, Department K53/B2/, 650 Harry Road, San
Jose, CA 95120-6099 (megiddo@almaden.ibm.com) and School of Mathematical Sciences, Tel Aviv
University, Tel Aviv, Israel. The research of this author was supported in part by ONR contract
N-00014-94-C-0007.

§Computer Science Division, University of California, Soda Hall, Berkeley, CA 94720 (waarts@cs.
berkeley.edu). The research of this author was supported in part by ONR contract N-00014-94-C-
0007 and an NSF postdoctoral fellowship. Part of this work was done while this author was at the
IBM Almaden Research Center.

1

2 MIKLOS AJTAI, NIMROD MEGIDDO, AND ORLI WAARTS

Solutions to the classical problem apply also in a variety of more general sit-
uations. Examples include the following cases. (i) Objects are drawn from some
probability distribution; the interesting feature of this variant is that the decisions of
the algorithms may be based not only on the relative rank of the item but also on
an absolute “grade” that the item receives. (ii) The number of objects is not known
in advance. (iii) Objects arrive at random times. (iv) Some limited backtracking is
allowed: objects that were rejected may be recalled. (v) The acceptance algorithm
has limited memory. Solutions to the classical problem also apply to combinations of
these situations. In addition to providing intuition and upper and lower bounds for
the above important generalizations of the problem, solutions to the classical problem
also provide in many cases very good approximations, or even exact solutions (see [6,
15, 16] for survey and also [10]). Our methods can also be directly extended to apply
for these generalizations.

The obvious application to choosing a best applicant for a job gives the problem
its common name, although the problem (and our results) has a number of other
applications in computer science. For any problem with a very large data set, it
may be impractical to backtrack and select previous choices such as, in the context
of data mining, selecting records with best fit to requirements or retrieving images
from digital libraries. In such applications, limited backtracking may be possible,
and, in fact, this is one of the generalizations mentioned above. Another important
application is when one needs to choose an appropriate sample from a population for
the purpose of some study. In other applications the items may be jobs for scheduling,
opportunities for investment, objects for fellowships, etc.

1.1. Background and intuition. The problem has been extensively studied in
the probability and statistics literature (see [6, 15, 16] for surveys and also [12]).

The case of k = 1. Let us first review the case of k = 1, i.e., only one object has
to be selected. Since the observer cannot go back and choose a previously presented
object which, in retrospect, turns out to be the best, it clearly has to balance the
risk of stopping too soon and accepting an apparently desirable object when an even
better one might still arrive, against the risk of waiting for too long and then finding
that the best item had been rejected earlier.

It is easy to see that the optimal probability of selecting the best item does not
tend to zero as n tends to infinity; consider the following stopping rule. Reject the
first half of the objects and then select the first relatively best one (if any). This rule
chooses the best object whenever the latter is among the second half of the objects
while the second best object is among the first half. Hence, for every n, this rule
succeeds with probability greater than 1/4. Indeed, it has been established [9, 7, 4]
(see below) that there exists an optimal rule that has the following form. Reject the
first r − 1 objects and then select the first relatively best one or, if none has been
chosen through the end, accept the last object. When n tends to infinity, the optimal
value of r tends to n/e, and the probability of selecting the best is approximately 1/e.
(Lindley showed the above using backward induction [9]. Later, Gilbert and Mosteller
provided a slightly more accurate bound for r [7]. Dynkin established the result as
an application of the theory of Markov stopping times [4].)

It is not as easy to see that the optimal expected rank of the selected object
tends to a finite limit as n tends to infinity. Observe that the above algorithm (for
maximizing the probability of selecting the best object) yields an expected rank of
n/(2e) for the selected item; the argument is as follows. With probability 1/e, the
best item is among the first n/e items, and in this case the algorithm selects the

ALGORITHMS FOR SECRETARY PROBLEMS 3

last item. The conditional expectation of the rank of the last object in this case is
approximately n/2. Thus, the expected rank for the selected object in this algorithm
tends to infinity with n. Indeed, in this paper we show that, surprisingly, the two
goals are in fact in conflict (see section 1.2).

It can be proven by backward induction that there exists an optimal policy for
minimizing the expected rank of the selected item that has the following form. Accept
an object if and only if its rank relative to the previously seen objects exceeds a
certain threshold (depending on the number of objects seen so far). Note that while
the optimal algorithm for maximizing the probability of selecting the best has to
remember only the best object seen so far, the threshold algorithm has to remember all
the previous objects. (See [13] for solutions where the observer is allowed to remember
only one of the previously presented items.) This fact suggests that minimizing the
expected rank is harder. Thus, not surprisingly, finding an approximate solution for
the dynamic programming recurrence for this problem seems significantly harder than
in the case of the first variant of the problem, i.e., when the goal is to maximize the
probability of selecting the best. Chow et al. [3] showed that the optimal expected
rank of the selected object is approximately 3.8695. The question of whether higher
powers of the rank of the selected object tend to finite limits as n tends to infinity
was resolved in [13]. It has also been shown that if the order of arrivals is determined
by an adversary, then no algorithm can yield an expected rank better than n/2 [14].

We thank an anonymous referee who pointed out that the case k = 1 and general
z can be deduced from results of Robbins (see page 389 in [15], and [5]). He showed
that if the “loss” of picking a candidate with absolute rank i is (i+ 1) · · · (i+ z − 1),
then the value of the optimal rule tends to z![Π∞j=1((j + z + 1)/j)

1/(j+z)]z as n tends
to infinity.

The case of a general k. There has been much interest in the case where more
than one object has to be selected. It is not hard to see that for every fixed k,
the maximum probability of selecting the best k objects does not tend to zero as n
tends to infinity. The proof is as follows. Partition the sequence of n objects into
k disjoint intervals, each containing n/k consecutive items. Apply the algorithm for
maximizing the probability of selecting the best object to each set independently.
The resulting algorithm selects the best item in each interval with probability e−k.
The probability that the best k objects belong to distinct intervals tends to k!/kk

as n tends to infinity. For this first variant of the problem, the case of k = 2 was
considered in [11]; Vanderbei [18] and, independently, Glasser, Holzsager, and Barron
[8] considered the problem for general k. They showed that there is an optimal policy
with the following threshold form. Accept an object with a given relative rank if
and only if the number of observations exceeds a critical number that depends on the
number of items selected so far; in addition, an object which is worse than any of
the already rejected objects need not be considered. Notice that this means that not
all previously seen items have to be remembered, but only those that were already
selected and the best among all those that were already rejected. This property is
analogous to what happened in the k = 1 case, where the goal was to maximize the
probability of selecting the best item. Both papers derive recursive relations using
backward induction. General solutions to their recurrences are not known, but the
authors give explicit solutions (i.e., critical values and probability) for the case of
n = 2k [8, 18] and n = 2k + 1 [8]. Vanderbei [18] also presents certain asymptotic
results as n tends to infinity and k is fixed and also as both k and n tend to infinity
so that (2k − n)/√n remains finite.

4 MIKLOS AJTAI, NIMROD MEGIDDO, AND ORLI WAARTS

In analogy to the case of k = 1, bounding the optimal expected sum of ranks of
k selected items appears to be considerably harder than minimizing the probability
of selecting the best k items. Also, here it is not obvious whether or not this sum
tends to a finite limit when n tends to infinity. Backward induction gives recurrences
that seem even harder to solve than those derived for the case of maximizing the
probability of selecting the best k. Such equations were presented by Henke [10], but
he was unable to approximate their general solutions.

An anonymous referee has pointed out to us that the fact that the expected sum
of powers of ranks accepted items is bounded as n tends to infinity can be derived from
standard principles. However, there has not been an explicit solution for obtaining a
bounded expected sum.

1.2. Our results. In this paper we present a family of explicit algorithms for
the secretary problem such that for each positive integer z, the family includes an
algorithm for accepting items, where for all values of n and k the resulting expected
sum of the zth powers of the ranks of the accepted items is at most

kz+1

z + 1
+ C(z) · kz+0.5 log k,

where C(z) is a constant.1

Clearly, the sum of ranks of the zth powers of the best k objects is kz+1/(z +
1)+O(kz). Thus, the sum achieved by our algorithms is not only bounded by a value
independent of n, but also differs from the best possible sum only by a relatively small
amount. For every fixed k, this expected sum is bounded by a constant. Thus we
resolve the above open questions regarding the expected sum of ranks and, in general,
zth powers of ranks, of the selected objects.

Our approach is very different from the dynamic programming approach taken in
most of the papers mentioned above. It has been more successful in obtaining explicit
solutions to this classical problem and can more easily be used to obtain explicit
solutions for numerous generalizations.

We remark that our approach does not partition the items into k groups and
select one item in each. Such a method is suboptimal since, with high probability, a
constant fraction of the best k items appears in groups where they are not the only
ones from the best k. Therefore, this method rejects a constant fraction of the best k
with high probability, and so the expected value of the sum of the ranks obtained by
such an algorithm is greater by at least a constant factor than the optimal.

Since the expected sums achieved by our algorithms depend only on k and z and,
in addition, the probability of our algorithms to select an object does not increase
with its rank, it will follow that the probabilities of our algorithms to actually select
the best k objects depend only on k and z and hence, for fixed k and z, do not tend
to zero when n tends to infinity. In particular, this means that for k = z = 1, our
algorithms will select the best possible object with probability bounded away from
zero.

In contrast, for any algorithm for the problem, if the order of arrival of items is the
worst possible (i.e., generated by an oblivious adversary), then the algorithm yields
an expected sum of at least knz2−(z+1) for the zth powers of the ranks of selected
items. Our lower bound holds also for randomized algorithms.

Finally, in section 1.1 we observed that an optimal algorithm for maximizing the
probability of selecting the best object results in an unbounded expected rank of

1log k ≡ max{1, log2 k}.

ALGORITHMS FOR SECRETARY PROBLEMS 5

the selected object. As a second part of this work we show that this fact is not a
coincidence; the two goals are in fact in conflict. No algorithm can simultaneously
optimize the expected rank and the probability of selecting the best. We derive a
lower bound on the trade-off between the probability of accepting the best object and
the expected rank of the accepted item.

2. The algorithms. In this section we describe a family of algorithms for the
secretary problem, such that for each positive integer z, the family includes an algo-
rithm for accepting objects, where the resulting expected sum of the zth powers of
the ranks of accepted objects is

kz+1

z + 1
+O(kz+0.5 log k).

In addition, it will follow that the algorithm accepts the best k objects with positive
probability that depends only on k and z. Let z be the positive integer that we are
given. Denote p = 64 + log2 k.

For the convenience of exposition, we assume without loss of generality that n is
a power of 2. We partition the sequence [1, . . . , n] (corresponding to the objects in
the order of arrival) into m = log n+ 1 consecutive intervals Ii(i = 1, . . . ,m), so that

Ii =

{
[1 + n

∑i−1
j=1 2

−j , n
∑i
j=1 2

−j] if 1 ≤ i ≤ m− 1,
{n} if i = m.

In other words, the first m − 1 intervals are [1, n2], [n2 + 1, 3n
4], . . . , each containing

a half of the remaining elements. The mth interval contains the last element. Note
that |Ii| = �n/2i	 (i = 1, . . . ,m− 1).

Let us refer to the first

m′ = max{0,
log(k/p)�}

intervals as the opening ones, and let the rest be the closing ones. Note that since
p ≥ 64, the last five intervals are closing. For an opening Ii, the expected number of
those of the top k objects in Ii is

|Ii| · k
n
= k/2i (i = 1, . . . ,m′).

(The latter is not necessarily an integer.) Furthermore, for any d ≤∑m′

j=1 |Ii| (i.e., d
is in one of the opening intervals), the expected number of those of the top k objects
among the first d to arrive is d · kn .

Let

pi =

k2−i if i ≤ m′,
k2−m

′
if i = m′ + 1,

0 if m′ + 1 < i ≤ m.

Observe that pm′+1 = k −
∑m′

j=1 pj .
We will refer to pi as the minimum number of acceptances required for Ii (i =

1, . . . ,m). Observe that for i ≤ m′, pi ≥ k · 2− log k/p = p. On the other hand,
pm′+1 = k2

−m′ ≤ k2− log k/p+1 = 2p.

6 MIKLOS AJTAI, NIMROD MEGIDDO, AND ORLI WAARTS

Intuitively, during each interval the algorithm attempts to accept the expected
number of top k objects that arrive during this interval and, in addition, to make
up for the number of objects that should have been accepted prior to the beginning
of this interval but have not. Note that since pi = 0 for i > m′ + 1, then during
such intervals the algorithm only attempts to make up for the number of objects that
should have been accepted beforehand and have not.

Let us explain this slightly more formally. During each execution of the algorithm,
at the beginning of each interval, the algorithm computes a threshold for acceptance,
with the goal that by the time the processing of the last object of this interval is
completed, the number of accepted objects will be at least the minimum number of
acceptances required prior to this time. In particular, recall that for i = 1, . . . ,m, pi
denotes the minimum number of acceptances required for Ii. Given a “prefix” of an
execution prior to the beginning of Ii(i = 1, . . . ,m+1), let Qj(j = 0, . . . , i−1) be the
number of items accepted in Ij . Let Di−1 = max{0,

∑i−1
j=1 pj −

∑i−1
j=1Qj}. Roughly

speaking, Di−1 is the difference between the minimum number of acceptances required
prior to the beginning of Ii and the number of items that were actually accepted during
the given prefix. Note that D0 = 0.

Given a prefix of an execution prior to the beginning of Ii, let

Ai =

{
Di−1 + pi if

∑i−1
j=1Qj < k,

0 otherwise.

We refer to Ai computed at the beginning of Ii as the acceptance threshold for Ii in
this execution. Loosely stated, given a prefix of execution of the algorithm prior to
the beginning of Ii, Ai is the number of objects the algorithm has to accept during
Ii in order to meet the minimum number required by the end of Ii. The algorithm
will aim at accepting at least Ai objects during Ii. To ensure that it accepts that
many, it attempts to accept a little more. In particular, during each opening interval
Ii, the algorithm attempts to accept an expected number of Ai + 6(z + 1)

√
Ai log k.

As we will see, this ensures that the algorithm accepts at least Ai objects during this
interval with probability of at least k−5(z+1). During each closing interval Ii, the
algorithm attempts to accept an expected number of 32(z + 1)Ai. This ensures that
the algorithm accepts at least Ai objects during this interval with probability of at
least 2−5(z+1)(ai+1).

We make the distinction between opening and closing intervals in order to restrict
the expected rank of the accepted objects. If Ii is closing, then Ai may be much smaller
than

√
Ai log k. Let

Bi =

{
Ai + 6(z + 1)

√
Ai log k if Ii is opening,

32(z + 1)(Ai) if Ii is closing.

In order to accept an expected number of Bi objects during interval Ii, the algorithm
will accept the dth item if it is one of the approximately Bi ·2id/n top ones among the
first d. Since the order of arrival of the items is random, the rank of the dth object
relative to the first d ones is distributed uniformly in the set {1, . . . , d}. Therefore, the
dth object will be accepted with probability of Bi2

i/n, and hence, since |Ii| = �n/2i	,
the expected number of objects accepted during Ii is indeed Bi.

If at some point during the execution of the algorithm, the number of slots that
still have to be filled equals the number of items that have not been processed yet, all
the remaining items will be accepted regardless of rank. Analogously, if by the time
the dth item arrives all slots have already been filled, this item will not be accepted.

ALGORITHMS FOR SECRETARY PROBLEMS 7

Finally, the algorithm does not accept any of the first �n/(8√k)	 items except in
executions during which the number of slots becomes equal to the number of items
before �n/(8√k)	 items have been processed. Roughly speaking, this modification
will allow us to bound the expected rank of the dth item in terms of its rank relative
to the first d items.

The above leads to our algorithm, which we call Select.
Algorithm Select. The algorithm processes the items, one at a time, in their

order of arrival. At the beginning of each interval Ii, the algorithm computes Ai as
described above. When the dth item (d ∈ Ii) arrives, the algorithm proceeds as follows.

(i) If all slots have already been filled, then the object is rejected.
(ii) Otherwise, if d > �n/(8√k	, then the following hold.

(a) If i ≤ m′, the dth item is accepted if it is one of the top
(Ai + 6(z +
1)
√
Ai log k)2

id/n� items among the first d.
(b) If i > m′, the algorithm accepts the dth item if it is one of the top

32(z + 1)(Ai)2id/n� items among the first d.

(iii) Otherwise, if the number of slots that still have to be filled equals the number
of items left (i.e., n− d− 1), the dth item is accepted.

We refer to acceptances under (iii), i.e., when the number of slots that still have
to be filled equals the number of items that remained to be seen, as mandatory, and
to all other acceptances as elective. For example, if the dth item arrives during I1,
and the latter is opening, then the item is accepted electively if and only if it is one
of the approximately

(A1 + 6(z + 1)
√
A1 log k) · (2d/n)� =
(k + 12(z + 1)

√
k/2 log k) · (d/n)�

top objects among the first d. In general, if the dth object arrives during an opening
Ii, then the object is accepted electively if and only if it is one of the approximately

(2iAi + 6(z + 1) · 2i
√
Ai log k) · (d/n)�

top objects among the first d.

3. Analysis of Algorithm Select. Very loosely stated, the proof proceeds as
follows. In section 3.1 we show that for i = 1, . . . ,m + 1 (m = log n + 1), with high
probability, Di−1 = 0. Observe that this implies that for i = 1, . . . ,m, with high
probability, Ai is approximately pi, i.e.,

Ai ≈

2−ik if i ≤ m′,
2−m

′
k ≤ 2p if i = m′ + 1,

0 if i > m′ + 1.

In section 3.2 we show that if the dth object arrives during an opening Ii, then the
conditional expectation of the zth power of its rank, given that it is accepted electively,
is not greater than 2iz 1

z+1A
z
i +c4(z)2

izAz−0.5
i log k for some constant c4(z) (depending

on z); if Ii is closing, this conditional expectation is not greater than c6(z)2
izAzi for

some constant c6(z). In section 3.3 these results of sections 3.1 and 3.2 are combined
and it is established that if the dth object arrives during an opening Ii, then its
conditional expected zth power of rank, given that it is accepted electively, is at most

kz

z + 1
+ c(z)2i/2kz−0.5 log k

8 MIKLOS AJTAI, NIMROD MEGIDDO, AND ORLI WAARTS

for some constant c(z). If Ii is closing, that conditional expected zth power of rank
is at most c′(z)kz for some constant c′(z) if i = m′ + 1 and is approximately 0
otherwise. From this it will follow that the expected sum of the zth powers of ranks
of the electively accepted objects is 1

z+1k
z+1 + O(kz+0.5 log k). In addition, we use

the result of section 3.1 to show that the expected sum of the zth powers of ranks of
mandatorily accepted objects is O(kz+0.5 log k). Thus the expected sum of the zth
powers of ranks of the accepted objects is 1

z+1k
z+1 +O(kz+0.5 log k).

In addition, from the fact that the expected sum of the zth powers of ranks of
the accepted objects is bounded by a value that depends only on k and z, it will also
follow that the algorithm accepts the top k objects with probability that depends only
on k and z.

3.1. Bounding the Ai’s. In this section we show that for i = 1, . . . ,m, with
high probability, Ai is very close to pi. More precisely, we say that a prefix of ex-
ecution prior to the end of the ith interval is smooth if, for each j = 1 . . . , i, the
value computed for Ai in this prefix is ≤ |Ij |. We distinguish between smooth and
nonsmooth executions.

In section 3.1.1 we show that for an opening interval Ii, in executions whose prefix
prior to the end of the (i − 1)th interval is smooth, the probability that Ai > 2jpi
decreases exponentially with j (part 1 of Lemma 3.3). For a closing Ii, in executions
whose prefix prior to the end of the (i− 1)th interval is smooth, the probability that
Ai > 2

jpm′+1 decreases exponentially both with j and with i (part 2 of Lemma 3.3).
Parts 1 and 2 of Lemma 3.3 will follow, respectively, from Lemmas 3.1 and 3.2, which
show that in executions whose prefix prior to the end of the ith interval is smooth,
in Ii the algorithm accepts Ai objects with high probability (where Ai is computed
for the prefix of the execution). Intuitively, the restriction to smooth executions is
necessary since at most |Ii| objects can be selected in Ii. Lemma 3.3 implies that
for each i = 1, . . . ,m, in executions whose prefix prior to the end of the ith interval
is smooth, with high probability, by the end of Ii the number of objects that were
already accepted is not smaller than the minimum number of acceptance required
prior to this point. The latter holds even if Ii started at a disadvantage in the sense
that the minimum number of acceptances required prior to Ii was greater than the
number of objects that were actually accepted by that point.

Clearly, Lemma 3.3 implies that in smooth executions, with high probability, Ai
is very close to pi. To complete the proof that Ai is close to pi, section 3.1.2 shows
that nonsmooth executions are rare. In particular, section 3.1.2 uses Lemma 3.3
to show that in executions whose prefix prior to the end of the (i − 1)st interval is
smooth, the probability that Ai > |Ii| is less than c(z)n−2.5(z+1) for some constant
c(z) (Lemmas 3.4 and 3.5). The case of k ≥ n/2 is excluded (Lemma 3.5) and thus
handled separately later (section 3.3).

3.1.1. Smooth prefixes. Denote by Ei the prefix of an execution E prior to
the end of Ii. Note that Em is E. We say that Ei is smooth if for j = 1, . . . , i, Aj
computed in Ei is ≤ |Ij |. Denote by MEi the event in which Ei is smooth.

Lemma 3.1. For every i ≤ m′ and for any value ai of Ai,
Prob {Dk > 0 | {Ai = ai} ∩MEi} < k−5(z+1).

Proof. Note that Di > 0 only if the number of objects accepted in Ii is less
than ai.

Overview. Loosely stated, the algorithm accepts the dth object electively if it

is one of the top
(Ai + 6(z + 1)
√
Ai log k)

2id
n � objects among the first d. Since the

ALGORITHMS FOR SECRETARY PROBLEMS 9

objects arrive in a random order, the rank of the dth object within the set of first d
is distributed uniformly and hence it will be accepted electively with probability not

less than
(ai+6(z+1)√ai log k) 2id
n �/d. Moreover, the rank of the dth object within

the set of the first d is independent of the arrival order of the first d− 1, and hence is
independent of whether or not any previous object in this interval, say the d1th one,
is one of the top
(ai+6(z+1)√ai log k)2id1/n� objects among the first d1. The rest
of the proof follows from computing the expected number of accepted candidates and
the Chernoff inequality (see [2]).

We proceed with the actual proof. Suppose i ≤ m′, and let ai be the acceptance
threshold computed for Ii in a given execution. Recall that if the dth object arrives
during Ii while there are still empty slots d > �n/(8

√
k)	, and i ≤ m′, then the

algorithm accepts electively if it is one of the top
(Ai+6(z+1)
√
Ai log k)

2′d
n � objects

among the first d. (If either d ≤ �n/(8√k)	 or there are no empty slots when the dth
object arrives, it may not be accepted electively.) Since the objects arrive in a random
order, the rank of the dth object within the set of first d is distributed uniformly and
hence it will be accepted electively with probability not less than min{1,
(ai + 6(z +
1)
√
ai log k)

2id
n �/d}. Moreover, the rank of the dth object within the set of the first d

is independent of the arrival order of the first d − 1. Hence this rank is independent
of whether or not any previous object in this interval, say the d1th one, is one of the
top
(ai + 6(z + 1)√ai log k)2id1/n� objects among the first d1.

Without loss of generality we may assume that

min

{
1,

⌊
(ai + 6(z + 1)

√
ai log k)

2id

n

⌋/
d

}
=

⌊
(ai + 6(z + 1)

√
ai log k)

2id

n

⌋/
d < 1.

For, if for some d ∈ Ii,
(ai+6(z+1)√ai log k) 2id
n �/d ≥ 1, then ai+6(z+1)

√
ai log k ≥

n
2i , and hence, for each d ∈ Ii,
(ai + 6(z + 1)√ai log k) 2id

n � ≥ 1. In this case each
object in Ii is accepted with probability 1 unless all slots have already been filled. If
all slots are filled, then Di = 0, and we are done. Otherwise, Qi = |Ii|. It follows
from the definition that Di ≤ ai −Qi, and hence Di ≤ ai − |Ii|. Since by the lemma
assumption, ai ≤ |Ii|, it follows that Di is nonpositive.

The rest of the proof follows directly from Chernoff’s inequality. Formally, sup-
pose the gth object is the first in Ii, i.e., g = 1+ n

∑i−1
j=1 2

−j . Define X1, . . . , X|Ii| to
be independent random (0, 1)-variables such that

Prob{Xt = 1} =

(ai + 6(z + 1)√ai log k) 2

i(t+g−1)
n �

t+ g − 1

for t+ g − 1 > �n/(8√k)	. It follows from the reasoning above that if the dth object
is in an opening Ii, then the probability that the dth object is accepted electively is
not less than Prob{Xd−g+1 = 1}. The independence of the order of arrival of the first
d− 1 objects also implies that

Prob{Di > 0} ≤ Prob{Qi < ai} ≤ Prob

|Ii|∑
t=1

Xt < ai

 .

Thus, to complete the proof, we will show that Prob{∑|Ii|t=1Xt < ai} < k−5(z+1). To
this end, we first establish the following claim.

10 MIKLOS AJTAI, NIMROD MEGIDDO, AND ORLI WAARTS

Claim 3.1.
∑|Ii|
t=1 Prob{Xt = 1} ≥ ai + 5(z + 1)

√
ai log k.

Proof. We distinguish two cases.
Case 1. i > 1. In this case we have g > n/2 and the first inequality follows since

g > �n/(8√k)	. The same holds for t+ g − 1 for each t ∈ Ii. It follows that

Prob{Xt = 1} =

(ai + 6(z + 1)√ai log k) 2

i(t+g−1)
n �

t+ g − 1 .

It follows that i < m because, as noted in section 2, Im is closing. Also, |Ii| = n/2i(i =
1, . . . ,m − 1). Furthermore, note that since i ≤ m′, pi ≥ k2− log k/p = p, and hence
also k, ai ≥ p. Since p ≥ 64, √ai log k ≥ √p log p ≥ 1 ≥ 2−i+1. The above implies

|Ii|∑
t=1

Prob{Xt = 1} = ai + 5(z + 1)√ai log k.

Case 2. i = 1. Here we have

Prob{Xt = 1} =

(a1 + 6(z + 1)

√
a1 log k)

2t
n

t

for every t > �n/(8√k)	. Also, since Im is closing, and since in our case I1 is opening,
we have 1 < m, and also |Ii| = n2−i (i = 1, . . . ,m − 1). Furthermore, 1

4
√
k
≥ 2

n ,

because (i) as noted above, if i ≤ m′, then pi ≥ p, and since p1 = k
2 , we have k ≥ 2p,

and (ii) p ≥ 64 + log2 k, so 8
√
k ≤ √p√k ≤ k ≤ n. Other relations to note are:

a1 = p1 =
k
2 , k ≥ 2p ≥ 128, and a1 = k/2. The above implies

|I1|∑
t=1

Prob{Xt = 1} ≥ a1 + 5(z + 1)
√
a1 log k.

An inequality related to Chernoff’s states the following. Let X1, . . . , Xn be in-
dependent random (0, 1)-variables with Prob{Xi = 1} = pi, 0 < pi < 1. Let
X =

∑n
i=1Xi and µ =

∑n
i=1 pi. Then, for δ ∈ [0, 1],

Prob{X < (1− δ)µ} < exp
(
−1
2
µδ2
)
.

Using the claim, we apply Chernoff’s inequality to our Xt’s to get

Prob

|Ii|∑
t=1

Xt < ai

 exp(−5(z + 1) log k) < k−5(z+1).

Lemma 3.2. If n ≥ 16, then for every i > m′,
Prob{Di > 0 | {Ai = ai} ∩MEi

} < 2−5(z+1)(ai+1).

Proof. Suppose i > m′, and let ai be the acceptance threshold computed for Ii.
First, observe that Ai > 0 (i = m

′ + 1, . . . ,m) implies Ai ≥ 1. For, by definition,

Ai =

{
Di−1 + pi if

∑i−1
j=1Qj < k,

0 otherwise.

ALGORITHMS FOR SECRETARY PROBLEMS 11

Hence, for i = m′ + 1, if k −∑m′

j=1Qj ≤ 0, then Am′+1 = · · · = Am = 0, and the

observation follows. Assume k −∑m′

j=1Qj > 0. Then

Am′+1 = Dm′ + pm′+1 = max

0,

m′∑
j=1

pj −
m′∑
j=1

Qj

+ pm′+1

= max

pm′+1, k −

m′∑
j=1

Qj

 ≥ k −

m′∑
j=1

Qj .

Since k and Qj are integers, and by our assumption k −
∑m′

j=1Qj > 0, this means

Am′+1 ≥ 1. For i > m′+1, if k−
∑i−1
j=1Qj ≤ 0, then Ai = 0 by definition. Otherwise,

Am′+1 > 0 and hence as reasoned above is ≥ k −
∑m′

j=1Qj . Thus

Ai = Di−1 = max

0, Am′+1 −

i−1∑
j=m′+1

Qj

 ≥ k −

m′∑
j=1

Qj −
i−1∑

j=m′+1

Qj = k −
i−1∑
j=1

Qj .

Thus, since k and Qj are integers and k−
∑i−1
j=1Qj > 0 by assumption, then Aj ≥ 1.

If ai = 0, the lemma follows since Di ≤ ai. Thus, assume that ai ≥ 1. The proof
is analogous to that of Lemma 3.1.

Recall that for d > �n/(8√k)	, if the dth object arrives during a closing Ii while
there are still empty slots, then the object is accepted electively if it is one of the
top
32(z + 1)Ai2id/n� objects among the first d. (If either d ≤ �n/(8

√
k)	, or there

are no empty slots, this object is not accepted electively.) Since the rank of the dth
object in the set of the first d is uniformly distributed, it will be accepted electively
with probability not less than min{1,
32(z + 1)ai2id/n�/d}.

As in the proof of Lemma 3.1, we may assume that min{1,
32(z+1)ai2id/n�/d} =

32(z + 1)ai2id/n�/d < 1. We apply again Chernoff’s inequality. Suppose the gth

object is the first to arrive during Ii, i.e., g = 1 + n
∑i−1
j=1 2

−j . Let X1, . . . , X|Ii| be
independent random (0, 1)-variables such that

Prob{Xt = 1} =
32(z + 1)ai2i(t+ g − 1)/n�/(t+ g − 1)
for t+g−1 > �n/(8√k)	. It follows that if the dth object arrives during Ii and i > m′,
then the probability that it is accepted electively is not less than Prob{Xt−g+1 = 1}.
It also follows that Prob{Di > 0} ≤ Prob{Qi < ai | Ai = ai} ≤ Prob{

∑|Ii|
t=1Xt < ai}.

Thus, to complete the proof, we will show that Prob{∑|Ii|t=1Xt < ai} < 2−5(z+1)(ai+1).
To show this we first prove the following claim.

Claim 3.2.
∑|Ii|
t=1 Prob{Xt = 1} ≥ 16(z + 1)ai.

Proof. Again, we distinguish two cases.
Case 1. i > 1. Here we rely on the following. For i > 1, we have g > n/2;

thus g > �n/(8√k)	, and hence so is t + g − 1 for each t in Ii. It follows that
Prob{Xt = 1} =
32(z+1)ai2i(t+ g− 1)/n�/(t+ g− 1). Also, we have |Ii| = �n/2i	.
Finally, we may assume ai ≥ 1, so 8(z + 1)ai ≥ 2 ≥ 2−i+2. The above implies

|Ii|∑
t=1

Prob{Xt = 1} ≥ 16(z + 1)ai.

12 MIKLOS AJTAI, NIMROD MEGIDDO, AND ORLI WAARTS

Case 2. i = 1. Here we rely on g = 1 and

Prob{Xt = 1} =
32(z + 1)a12
1t/n�/t for t > �n/(8

√
k)	.

Also, note that �n/2	 objects arrive during I1. Note that since 1 = i > m′ in this
case, we get m′ = 0; thus by definition, a1 = p1 = k2−m

′
= k. Finally, note that

n ≥ 16 and z ≥ 1. The above implies
|I1|∑
t=1

Prob{Xt = 1} ≥ 16(z + 1)a1.

The claim and Chernoff’s inequality imply

Prob

|Ii|∑
t=1

Xt < ai

 < exp

(
−1
2
· 16(z + 1)ai · 0.9

)
≤ 2−5(z+1)(ai+1).

Lemma 3.3.
(i) For i ≤ m′ and for all j,

Prob{Ai > k2−i(2j − 1) | MEi−1
} ≤ k−5(z+1)j .

(ii) If n ≥ 16, then for i > m′, j ≥ 0,

Prob{Ai > k2−m′
(2j − 1) | MEi−1} ≤ k−5(z+1)j(2−5(z+1))i−m

′−1.

Proof. For the proof of (i), suppose i ≤ m′. Without loss of generality we may
assume that j ≥ 1, because for j ≤ 0, we have k−5(z+1)j ≥ 1, and (i) follows.

Recall that the minimum number of acceptances required for an opening interval
Ii is pi = k2

−i. Thus if Ai > k2−i, then Di−1 > 0. Moreover,

k

2i
(2j − 1) = k

2i
(1 + 2 + · · ·+ 2j−1) = pi + pi−1 + · · ·+ pi−j+1.

By induction, if Ai > k2
−i(2j − 1), then Di−1, Di−2, . . . , Di−j are positive. Thus, it

suffices to bound the probability

Prob{(Di−1 > 0) ∩ (Di−2 > 0) ∩ · · · ∩ (Di−j > 0) | MEi−1
}

= Prob{Di−1 > 0 | (Di−2 > 0) ∩ (Di−3 > 0) ∩ · · · ∩ (Di−j > 0) ∩MEi−1
}

· Prob{(Di−2 > 0) ∩ (Di−3 > 0) ∩ · · · ∩ (Di−j > 0) | MEi−1}
≤ Prob{Di−1 > 0 | MEi−1}
· Prob{(Di−2 > 0) ∩ (Di−3 > 0) ∩ · · · ∩ (Di−j > 0) | MEi−1},

where the last inequality follows from the way the algorithm sets the thresholds. Here
we use an inductive argument. Thus, Lemma 3.1 implies that each of the underlying
events {Dq > 0} (q = 1, . . . , i−1) occurs with probability less than k−5(z+1). Clearly,
each of the events {Dq > 0} (q ≤ 0) occurs with probability 0 and hence less than
k−5(z+1). Thus,

Prob{Ai > k2−i(2j − 1)} ≤ (k−5(z+1))j = k−5(z+1)j .

ALGORITHMS FOR SECRETARY PROBLEMS 13

For the proof of (ii), suppose i > m′. Recall that

pm′+2 = · · · = pm = 0

and

pm′+1 = k2
−m′

.

Thus, if Ai > k2
−m′

(2j − 1), then we must have

Dm′ > k2−m
′
(2j − 2)

and

Dm′+1, . . . , Di−1 > 0.

Lemma 3.2 implies that for each q (q = m′+1 . . . ,m), the underlying event {Dq > 0}
occurs with probability less than 2−5(z+1). Again the dependency and the conditioning
on MEi−1 are working in our favor. Thus, if j = 0, then

Prob{Ai > k2−m′
(2j − 1) | MEi−1} ≤ (2−5(z+1))i−m

′−1 = k−5(z+1)j(2−5(z+1))i−m
′−1.

To complete the proof, assume j ≥ 1. Then Dm′ > k2−m
′
(2j − 2) ≥ 0. Lemma 3.2

implies that the underlying event {Dm′ > 0} occurs with probability less than
k−5(z+1). Moreover, since Dm′ ≤ Am′ , it follows that Dm′ > k2−m

′
(2j − 2) im-

plies Am′ > k2−m
′
(2j − 2) ≥ k2−m

′
(2j−1 − 1). The first part of the lemma thus

implies that for j ≥ 1, the underlying event {Am′ > k2−m
′
(2j−1 − 1)} occurs with

probability at most k−5(z+1)(j−1). Hence

Prob{Ai > k2−m′
(2j − 1) | MEi−1} ≤ k−5(z+1)j(2−5(z+1))i−m

′−1.

3.1.2. Nonsmooth executions.
Lemma 3.4. If i ≤ m′, then

Prob{¬MEi ∩MEi−1} ≤ 25(z+1)n−2.5(z+1).

Proof. First note that

Prob{¬MEi ∩MEi−1} ≤ Prob{Ai > n2−i | MEi−1}.

We distinguish two cases.
Case 1. k ≤ √n. Here,

Prob{Ai > n2−i | MEi−1} ≤ Prob{Ai > (k2−i)(2j − 1) | MEi−1},

where j = � 12 log n	 − 1.
From part (i) of Lemma 3.3 it follows that

Prob{Ai > (k2−i)(2j − 1) | MEi−1
} ≤ 25(z+1) · n−2.5(z+1).

Case 2. k ≥ √n. Here it follows from part (i) of Lemma 3.3 that

Prob{Ai > n2−i | MEi−1
} ≤ n−2.5(z+1).

14 MIKLOS AJTAI, NIMROD MEGIDDO, AND ORLI WAARTS

Lemma 3.5. If n ≥ 16, k ≤ 1
2n, and i > m

′, then

Prob{¬MEi ∩MEi−1} ≤ 210(z+1)n−2.5(z+1).

Proof.

Prob{¬MEi ∩MEi−1} ≤ Prob{Ai > n2−i | MEi−1}.
We distinguish two cases.

Case 1. k ≤ √n. Here,

Prob{Ai > n2−i | MEi−1} ≤ Prob{Ai > k2−m′ · (2j − 1) | MEi−1},
where j = max{0, � 12 log n	 − i+m′ − 1}.

We distinguish again two cases.
Case 1.a. � 12 log n	 − i +m′ − 1 ≤ 0. In this case, i ≥ � 12 log n	 +m′ − 1. From

part (ii) of Lemma 3.3 it follows that

Prob{Ai > k2−m′ · (2j − 1) | MEi−1} ≤ 210(z+1)n−2.5(z+1).

Case 1.b. � 12 log n	 − i+m′ − 1 ≥ 0. From part (ii) of Lemma 3.3 it follows that

Prob{Ai > k2−m′ · (2j − 1) | MEi−1} ≤ k−5(z+1)j2−5(z+1)(i−m′−1).

We distinguish two cases.
Case 1.b.1. k ≤ 2.
By definition

Ai ≤ pi +Di−1 = pi +max

0,

i−1∑
j=1

pj −
i−1∑
j=1

Qj

 ≤

i∑
j=1

pj ≤ 2.

On the other hand, by our assumption Ai ≥ n2−i. Thus, i ≥ log n − 1. In addition,
m′ = 0 since by definition, m′ = max{0,
log(k/p)�} and p ≥ 64. Thus,

k−5(z+1)j2−5(z+1)(i−m′−1) ≤ 210(z+1)n−5(z+1).

Case 1.b.2. k ≥ 2.
k−5(z+1)j2−5(z+1)(i−m′−1) ≤ 210(z+1) · n−2.5(z+1).

Case 2. k ≥ √n. We distinguish again two cases.
Case 2.a. i = m′ + 1. Since k ≤ 1

2n and in view of part (ii) of Lemma 3.3,

Prob{Ai > n2−i | MEi−1} ≤ n−2.5(z+1).

Case 2.b. i > m′ + 1. In this case we can prove that

Prob{Ai > n2−i | MEi−1} ≤ n−2.5(z+1)

based on Lemma 3.2, the definition of Am′+1, and the fact that p ≥ log2 k.
The case of k ≥ n/2 is excluded (Lemma 3.5) and thus handled separately later

(section 3.3).

ALGORITHMS FOR SECRETARY PROBLEMS 15

3.2. Expected zth powers of ranks. Let us denote by Rd the random variable
of the rank of the dth object. We define the arrival rank of the dth object as its rank
within the set of the first d objects, i.e., one plus the number of better objects seen so
far. Denote by Sd the random variable of the arrival rank. Denote by NAd the event
in which the dth object is accepted electively. In this section we show that there exist
constants c4(z), c5(z), and c6(z) such that if the dth object arrives during an opening
interval Ii, then

E(Rzd | NAd∩{Ai = ai}) ≤ 2iz ·
azi
z + 1

+c4(z)2
iza

z− 1
2

i log k+c5(z)

√
n

D
2i(z−

1
2)a

z− 1
2

i log k

(Lemma 3.9); and if Ii is closing, then

E(Rzd | NAd ∩ {Ai = ai}) ≤ c6(z)2izazi
(Lemma 3.10). To prove the above, we first prove a technical lemma (Lemma 3.6)
showing that for fixed d and s, if r ≥ n

d s +
n
d

√
s, then Prob{Rd = r | Sd = s}

decreases exponentially with r. This lemma will be used to prove Lemma 3.7, which
states roughly that there exists a constant c2(z) such for every s

E(Rzd | Sd = s) ≤
(n
d

)z
sz + c2(z)

(n
d

)z
sz−

1
2 log k.

Lemma 3.9 will follow by combining the result of Lemma 3.7 with the fact that given
that the object is accepted electively during an opening interval Ii and Ai = ai,
then Sd is distributed uniformly in the set {1, 2, . . . ,
(ai+6(z+1)√ai log k)2id/n�}.
Lemma 3.10 will follow analogously by combining the result of Lemma 3.7 with the
fact that given that the object is accepted electively during a closing interval Ii and
Ai = ai, then Sd is distributed uniformly in the set {1, 2, . . . ,
32(z + 1)ai2id/n�}.

Lemma 3.6. For all s and j ≥ n
d

√
s,

Prob
{
Rd =

n

d
s+ j | Sd = s

}
≤ exp

(
− jd

8n
√
s

)
.

Proof. Clearly,

Prob
{
Rd =

n

d
s+ j | Sd = s

}
=

(n
d s+j−1
s−1

)(n−n
d s−j
d−s

)
(
n−1
d−1

) .

Denote

α =

(n
d s−1
s−1

)(n−n
d s

d−s
)

(
n−1
d−1

) .

It follows that

Prob
{
Rd =

n
d s+ j | Sd = s

}

≤ α
(

1

1− d
n

) j
2

·

 1

1− d
n

s
s+ d

n
j
2

1
2

·
(
1− d

n
· 1−

s
d

1− s
d

) j
2

·
(
1− d

n
· 1− s

d

1− s
d − j

2n

) j
2

.

16 MIKLOS AJTAI, NIMROD MEGIDDO, AND ORLI WAARTS

Let us denote

ρ(n, d, s, j) = − ln
(
1− d

n
· s

s+ d
n
j
2

)
+ ln

(
1− d

n
· 1− s

d

1− s
d − j

2n

)
,

so we can write

Prob
{
Rd =

n

d
s+ j | Sd = s

}
≤ αeρ(n,d,s,j) j

2 .

Observe that α ≤ 1. Thus, to complete the proof, we show that ρ(n, d, s, j) ≤
− d

4n
√
s
.

However,

ρ(n, d, s, j) =

∞∑
t=1

(s

s+ d
n
j
2

)t
−
(

1− s
d

1− s
d − j

2n

)t(d
n

)t
· 1
t
.

Thus, to complete the proof, it suffices to show that

(i)
s

s+ d
n
j
2

− 1− s
d

1− s
d − j

2n

≤ − 1

4
√
s

and

(ii) for each t > 1,

(
s

s+ d
n
j
2

)t
≤
(

1− s
d

1− s
d − j

2n

)t
.

For the proof of (i),

s

s+ d
n
j
2

− 1− s
d

1− s
d − j

2n

≤ −
dj
2n

s+ dj
2n

≤ −
√
s

2

s+
√
s

2

< − 1

4
√
s
.

Clearly, (ii) follows from (i).
Lemma 3.7. There exist constants c2(z), c3(z), and c18(z) such that for all d ≥ n

k
and s,

E(R2
d | Sd = s)

≤
(n
d

)z (
1 +

c3(z)

k

d

n

)
sz + c2(z)

(n
d

)z
sz−

1
2 log k + c18(z)

(n
d

)z
sz/2 logz k.

The proof is omitted.
Lemma 3.8. For every x ≥ 1, there exists a constant c20(x), such that for

all intervals Ii and for all values ai of Ai, if the dth object arrives during Ii, and
d ≥ n/√k, then

(n
d

)x/2
2ix/2a

x/2
i logx k ≤ c20(x)

√
n

d
2i(x−

1
2)a

x− 1
2

i log k.

Proof. If ai = 0, the lemma follows. Thus assume ai > 0. It suffices to prove(n
d

)(x−1)/2

logx−1 k ≤ c20(x)2i(x−1)/2a
(x−1)/2
i ,

ALGORITHMS FOR SECRETARY PROBLEMS 17

where c20(x) is a constant. We distinguish two cases.
Case 1. i = 1. Based on the relations d ≥ n/√k, log k ≤ ck1/4 for some constant

c, and a1 ≥ k/2 (in particular, if I1 is opening, then a1 = k/2, and otherwise we get
that m′ = 0; thus by definition, a1 = p1 = k2

−m′
= k), we get

(n
d

)(x−1)/2

logx−1 k ≤ c20(x)2i(x−1)/2a
(x−1)/2
1 ,

where c and c20(x) are constants.
Case 2. i > 1. We distinguish two cases.
Case 2.a. Ii is opening, i.e., i ≤ m′. In this case d > n/2. Also, since Ii is an

opening interval, we have (as mentioned in section 2) that pi ≥ p, and hence also
ai ≥ p, and p > log2 k by definition. It follows that(n

d

)(x−1)/2

logx−1 k ≤ c20(x)2i(x−1)/2a
(x−1)/2
i ,

where c20(x) is a constant.
Case 2.b. Ii is closing i.e., i > m

′. Here, p = log2 k + 64, and hence k
p ≥ c log2 k

for some constant c. Also, (i) as observed in the beginning of the proof of Lemma 3.2,
for closing Ii, Ai > 0 implies that Ai ≥ 1, and (ii) by our assumption in the beginning
of the proof, ai �= 0. It follows that(n

d

)(x−1)/2

logx−1 k ≤ c20(x)2i(x−1)/2a
(x−1)/2
i ,

where c and c20(x) are constants.
Lemma 3.9. There exist constants c4(z) and c5(z) such that for all opening

intervals Ii (i.e., i ≤ m′) and for every value ai of Ai, if the dth object arrives during
Ii and d ≥ n

k , then

E(Rzd | NAd∩{Ai = ai}) ≤ 2iz
1

z + 1
azi+c4(z)2

iza
z− 1

2
i log k+c5(z)

√
n

d
2i(z−

1
2)a

z− 1
2

i log k.

Proof. Recall that if the dth object arrives during an opening interval Ii, it is
accepted electively only if it is one of the top
(ai+6(z+1)√ai log k)2id/n� among the
first d. Obviously, Sd is distributed uniformly in {1, . . . , d}, so given NAd∩{Ai = ai},
Sd takes on any of the values in the set {1, . . . ,
(ai + 6(z + 1)√ai log k)2id/n�} with
equal probability of (
(ai + 6(z + 1)√ai log k)2id/n�)−1. It follows that there exist
constants c(z), c′(z), c′′(z), and c′′′(z) such that

E(Rzd | NAd ∩ {Ai = ai})

≤
(
1 +

c3(z)

k

d

n

)
· 2iz 1

z + 1
azi + c(z)2

iza
z− 1

2
i log k + c′(z)2izaz/2i logz k

+c′′(z)
√
n

d
2i(z−

1
2)a

z− 1
2

i log k + c′′′(z)
(n
d

)z/2
2iz/2a

z/2
i logz k.

Thus, to complete the proof, it suffices to show that there exists a constant c such
that

(i) azi /k ≤ az−
1
2

i log k,

(ii) a
z/2
i logz k ≤ az− 1

2
i log k, and

18 MIKLOS AJTAI, NIMROD MEGIDDO, AND ORLI WAARTS

(iii)
(
n
d

)z/2
2iz/2a

z/2
i logz k ≤ c√n

d 2
i(z− 1

2)a
z− 1

2
i log k.

For the proof of (i), since ai ≤ k we have that azi /k ≤ az−1
i . Since, as noted above,

ai ≥ p and k ≥ p, we have that ai and k ≥ log2 k+64, and thus az−1
i ≤ az− 1

2
i log k, and

(i) follows. (ii) follows from z ≥ 1 and ai ≥ log2 k. (iii) follows from Lemma 3.8.
Lemma 3.10. There exists a constant c6(z), such that for all closing intervals

Ii (i.e., i > m′) and for all values ai of Ai, if the dth object arrives during Ii, and
d ≥ n√

k
, then

E(Rzk | NAd ∩ {Ai = ai}) ≤ c6(z)2izazi .
Proof. The proof is analogous to that of Lemma 3.9. Recall that if the dth

object arrives during a closing Ii, then it is accepted electively if it is one of the
top
32(z + 1)ai2id/n� among the first d. Given NAd ∩ {Ai = ai}, Rd is uniformly
distributed in the set {1, . . . ,
32(z + 1)ai2id/n�}. Thus there exist constants c(z),
c′(z), c′′(z), and c6(z) such that

EE(Rzd | NAd ∩ {Ai = ai})

≤ c(z)2izazi + c′(z)
√
n

d
2i(z−

1
2)a

z− 1
2

i log k + c′′(z)
(n
d

)z/2
2iz/2a

z/2
i logz k

≤ c6(z)2izazi .
3.3. Expected sum of ranks. In this section we show that the expected sum

of the zth powers of ranks of the k accepted objects is

1

z + 1
kz+1 +O(kz+0.5 log k)

(Theorem 3.1). This will follow by adding up the expected sum of the zth powers of
ranks of electively accepted objects (Lemma 3.15), and the expected sum of the zth
powers of ranks of mandatorily accepted objects (Lemma 3.17).

In section 3.3.1 we bound the expected sum of the zth powers of ranks of electively
accepted objects. In particular, denote by SUMZi the sum of the zth powers of ranks
of objects that are accepted electively during Ii. We first use Lemmas 3.9 and 3.10
of section 3.2 to show that there exist constants c7(z) and c8(z) such that if Ii is
opening, then

E(SUMZi | Ai = ai) ≤ 2iz 1

z + 1
az+1
i + c7(z)2

iza
z+ 1

2
i log k

(Lemma 3.11); and if Ii is closing, then

E(SUMZi | Ai = ai) ≤ c8(z)2izaz+1
i

(Lemma 3.12). Lemma 3.11 is then combined with part (i) of Lemma 3.3 and with
Lemma 3.4, to show that there exists a constant c9(z) such that if Ii is opening, then

E(SUMZi) ≤ 2−i k
z+1

z + 1
+ c9(z)2

−i/2kz+
1
2 log k

(Lemma 3.15). Lemma 3.12 is combined with part (ii) of Lemma 3.3 and with
Lemma 3.5, to show that there exists a constant c10(z) such that if Ii is closing,
then

E(SUMZi) ≤ c10(z)2−ikz+1

ALGORITHMS FOR SECRETARY PROBLEMS 19

(Lemma 3.14). The expected sum of the zth powers of ranks of electively accepted
objects is obtained by summing up these results over all intervals (Lemma 3.15).

Section 3.3.2 bounds the expected sum of the zth powers of ranks of mandatorily
accepted objects. It first shows that if in execution E some object d ∈ Ii is accepted
mandatorily, then the prefix of E prior to the end of Ii+1 is not smooth (Lemma 3.16).
Lemmas 3.4 and 3.5 of section 3.1.2 imply that, for each Ii, the probability that a prefix
of execution E prior to the end of Ii is not smooth and is at most c(z)n

−2.5(z+1) log n,
where c(z) is a constant. This bound applies thus also for the probability that objects
will be mandatorily accepted in Ii. Lemma 3.17 combines this bound with the facts
that the rank of an object never exceeds n, and the number of accepted objects is at
most k ≤ n, to show that the expected sum of the zth powers of ranks of mandatorily
accepted objects is O(kz+0.5 log k). The case of k ≥ 1

2n is handled without the use of
Lemma 3.5, since this lemma excludes it.

In addition, the fact that the expected sum of the zth powers of ranks of accepted
objects is bounded by a value that does not depend on n will imply that the algo-
rithm accepts the top k objects with positive probability that does not depend on n
(Corollary 3.1).

3.3.1. Elective acceptances.
Lemma 3.11. There exists a constant c7(z) such that for all opening intervals Ii

and for all values ai of Ai,

E(SUMZi | Ai = ai) ≤ 2iz · a
z+1
i

z + 1
+ c7(z)2

iza
z+ 1

2
i log k.

Proof. It can be shown that if Ii is opening, then

E(SUMZi | Ai = ai)

≤ 2iz · a
z+1
i

z + 1
+ (c4(z) + 6 + c4(z))2

iza
z+ 1

2
i log k

+(ai + 6(z + 1)
√
ai log k) · 2

i

n
· c5(z)2i(z− 1

2)a
z− 1

2
i log k ·

∑
d∈Ii

d>�n/(8
√

k)�

√
n

d
.

To complete the proof, it suffices to show that there is a constant c(z) such that

(ai + 6(z + 1)
√
ai log k) · 2

i

n
· 2i(z− 1

2)a
z− 1

2
i log k ·

∑
d∈Ii

d>�n/(8
√

k)�

√
n

d
≤ c(z)2izaz+ 1

2
i log k.

For i > 1, we have n
d ≤ 2, and hence

(ai + 6(z + 1)
√
ai log k) · 2

i

n
· 2i(z− 1

2)a
z− 1

2
i log k ·

∑
d∈Ii

d>�n/(8
√

k)�

√
n

d

≤ c(z)2i(z− 1
2)a

z+ 1
2

i log k.

For i = 1, it can be proved that

∑
d∈I1

d>�n/(8
√

k)�

√
n

d
≤ n√

k
·
√√

k ·
√
k∑

i=1

√
1

i
≤ cn.

20 MIKLOS AJTAI, NIMROD MEGIDDO, AND ORLI WAARTS

Lemma 3.12. There exists a constant c8(z) such that for all closing intervals Ii
and for all acceptance thresholds ai computed for Ii,

E(SUMZi | Ai = ai) ≤ c8(z)2izaz+1
i .

Proof. The proof is analogous to that of Lemma 3.11. It can be shown that if Ii
is closing, then there is a constant c8(z) such that

E(SUMZi | Ai = ai) ≤ 32(z + 1)ai 2
i

n
·
⌈ n
2i

⌉
· c6(z)2izazi ≤ c8(z)2izaz+1

i ,

where c8(z) is a constant.
Lemma 3.11 is combined with part (i) of Lemma 3.3 and with Lemma 3.4 to show

the following lemma.
Lemma 3.13. There exists a constant c9(z) such that for all opening intervals Ii,

E(SUMZi) ≤ 2−i k
z+1

z + 1
+ c9(z)2

−i/2kz+
1
2 log k.

Proof. It can be shown that if Ii is opening, then

E(SUMZi ≤ Prob{¬MEi−1} · E(SUMZi | Ai = k) +
∞∑
a=1

Prob{Ai = a ∩MEi−1}

· E(SUMZi | Ai = a).

To complete the proof, we can show that there exist constants c(z) and c′(z) such
that

(1) Prob{¬MEi−1
} · E(SUMZi | Ai = k) ≤ c(z)2−i/2kz+ 1

2 log k,

(2)
∑∞
a=1 Prob{Ai = a | MEi−1

}·E(SUMZi | Ai = a) ≤ 2−i kz+1

z+1 +c
′(z)2−i/2kz+

1
2 log k.

Lemma 3.14. If n ≥ 16, then there exists a constant c10(z) such that for any
closing interval Ii,

E(SUMi) ≤ c10(z)2−ikz+1.

Proof. The proof is analogous to that of Lemma 3.13. Suppose Ii is closing. Then

E(SUMZi) ≤ Prob{¬MEi−1} · E(SUMZi | Ai = k) +
∞∑
a=1

Prob{Ai = a | MEi−1
}.

To complete the proof, we can prove that there exist constants c(z) and c′(z) such
that

(1) Prob{¬MEi−1
} · E(SUMZi | Ai = k) ≤ c(z)2−ikz+1,

(2)
∑∞
a=1 Prob{Ai = a | MEi−1} · E(SUMZi | Ai = a) ≤ c′(z)2−ikz+1.

The following lemma completes the proof of the upper bound on the sum of the
ranks of the electively accepted objects. It sums up the expected sum of ranks of
electively accepted objects over all intervals.

Lemma 3.15.

m∑
i=1

E(SUMZi) ≤ kz+1

z + 1
+O(kz+0.5 log k).

ALGORITHMS FOR SECRETARY PROBLEMS 21

Proof. If n ≤ 16, the assertion is immediate. For n > 16, we can prove that there
exists a constant c11(z) such that

m∑
i=1

E(SUMZi) ≤ kz+1

z + 1
(1− 2− log(k/p)) + c9(z)2k

z+ 1
2 log k + c10(z)k

z(log2 k + 64)

≤ kz+1

z + 1
+ c11(z)k

z+0.5(log k + 1)

=
kz+1

z + 1
+O(kz+0.5 log k).

3.3.2. Mandatory acceptances. This section bounds the expected sum of
mandatorily accepted objects. We first observe the following lemma.

Lemma 3.16. If the dth object is mandatorily accepted in execution E during Ii,
then ¬MEi+1 . Proof. First we claim that i < m − 1. For, as noted in section 2,
Im−1, Im are closing. Thus, if there is still an empty slot in E by the time the dth
object arrives during Ij (j = m− 1,m), then aj > 0. As observed at the beginning of
the proof of Lemma 3.2, in this case aj ≥ 1, since for closing Ij , Aj > 0 implies Aj > 1.
Hence, this object will be electively accepted if it is among the top
32(z+1)aj2jd/n�
objects seen so far, and hence, it will be electively accepted if it is among the top

32(z + 1)aj2jd/n� ≥
32(z + 1)2logn(n− 1)/n� ≥ 32(z + 1)n(n− 1)/n� ≥ n
objects seen so far. Thus, it will be electively accepted and hence not mandatorily
accepted.

Assume the dth object is mandatorily accepted in E during Ii. By definition
of mandatorily accepted, this implies that the number of open slots just before the
dth object’s arrival equals to the total number of objects remaining to be seen, i.e.,
n − d + 1. Since, as shown above, i < m − 1, it follows that Ii+1 exists. Thus, at
the beginning of Ii+1, the number of open slots equals to the total number of objects
remaining to be seen. Moreover, since i < m− 1, the number of objects that remain
to be seen just before the beginning of Ii+1 is exactly 2|Ii+1|. Thus,

i∑
j=1

Qj = k − 2|Ii+1|.

Therefore,

Di =

i∑
j=1

pj −
i∑

j=1

Qj =

i∑
j=1

pj − (k − 2|Ii+1|).

But

ai+1 = Di + pi+1 =

i∑
j=1

pj − (k − 2|Ii+1|) + pi+1 = 2|Ii+1| −
m∑

j=i+2

pj .

To complete the proof, it suffices to show that 2|Ii+1| −
∑m
j=i+2 pj > |Ii+1|. We

distinguish between two cases.
Case 1. i ≥ m′. In this case, ∑m

j=i+2 pj = 0, and hence

2|Ii+1| −
m∑

j=i+2

pj = 2|Ii+1| > |Ii+1|.

22 MIKLOS AJTAI, NIMROD MEGIDDO, AND ORLI WAARTS

Case 2. i < m′. In this case, it follows directly from the definition of pj that∑m
j=i+2 pj = pi+1 = k2

−i−1. If k = n, then clearly all objects are electively accepted

and none is mandatorily accepted. Thus, assume k < n. Then k2−i−1 < n2−i−1 =
|Ii+1|. Thus

2|Ii+1| −
m∑

j=i+2

pj > 2|Ii+1| − |Ii+1| = |Ii+1|.

Denote by SUMDZi the sum of the zth powers of ranks of objects that are ac-
cepted mandatorily during Ii.

Lemma 3.17. There exist constants c21(z) and c22(z) such that

m∑
i=1

E(SUMDZi) ≤ c21(z)kz+ 1
2 log k + c22(z).

Proof. Again, if n ≤ 16, the assertion is immediate. For n > 16, we argue as
follows. The number of accepted objects in Ii at most |Ii|, and the rank of any object
is of course not greater than n. Thus,

m∑
i=1

E(SUMDZi) ≤
m′−1∑
i=1

Prob{¬MEi+1
} · n2−i · nz +

m−1∑
i=m′−1

Prob{¬MEi+1
} · n2−i · nz.

To complete the proof, we can show that there exist constants c(z), c′(z), and
c′′(z) such that

(1)
∑m′=−1
i=1 Prob{¬MEi+1} · n2−i · nz ≤ c(z),

(2)
∑m−1
i=m′−1 Prob{¬MEi+1} · n2−i · nz ≤ c′(z)kz+

1
2 log k + c′′(z).

Lemmas 3.15 and 3.17 imply the following theorem.
Theorem 3.1. The expected sum of ranks of accepted objects is at most

1

z + 1
kz+1 +O(kz+0.5 log k).

Corollary 3.1. Algorithm Select accepts the best k objects with positive proba-
bility that depends only on k and z. Proof. Theorem 3.1 implies that the expected
sum of the zth powers of ranks of accepted objects is bounded by a value that is inde-
pendent of n. Thus, there is some value r that does not depend on n such that with
probability ≥ 1/2, all accepted objects are of rank ≤ r. Clearly, the probability of
acceptance decreases monotonically with the object’s rank. Therefore, the probability
that the k accepted objects are the best k objects is at least 1

2/
(
r
k

)
.

4. Trade-off between small expected rank and large probability of ac-
cepting the best.

Theorem 4.1. Let p0 be the maximum possible probability of selecting the best
object. There is a c > 0 so that for all ε > 0 and all sufficiently large n, if A is an
algorithm that selects one of n objects, and the probability pA that A selects the best
one is greater than p0 − ε, then the expected rank of the selected object is at least c/ε.
Proof. Suppose that contrary to our assertion there is an algorithm A that selects

the best object with probability of at least p0 − ε and yet the expected value of the
rank of the selected object is less than c/ε. Starting from A, we construct another
algorithm R so that R selects the best object with a probability > p0.

ALGORITHMS FOR SECRETARY PROBLEMS 23

Denote by OPT the following algorithm. Let n/e objects pass, and then accept
the first object that is better than any one seen so far. If no object was accepted by
the time the last object arrives, accept the last object. For n sufficiently large, this
algorithm accepts the best object with the highest possible probability, and hence
with probability p0 [9].

2

We define R by modifying A. The definition will depend on parameters c1 >
d > 0. We will assume that d is a sufficiently large absolute constant and c1 is
sufficiently large with respect to d. R will accept an object if at least one of the
following conditions is satisfied.

(i) A accepts the object after time n/d and by time n − c1εn and the object is
better than any one seen earlier.

(ii) OPT accepts the object whereas A accepted earlier some object which, at the
time of acceptance, was known not to be the best one (that is, there was a
better one before).

(iii) OPT accepts the object and A has already accepted some object by time n/d.
(iv) The object comes after time n − c1εn, it is better than any object else seen

before, and R has not yet accepted any object based on the rules (i), (ii), and
(iii).

(v) The object is the nth object and R has not accepted yet any object.
Notation. Denote by BA, BR, and BOPT the events in which A, R, and OPT,

respectively, accept the best object. Denote by B1, B2, and B3 the events in which
the best object appears in the intervals [1, n/d], (n/d, t0 = n − c1ε], and (t0, n],
respectively. Denote by IA1, IA2, and IA3 the events in which A makes a selection
in the intervals [1, n/d], (n/d, t0 − n− c1ε], and (t0, n], respectively.

We distinguish between two cases.
Case 1. Prob{IA1} ≥ 3ε/p0.
Claim 4.1.

Prob{BR | IA1} ≥ P{BA | IA1}+ p0/2.

Proof. Suppose that A made a selection by time n/d. According to rule (iii), in
this case R will accept an object that arrives after time n/d if and only if OPT accepts
this object. By choosing d sufficiently large, we have that objects are accepted by
OPT only after time n/d. Thus, if A made a selection by time n/d, R will accept the
object if and only if OPT accepts it. Thus,

Prob{BR | IA1} = Prob{BOPT | IA1} = Prob{BOPT} ≥ p0.

The second inequality follows since the probability that OPT accepts the best object
is independent of the order of arrival of the first n/d objects, and hence independent
of whether or not A makes a selection by time n/d. On the other hand,

Prob{BA | IA1} ≤ Prob{B1} ≤ 1/d.

Thus, by choosing d to be sufficiently large, the claim follows.
Claim 4.2.

Prob{BR | IA2} ≥ Prob{BA | IA2}.
2In fact, r = [(n− 1

2
)e−1 + 1

2
] is a better approximation to r than ne−1, although the difference

is never more than 1 [7]. We ignore this difference for the sake of simplicity.

24 MIKLOS AJTAI, NIMROD MEGIDDO, AND ORLI WAARTS

Proof. The claim follows immediately from the fact that if A picks the best object
between n/d and t0, then this object must be the best seen so far, and hence by rule
(i), R picks the same object.

Claim 4.3

Prob{BR | IA3} ≥ Prob{BA | IA3}.

Proof. If IA3 holds, then neither A nor R have accepted any object until time t0.
Let X be the event when A chooses no later than R. By the definition of R we have
that if X ∩ IA3 holds, then either A accepts an object that already at the moment
of acceptance is known not to be the best, or A and R accept the same object. Thus

Prob{BR | IA3 ∩X} ≥ Prob{BA | IA3 ∩X}.

To complete the proof, it suffices to show that

Prob{BR | IA3 ∩ ¬X} ≥ Prob{BA | IA3 ∩ ¬X}.

Suppose that IA3 ∩ ¬X holds and R accepts an object at some time t > t0. By
definition, A has not accepted any object yet, and the object accepted by R at t is
better than any object else seen earlier. Thus, if a better object than the one accepted
by R arrives after time t, this means that the best object arrives after time t. Since
the objects arrive in a random order, the rank of each dth arriving object within the
set of first d is distributed uniformly. Hence, the probability that the best object
will arrive after time t is at most (n − t)/n ≤ c1εn. Notice that this probability is
independent of the ordering of the first t objects, and hence is independent of the
fact that R has accepted the tth object. Therefore the probability that the object
accepted by R is indeed the best object is at least 1− c1εn, while the probability that
A accepts the best one later is smaller than c1εn. Thus, for any fixed choice of t and
fixed order of the first t objects (with the property IA3 ∩ ¬X), the probability of BR
is larger than BA, and hence Prob{BR | IA3 ∩ ¬X} ≥ Prob{BR | IA3 ∩ ¬X}.

Now we can complete the proof of Case 1.

Prob{BR}
= Prob{BR | IA1} · Prob{IA1}
+ Prob{BR | IA2} · Prob{IA2}
+ Prob{BR | IA3} · Prob{IA3}

≥ Prob{BA | IA1}+ p0/2) · Prob{IA1}
+ Prob{BA | IA2} · Prob{IA2}
+ Prob{BA | IA3} · Prob{IA3}

= Prob{BA}+ (p0/2) · Prob{IA1}
≥ p0 − ε+ (p0/2) · 3ε/p0 = p0 + ε/2.

The second inequality follows from Claims 4.1, 4.2, and 4.3. The fourth inequality
follows from (i) Prob{BA} ≥ p0− ε by the theorem assumption and (ii) Prob{IA1} ≥
3ε/p0 by Case I assumption.

Case II: Prob{IA1} < 3ε/p0.
Denote by BR1, BR2, and BR3 the events when R picks the best object and its

selections are in the interval [1, n/d], (n/d, t0] and (t0, n], respectively. Denote by
BA1, BA2, and BA3 the corresponding events for A.

ALGORITHMS FOR SECRETARY PROBLEMS 25

Since by the assumption of this case Prob{IA1} < 3ε/p0, we have

(1) Prob{BA1} < 3ε/p0.

If A picks the best object between n/d and t0, then this object must be the best
seen so far, and hence by rule (1), R picks the same object. Thus

(2) Prob{BR2} ≥ Prob{BA2}.

By choosing d sufficiently large, we have that objects are accepted by OPT only
after time n/d. Observe that in that case, if the second best comes by time n/d and
the best comes after time t0, then R accepts the best object. The probability that the
second best object arrives by time n/d is 1/d, and the conditional probability that
the best object comes after time t0, given that the second best comes by time n/d, is
at least c1ε. It thus follows that

(3) Prob{BR3} ≥ c1ε/d.

For bounding Prob{BA3}, we first use the assumption that the expected rank of
the object selected by A is less than c/ε to show the following.

Claim 4.4.

Prob{IA3} ≤ 1/(2d).

Proof. Each of the 1/(10dc1ε) objects with a rank smaller than 1/(10dc1ε) arrives
after time t0 = n− c1εn with probability of at most c1ε. Therefore, with probability
of at least 1 − 1/(10d), all objects that arrive after time t0 are of rank larger than
1/(10dc1ε). Hence, if the probability of IA3 had been greater than 1/(2d), then the
expected value of the rank would have been larger than c′/ε for some absolute constant
c′ > 0. Take the c of the theorem to be equal to c′, and we get a contradiction to the
assumption that the expected rank of the selected object is at most c/ε.

Let B3 denote the event in which the best object arrives in interval (t0, n]. Then
Prob{BA3} ≤ Prob{IA3} · Prob{B3 | IA3}. But B3 is independent of the order of
arrival of the first t0 objects and hence independent on whether or not A has accepted
an object by time t0. Thus, Claim 4.4 implies that Prob{IA3} · Prob{B3 | IA3} =
Prob{IA3} · Prob{B3 ≤ 1

2d · c2ε. Thus,

(4) Prob{BA3} ≤ c1ε/(2d).

Equations (1) to (4) imply

Prob{BR} − Prob{BA}
= Prob{BR1} − Prob{BA1}+ Prob{BR2} − Prob{BA2}+ Prob{BR3} − Prob{BA3}
≥ −3ε/p0 + c1ε/d− c1ε(2d)
= c1ε/(2d)− 3ε/p0 ≥ 2ε.

(The last inequality follows from our assumption that c1 is sufficiently large with
respect to d.) Therefore,

Prob{BR} ≥ prob{BA}+ 2ε ≥ p0 − ε+ 2ε > p0.

26 MIKLOS AJTAI, NIMROD MEGIDDO, AND ORLI WAARTS

5. Deterministic arrivals. In this section we consider the case where the order
of arrivals is not random but is determined by an adversary that knows the algorithm,
i.e., an oblivious adversary. We show that against such an adversary, no algorithm
can obtain an expected sum of the zth powers of ranks of selected items that is less
than knz/2z+1. In particular, this expected sum tends to infinity with n. This lower
bound holds also for randomized algorithms.

Given an algorithm A, we construct a sequence over which the expected sum of
zth powers of ranks of objects selected by A is at least knz/2z+1. Without loss of
generality assume that n is even. Let p be the expected number of acceptances prior to
the time the (n/2)th object is seen (inclusive), in case the ranks of the arriving objects
are monotonically increasing. If p ≤ k/2, then construct a sequence of objects such
that the best n/2 objects are the first to arrive, and they arrive in order of increasing
rank. Clearly, the expected number of objects accepted during the second half is at
least k/2, and each such object is of rank larger than n/2. It thus follows that the
average rank of accepted objects is at least (k/2) · (n/2)z = knz/2z+1. The case of
p > k/2 is analogous. The sequence is constructed so that the worst n/2 objects are
the first to arrive, and they arrive in order of increasing rank. It again follows that
the expected sum of z-powers of ranks of accepted objects is at least knz/2z+1.

Table 1

Candidates 128 256 512 1024 2048 4096 8192 16384 32768

Slots

1 65 127 256 312 317 320 323 324 322
(35) (38) (40) (40) (41) (42) (42) (42) (42)

5 65 127 257 464 473 476 482 489 484
(16) (33) (67) (87) (91) (95) (97) (99) (96)

10 65 129 256 511 633 635 643 647 649
(11) (22) (47) (91) (124) (135) (139) (142) (145)

6. Simulation results. We have performed some simulations of the algorithm.
Since our algorithm was designed for the purpose of proving asymptotic results, it
does not necessarily give the best values possible. In particular, when the number of
candidates is small it seems that much better results could be achieved. Following
are some results with numbers of candidates taken as powers of 2, and the number
of slots to be filled are 1, 5, and 10, and z = 1. In Table 1, we display simulation
estimates of the expectation and the standard deviation (in parentheses) of the mean
rank of candidates selected by the algorithm for various pairs of candidate and slot
numbers.

Acknowledgments. We are indebted to Eugen Dynkin, John Preater, Yossi
Rinott, Mike Saks, Steve Samuels, and Robert Banderbei for helpful references.

REFERENCES

[1] M. Ajtai, N. Megiddo, and O. Waarts Improved Algorithms and Analysis for Secretary
Problems and Generalizations, manuscript.

[2] N. Alon and J. H. Spencer, The Probabilistic Method, Wiley-Intersci. Series Discrete Math.
Optim., Wiley, New York, 1992.

[3] Y. S. Chow, H. Robbins, S. Moriguti, and S. M. Samuels, Optimal selection based on
relative rank (the “secretary problem”), Israel J. Math., 2 (1964), pp. 81–90.

[4] E. B. Dynkin, The optimum choice of the instant for stopping a Markov process, Sov. Math.
Dokl., 4 (1963), pp. 627–629.

ALGORITHMS FOR SECRETARY PROBLEMS 27

[5] T. S. Ferguson, Who solved the secretary problem?, Statist. Sci., 4 (1989), pp. 282–296.
[6] P. R. Freeman, The secretary problem and its extensions: A review, Internat. Statist. Rev.,

51 (1983), pp. 189–206.
[7] J. Gilbert and F. Mosteller, Recognizing the maximum of a sequence, J. Amer. Statist.

Assoc., 61 (1966), pp. 35–73.
[8] K. S. Glasser, R. Holzsager, and A. Barron, The d choice secretary problem, Comm.

Statist. C—Sequential Anal., 2 (1983), pp. 177–179.
[9] D. V. Lindley, Dynamic programming and decision theory, Appl. Statist., 10 (1961), pp. 39–

52.
[10] M. Henke, Sequentialle Auswahlprobleme bei Unsicherheit, Anton Hain Verlag, Meisenheim,

1970.
[11] M. L. Nikolaev, A generalization of the best choice problem, Theory Probab. Appl., 22 (1977),

pp. 187–190.
[12] J. Preater, On multiple choice secretary problems, Math. Oper. Res., 19 (1994), pp. 597–602.
[13] H. Rubin and S. M. Samuels, The finite memory secretary problem, Ann. Probab., 5 (1977),

pp. 627–635.
[14] S. M. Samuels, Optimal counter strategies for the secretary problem, IMS Bull. 7, 93 (Abstract

78t-43).
[15] S. M. Samuels, Secretary problems, in Handbook of Sequential Analysis, B. K. Gosh and P.

K. Sen, eds., Marcel Dekker, New York, 1991, pp. 381–405.
[16] S. M. Samuels, Secretary problems as a source of benchmark sounds, in Stochastic Inequalities

IMS Lecture Notes Monogr. Ser. 22, Inst. Math. Statist., Hayward, CA, 1992, pp. 371–387.
[17] D. D. Sleator and R. E. Tarjan, Amortized efficiency of list updates and paging rules,

Comm. ACM, 28 (1985), pp. 202–208.
[18] R. J. Vanderbei, The optimal choice of a subset of a population, Math. Oper. Res., 5 (1980),

pp. 482–486.

LABELING PRODUCTS OF COMPLETE GRAPHS WITH A
CONDITION AT DISTANCE TWO∗

JOHN P. GEORGES† , DAVID W. MAURO† , AND MELANIE I. STEIN†

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 14, No. 1, pp. 28–35

Abstract. For integers j ≥ k, an L(j, k)-labeling of a graph G is an integer labeling of the
vertices in V (G) such that adjacent vertices receive integers which differ by at least j, and vertices

which are distance two apart receive labels which differ by at least k. We determine λj
k
(Kn ×Km)

for all j, k,m, n, and λ21(K
q
pr) for 3 ≤ q < p, p prime.

Key words. vertex labeling, λj
k
-labeling, product of complete graphs, Cayley graph

AMS subject classification. 05C

PII. S0895480199351859

1. Introduction. An L(2, 1)-labeling of a graph G is a mapping L from V (G)
into the integers such that |L(v2) − L(v1)| ≥ 2 if v1 and v2 are adjacent in G and
|L(v2)−L(v1)| ≥ 1 if v1 and v2 are distance two apart in G. Elements of the image of
L are called labels, and the span of L is the difference between the largest and smallest
labels of L. The minimum span taken over all L(2, 1)-labelings of G, denoted λ(G), is
called the λ-number of G, and if L is a labeling with minimum span, then L is called
a λ-labeling of G. We shall assume with no loss of generality that the minimum label
of L(2, 1)-labelings of G is 0.

A variation of Hale’s channel assignment problem [8] in which the difference be-
tween frequencies assigned to transmitters is inversely related to the distance between
the transmitters, L(2, 1)-labelings were first studied by Griggs and Yeh [7]. They
derived formulas for the λ-number of paths and cycles and established bounds on
the λ-number of trees. They also investigated the relationship between λ(G) and
other graph invariants such as χ(G) and ∆(G). Other authors have subsequently
contributed to the literature of L(2, 1)-labelings; see [1], [2], [3], [4], [5], [6], [9], [10],
[11], [12], and [13].

In [3], Georges and Mauro considered L(j, k)-labelings, a generalization of L(2, 1)-
labelings, where j and k are positive integers, j ≥ k. Formally, an L(j, k) labeling of
G is a mapping L from V (G) into the integers such that

(i) |L(v2)− L(v1)| ≥ j if dG(v1, v2) = 1, and

(ii) |L(v2)− L(v1)| ≥ k if dG(v1, v2) = 2.

The λjk-number of G, denoted λ
j
k(G), is the minimum span over all L(j, k)-labelings

of G. As before, we shall assume with no loss of generality that the minimum label
of L(j, k)-labelings is 0. Georges and Mauro considered L(j, k)-labelings of Cartesian
products of complete graphs in [6].

In this paper, we extend a result of Georges, Mauro, and Whittlesey [5] on λ-
labelings (hereafter denoted λ2

1-labelings) of products of complete graphs. In section
2, we introduce terminology and notation and review existing results. In section 3,
we take a group theoretic approach to prove the following theorems.

∗Received by the editors December 12, 1999; accepted for publication (in revised form) September
1, 2000; published electronically December 28, 2000.

http://www.siam.org/journals/sidma/14-1/35185.html
†Department of Mathematics, Trinity College, Hartford, CT 06106 (John.Georges@trincoll.edu,

David.Mauro@trincoll.edu, Melanie.Stein@trincoll.edu).

28

LABELING PRODUCTS OF COMPLETE GRAPHS 29

Theorem 3.1. If 3 ≤ q and p is prime, then
(1) λ2

1(K
q
pr) = p

2r − 1 if r > 1 and q ≤ p, and
(2) λ2

1(K
q
p) = p

2 − 1 if q < p.
Theorem 3.2. λ1

1(K
p
p) = λ

1
1(K

p+1
p) = p2 − 1 if p is prime, p ≥ 3.

Finally, in section 4, we prove the following theorems.
Theorem 4.4. Let j, k, n and m be integers where 2 ≤ n < m and j ≥ k. Then
(1) λjk(Kn ×Km) = (m− 1)j + (n− 1)k if jk > n, and

(2) λjk(Kn ×Km) = (mn− 1)k if jk ≤ n.
Theorem 4.5. Let j, k, and n be integers where 2 ≤ n and j ≥ k. Then
(1) λjk(K

2
n) = (n− 1)j + (2n− 2)k if jk > n− 1, and

(2) λjk(K
2
n) = (n2 − 1)k if jk ≤ n− 1.

We also relate λjk-labelings of diameter 2 graphs to r-path coverings.

2. Notation and results. For 1 ≤ i ≤ q, let Kti be a complete graph on
ti vertices. Then the Cartesian product of Kt1 ,Kt2 , . . . ,Ktq , denoted Πqi=1Kti ≡
Kt1 × Kt2 × · · · × Ktq , is the graph whose vertex set is the set of ordered q-tuples
whose hth component is an element of {0, 1, 2, 3, . . . , th − 1}, and whose edge set is
the set of pairs of vertices which differ in exactly one component. If ti = t for all i,
then Πqi=1Kti will be denoted K

q
t .

Let (G, ∗) be a group and let A be a subset of G. We call A a generating set for
G (alternatively, we say A generates G), if and only if it has the following property:
for all g ∈ G, ∃a1, . . . , aq ∈ A such that g = a1 ∗ a2 ∗ . . . ∗ aq ∈ G. (We henceforth
notationally suppress the binary operator in group operations.) We define the Cayley
graph of G with respect to the generating set A to be the graph with vertex set
V = {g|g ∈ G} and edge set E = {{g, aig}|ai ∈ A and g ∈ G}. We observe that
Kq
t is the Cayley graph for the group G = Zqt with respect to the set of generators
A = {(a1, . . . , aq)| ai ∈ Zt and ai �= 0 for exactly one i}, where the vertices of Kq

t

are identified with the elements of G. Recalling that the length lA(g) of nonidentity
element g in G is the minimum number of elements of A whose product is g (by
convention, 0 if g is the identity), we have that lA(g) equals the distance in K

q
t from

the identity vertex to the vertex g. Similarly, defining d(g, h) to be lA(hg−1) for
g, h ∈ G, then this distance is simply the distance between the vertices g and h in the
graph.

We next note the following theorem from [3].
Theorem 2.1. For all graphs G,
(1) there exists a λjk-labeling of G such that each label is of the form αj + βk,

α, β ≥ 0, and
(2) for any positive integer c, cλjk(G) = λ

cj
ck(G).

An L(j, k)-labeling L is called k-separated if and only if any two distinct vertices
receive labels under L which differ by at least k. As well, a set of integers is called
k-separated if and only if any two distinct elements of the set differ by at least k.

For r ≥ 2, we define the r-path on n vertices, denoted rPn, to be the graph with
vertex set V (rPn) = {x1, x2, . . . , xn} and edge set E(rPn) = {xixj |1 ≤ |i−j| ≤ r−1}.
We note that if n ≤ r, then rPn is isomorphic to Kn.

Let H be a graph with vertex set V (H) = {v1, v2, . . . , vn} and edge set E(H).
Then the complement of H, denoted Hc, is the graph with vertex set V (H) and
edge set {{vi, vj}|{vi, vj} /∈ E(H)}. Additionally, a partition C = {X1, X2, . . . , Xd}
of V (H) is called an r-path covering of H if and only if for each i, 1 ≤ i ≤ d, the
subgraph ofH induced byXi contains a spanning r-path. A minimum r-path covering

30 JOHN P. GEORGES, DAVID W. MAURO, AND MELANIE I. STEIN

of H is an r-path covering of H of minimum cardinality, and if cr(H) is the cardinality
of a minimum r-path covering of H, then cr(H) is called the r-path covering number
of H. We note that if cr(H) = 1, then H is said to have a Hamilton r-path. For the
case r = 2, if c2(H) = 1, then H is simply said to have a Hamilton path.

In [5], Georges, Mauro, and Whittlesey proved the following result on general
2-path coverings.
Theorem 2.2. Let G be a graph with |V (G)| = n. Then
(1) λ2

1(G) ≤ n− 1 if and only if c2(G
c) = 1, and

(2) λ2
1(G) = n+ c2(G

c)− 2 if and only if c2(G
c) ≥ 2.

This result, coupled with the observation that λ2
1(G) ≥ |V (G)| − 1 if G has diameter

2, led to the following theorem also in [5].
Theorem 2.3. For 2 ≤ m ≤ n, λ2

1(Kn × Km) = mn − 1, except for the case
m = n = 2, in which case λ2

1(K2 ×K2) = 4.

3. On λ2
1(K

q
pr): A Cayley graph approach. As noted in section 2, Kq

pr may
be identified with the Cayley graph of the group G = Zqpr with respect to the set of
generators A = {(a1, a2, . . . , aq)|ai ∈ Zpr and ai �= 0 for exactly one i}. We use this
identification to prove the following theorem.
Theorem 3.1. If 3 ≤ q and p is prime, then
(1) λ2

1(K
q
pr) = p

2r − 1 if r > 1 and q ≤ p, and
(2) λ2

1(K
q
p) = p

2 − 1 if q < p.
Proof of (1). To obtain a lower bound for λ2

1(K
q
pr), notice that the subgraph

induced by the set of vertices of the form (a1, a2, 0, . . . , 0) has diameter 2. Thus every
L(2, 1)-labeling of Kq

pr must assign distinct labels to the p2r vertices of the subgraph,
implying λ2

1(K
q
pr) ≥ p2r − 1 for q ≥ 2. We therefore need only establish that p2r − 1

is an upper bound for λ2
1(K

q
pr). We show this by constructing a labeling with span

p2r − 1.
Our strategy will be to find a subgroup H ⊂ G satisfying the following properties:
(i) |H| = (pr)q−2;
(ii) h ∈ H ⇒ lA(h) ≥ 3 or h = (0, . . . , 0);
(iii) there exist two cosets g1H and g2H which generate the quotient group G/H,

and g1H ∩ A = g2H ∩ A = ∅.
We claim that given such a subgroup H, we can label the vertices of the graph, which
are identified with the elements of G, using the labels {0, . . . , p2r − 1} by assigning
the same label to all group elements within one H-coset. We note that if gh and gh′

are in the same coset with h �= h′, then d(gh, gh′) = lA(gh′(gh)−1) = lA(h′h−1) ≥ 3
by property (ii), and hence all group elements in a given coset may be assigned the
same label. We next assign labels from 0 to p2r−1, in order, to the cosets by ordering
them as follows:

H, g1H, g
2
1H, . . . , g

pr−1
1 H;

g2g
−1
1 H, g2H, g2g1H, . . . , g2g

pr−2
1 H;

g22g
−2
1 H, g22g

−1
1 H, . . . , g22g

pr−3
1 H;

LABELING PRODUCTS OF COMPLETE GRAPHS 31

...

gp
r−1

2 g1H, g
pr−1
2 g21H, . . . , g

pr−1
2 H.

We must check that group elements in adjacent cosets in this ordering are not
adjacent vertices in the graph. Choose a ∈ aH and b ∈ bH where aH and bH are
adjacent cosets in the list above. Then d(a, b) = lA(g1h) or d(a, b) = lA(g2h) for some
h ∈ H. However, by property (iii), lA(g1h) ≥ 2 and lA(g2h) ≥ 2, implying that a and
b are not adjacent.

To complete the proof of (1), we construct a subgroup H which satisfies all three
conditions as long as q ≤ p.

Consider the map ϕ : G→ (Zpr)
2
, defined by

ϕ((a1, . . . , aq)) =

(
q∑
i=1

ai,

q∑
i=1

iai

)
.

We set H = Ker(ϕ). Since ϕ((2x − y, y − x, 0, . . . , 0)) = (x, y), then ϕ is surjective,
implying that |Ker(ϕ)| = (pr)q−2; therefore H satisfies property (i).

Now suppose that g ∈ A ∩ H. Since g has length 1, ϕ(g) = (aj , jaj) for some
j. However, since g ∈ H, then aj = 0 ⇒ g = (0, . . . , 0). Thus H ∩ A = ∅, and H
contains no elements with length 1.

To establish the second property, we must also show that H is free of not only
length 1 elements, but of length 2 elements as well, to ensure that no two vertices at
distance two receive the same label. First note that no two distinct elements of A can
have the same image under ϕ; otherwise, if g and g′ are distinct elements in A such
that ϕ(g) = ϕ(g′), then (ai, iai) = (aj , jaj), implying that ai = aj and ai(i − j) =
0 mod pr. Since ai is nonzero, i− j must be divisible by p. Now |i− j| ≤ q − 1, so if
q ≤ p, then |i− j| < p. This implies i = j, in which case g = g′.

Now suppose h ∈ H and lA(h) = 2. Then h = gg′ where g and g′ each have length
1, and ϕ(h) = 0 ⇒ ϕ(g) = ϕ((g′)−1). Now since no two length one elements have
the same image, g = (g′)−1, so h = (0, . . . , 0). Therefore if h ∈ H and h �= (0, . . . , 0),
then lA(h) ≥ 3, thus satisfying property (ii).

Property (iii) holds by a counting argument. Note that |A| = (pr − 1)q and
|G/H| = p2r. No two elements of A can be in the same coset, since H contains no
elements of length 2. Therefore if S is the set of cosets which are distinct from H and
contain no elements of A, then |S| = p2r − (pr − 1)q − 1.

To ensure that the cosets in property (iii) exist, we must show that there are
two cosets in S, each of order pr in G/H, which generate G/H. We verify that this
must be true by counting the number of cosets which cannot generate G/H together
with a fixed coset of order pr. Let x be the fixed coset, and let y be any other coset
which, together with x, generates G/H. Then the cosets which cannot generate G/H
together with x are those of the form xayb where 0 ≤ a ≤ pr − 1 and 0 ≤ b ≤ pr − 1
and b is relatively prime to p. Hence we have pr choices for a and pr−1 choices for b,
and the number of cosets not suitable for generating G/H together with x is prpr−1.

If the number of cosets in S is greater than the number of cosets which can never
be part of a generating pair together with a given coset, then there will always be a
coset in S left to complete a generating pair. Thus we require

p2r − (pr − 1)q − 1 > prpr−1 − 1

32 JOHN P. GEORGES, DAVID W. MAURO, AND MELANIE I. STEIN

or alternatively,

q <
p2r − p2r−1

pr − 1
.

If r > 1, we have

q < pr − pr−1 +
pr − pr−1

pr − 1
,

a number greater than p. Hence if q ≤ p, the requirement is satisfied, and H satisfies
property (iii).

Proof of (2). We note that the above proof applies until the final counting argu-
ment, and that if r = 1, the required inequality simplifies to q < p.

Theorem 3.1 can be used to establish bounds on λ2
1(K

q
t) for arbitrary t and q. If

w = max{q, t} and if p > w where p is a prime, then λ2
1(K

q
t) ≤ λ2

1(K
w
w) ≤ λ2

1(K
w
p) =

p2 − 1. For the particular case pr11 ≤ t ≤ pr22 and 3 ≤ q < min{p1, p2}, where p1 and
p2 are primes, we have

p2r11 − 1 = λ2
1(K

q
p1r1) ≤ λ2

1(K
q
t) ≤ λ2

1(K
q
p2r2) = p

2r2
2 − 1.

Noting that p2 − 1 ≤ λ1
1(K

q
p) ≤ λ2

1(K
q
p) = p

2 − 1 for p prime and 3 ≤ q < p, we
can use the strategy of Theorem 3.1 to show the following theorem.
Theorem 3.2. λ1

1(K
p
p) = λ

1
1(K

p+1
p) = p2 − 1 if p is prime, p ≥ 3.

Proof. To show that λ1
1(K

p
p) = p2 − 1, we proceed as in the previous proof,

recalling that property (iii) is not relevant in this case.
To show that λ1

1(K
p+1
p) = p2 − 1, proceed again as in the previous proof, but

define ϕ via

ϕ((a1, . . . , ap+1)) =

(
ap +

p−1∑
i=1

ai, ap+1 +

p−1∑
i=1

iai

)
.

One verifies as before that ϕ is surjective, that no length 1 element is in Ker(ϕ), and
that no two length 1 elements have the same image. It follows that Ker(ϕ) is also free
of length 2 elements. Therefore labeling each coset with a different number between
0 and p2 − 1 gives a λ1

1-labeling.

4. On λj
k(Kn×Km). In this section we determine the λjk-number of the product

of two complete graphs. We shall also explore the relationship between λjk-labelings
of diameter 2 graphs and r-path covering numbers of their complements.

We shall begin by presenting several lemmas which establish lower bounds on
λjk-numbers of these products.

Lemma 4.1. λjk(Kn ×Km) ≥ (mn− 1)k.
Proof. Since the order ofKn×Km ismn and since every (j, k)-labeling ofKn×Km

is k-separated, the result follows.
Lemma 4.2. If 2 ≤ n ≤ m, then λjk(Kn ×Km) ≥ (m− 1)j + (n− 1)k.

Proof. Suppose to the contrary that λjk(Kn×Km) < α ≡ (m−1)j+(n−1)k. Let
L be a (j, k)-labeling of Kn×Km with span s(L) ≤ α− 1, and consider the partition
{X1, X2, . . . , Xm} of [0, α − 1], where Xi = [(i − 1)j, ij − 1] for 1 ≤ i ≤ m − 1, and
Xm = [(m − 1)j, α − 1]. Since L is necessarily k-separated, we observe that at most

LABELING PRODUCTS OF COMPLETE GRAPHS 33

n − 1 vertices of Kn × Km are assigned labels from Xm. It follows that at least
n(m − 1) + 1 vertices are given labels from X1

⋃
X2

⋃ · · ·⋃Xm−1, and that there
exists some i0, 1 ≤ i0 ≤ m − 1 such that at least n + 1 vertices are assigned labels
from Xi0 under L. However, in any collection of n + 1 vertices of Kn × Km, there
exists a pair of adjacent vertices, implying that their respective labels differ by at
least j. This, however, is impossible since the span of interval Xi0 is j − 1.

Lemma 4.3. λjk(K
2
n) ≥ (n− 1)j + (2n− 2)k.

Proof. Suppose to the contrary that λjk(K
2
n) < β ≡ (n−1)j+(2n−2)k. Let L be

a (j, k)-labeling of K2
n with span less than or equal to β−1, and let {X1, X2, . . . , Xn}

be a partition of the interval [0, β − 1] such that for 1 ≤ i ≤ n− 1, Xi = [(i− 1)(j +
k), i(j + k) − 1] and Xn = [(n − 1)(j + k), (n − 1)j + (2n − 2)k − 1]. Since L is a
k-separated labeling, at most n − 1 vertices may receive labels from Xn. It follows
that at least n2−n+1 vertices are given labels from X1

⋃
X2

⋃ · · ·⋃Xn−1, implying
that there exists i0, 1 ≤ i0 ≤ n − 1, such that at least n + 1 vertices receive labels
from interval Xi0 under L. However, in any collection of n + 1 vertices of K2

n, there
are at least two vertices on a common row and at least two vertices on a common
column. These vertices induce a subgraph W isomorphic to either P3 or two copies of
K2. Thus the k-separation of L requires the span of L restricted to W to be at least
j + k. Since the length of Xi0 is j + k− 1, we have that not all labels used on W can
come from Xi0 , a contradiction.

We are now ready to present the two main results of this section.

Theorem 4.4. Let j, k, n, and m be integers where 2 ≤ n < m and j ≥ k. Then
(1) λjk(Kn ×Km) = (m− 1)j + (n− 1)k if jk > n, and

(2) λjk(Kn ×Km) = (mn− 1)k if jk ≤ n.
Proof of (1). By Lemma 4.2, it suffices to exhibit a (j, k)-labeling of Kn × Km

with span (m − 1)j + (n − 1)k. To that end, let labeling L be given by L((a, b)) =
j[(a − b) mod m] + ak. Then clearly the span of L is (m − 1)j + (n − 1)k; hence it
suffices to show that L satisfies the distance conditions.

Let v1 = (a1, b1) and v2 = (a2, b2) be elements of V (Kn × Km) and let d1 and
d2 denote (a1 − b1) mod m and (a2 − b2) mod m, respectively, where with no loss of
generality, d2 − d1 ≥ 0.

To show that the distance two condition is satisfied, we suppose a1 �= a2 and
b1 �= b2. If d2 − d1 = 0, then |L((a2, b2))− L((a1, b1))| = |j(d2 − d1) + k(a2 − a1)| =
k|a2−a1| ≥ k. If d2−d1 > 0, then L((a2, b2))−L((a1, b1)) = j(d2−d1)+k(a2−a1) ≥
j + k(a2 − a1) ≥ j + k(1− n) ≥ kn+ k(1− n) = k.

To show that the distance one condition is satisfied, we assume that a1 = a2 and
b1 �= b2, or a1 �= a2 and b1 = b2.

If a1 = a2 and b1 �= b2, then L((a2, b2))− L((a1, b1)) = j(d2 − d1) ≥ j.
If a1 �= a2 and b1 = b2, then L((a2, b2)) − L((a1, b1)) = j(d2 − d1) + k(a2 − a1),

where, by an argument similar to that above, d2 − d1 ≥ 1. If d2 − d1 = 1, then
a2−a1 = 1 or a2−a1 = 1±m, the latter of which is impossible since 1−m < 1−n ≤
a2− a1 ≤ n− 1 < m− 1. Hence L((a2, b2))−L((a1, b1)) = j + k. If d2− d1 > 1, then
L((a2, b2))−L((a1, b1)) ≥ 2j+k(a2−a1) ≥ 2j+k(1−n) ≥ j+nk+k(1−n) = j+k.

Proof of (2). By Lemma 4.1, it suffices to exhibit a (j, k)-labeling of Kn × Km
with span (mn − 1)k. However, it can be easily verified that the image of f(a, b) =
((n+1)a−nb)mod mn has cardinalitymn as a and b range over the integers in [0, n−1]
and [0,m−1], respectively. Thus the labeling L given by L((a, b)) = k[((n+1)a−nb)
mod mn] is a (j, k)-labeling with span k(mn− 1).

34 JOHN P. GEORGES, DAVID W. MAURO, AND MELANIE I. STEIN

Theorem 4.5. Let j, k and n be integers where 2 ≤ n and j ≥ k. Then
(1) λjk(K

2
n) = (n− 1)j + (2n− 2)k if jk > n− 1, and

(2) λjk(K
2
n) = (n2 − 1)k if jk ≤ n− 1.

Proof. To prove (1), we appeal to Lemma 4.3 and let L((a, b)) be the vertex
labeling given by j[(b− a) mod n] + ak + k[(b− a) mod n]. To prove (2), we appeal
to Lemma 4.1 and let L((a, b)) be the vertex labeling given by k[(na− (n− 1)b) mod
n2]. Details are omitted.

From Theorem 4.5, λ5
3(K

2
3) = 24 and λ8

3(K
2
3) = 28, and from Theorem 4.4,

λ8
3(K3 ×K4) = 33 and λ10

3 (K3 ×K4) = 36. In Figure 4.1(1)–(4) we exhibit labelings
with these spans.

0 9 18 0 11 22
21 3 12 25 3 14
15 24 6 17 28 6

(1) λ53-labeling of K2
3 (2) λ83-labeling of K2

3

0 27 18 9 0 30 20 10
12 3 30 21 13 3 33 23
24 15 6 33 26 16 6 36

(3) λ83-labeling of K3 ×K4 (4) λ103 -labeling of K3 ×K4

Fig. 4.1.

For each labeling exhibited in Figure 4.1, tracking labels in ascending order reveals
a general relationship between λjk-labelings of G = Kn × Km and r-path covering
numbers of Gc. Noting that the independence number α(Kn ×Km) of Kn ×Km is
min{m,n}, we have the following results.

Theorem 4.6. Let 2 ≤ n < m. Then
(1) if r > n, then cr((Kn ×Km)c) = m, and
(2) if 2 ≤ r ≤ n, then cr((Kn ×Km)c) = 1.

Proof of (1). Since α(Kn × Km) = n, the largest clique in (Kn × Km)c has n
vertices. It thus follows that for any r-path covering C of (Kn ×Km)c, the length of
its largest r-path is at most n, implying that |C| ≥ mn

n = m. We now construct an
r-path covering C′ = {X0, X1, . . . , Xm−1} of (Kn×Km)c with cardinality m by using
the labeling which appears in Theorem 4.4: for all i, 0 ≤ i ≤ m− 1, (a, b) ∈ Xi if and
only if (a− b) mod m = i.

Proof of (2). We construct a Hamilton r-path v0, v1, v2, . . . , vmn−1 as follows:
vi = (a, b), where i = ((n+ 1)a− nb) mod mn.

In a manner similar to that used in the proof of the previous theorem, we can
apply the labelings used in the proof of Theorem 4.5 to establish the following result.

Theorem 4.7. Let 2 ≤ n.
(1) If r > n− 1, then cr((K

2
n)
c) = n, and

(2) If r ≤ n− 1, then cr((K
2
n)
c) = 1.

In closing, we present several results which hold true for arbitrary diameter 2
graphs.

Lemma 4.8. Let G be a graph with order n and diameter 2. Then λ
� j
k �k
k (G) =

(n− 1)k if λjk(G) = (n− 1)k.

Proof. Let j = ak + t, 0 ≤ t < k. The lemma is clearly true if t = 0. Thus let
t > 0 and let L be a λjk-labeling of G. Since G has diameter 2, L is k-separated and
each label under L is necessarily of the form αk for some α between 0 and n − 1. If

LABELING PRODUCTS OF COMPLETE GRAPHS 35

L is not a λ
(a+1)k
k -labeling of G, then there exist adjacent vertices u and v in V (G)

such that |L(u)− L(v)| < (a+ 1)k.
Let L(u) = b1k and L(v) = b2k. Since L is an L(j, k)-labeling of G, we have

ak < j ≤ |L(u)− L(v)| = |b1 − b2|k < (a+ 1)k,

implying the contradiction that a < |b1 − b2| < a+ 1.
We point out that in accord with Lemma 4.8, the labelings appearing in Figures

4.1(1) and 4.1(3) are, respectively, a λ6
3-labeling of K2

3 and a λ9
3-labeling of K3 ×K4.

Theorem 4.9. Let G be a graph with order n and diameter 2.
(1) If λjk(G) = (n − 1)k, then for all r, 2 ≤ r ≤ � jk �, Gc has a Hamilton r-path,

and
(2) if Gc has a Hamilton r-path, then for all j, k, where j

k ≤ r, λjk(G) = (n−1)k.
Proof of (1). Let d = � jk �. Then by Lemma 4.8, λdkk (G) = (n− 1)k.
Let L be a λdkk -labeling ofG. We construct a Hamilton d-path dPn = v0, v1, . . . , vn−1

in Gc by letting vi denote the vertex such that L(vi) = ik. However, for all r,
2 ≤ r ≤ d, a Hamilton d-path has a Hamilton r-path as a subgraph.

Proof of (2). Since G has diameter 2, every L(j, k)-labeling of G is k-separated,
and therefore, λjk(G) ≥ (n− 1)k. Let rPn = v0, v1, . . . , vn−1 be a Hamilton r-path in
Gc. We construct the L(j, k)-labeling L given by L(vi) = ik, 0 ≤ i ≤ n− 1.

Acknowledgments. The authors extend their appreciation to the referees for
their many suggestions which resulted in an improved paper.

REFERENCES

[1] G. J. Chang and D. Kuo, The L(2,1)-labeling problem on graphs, SIAM J. Discrete Math., 9
(1996), pp. 309–316.

[2] J. P. Georges and D. W. Mauro, On the criticality of graphs labeled with a condition at
distance two, Congr. Numer., 101 (1994), pp. 33–49.

[3] J. P. Georges and D. W. Mauro, Generalized vertex labelings with a condition at distance
two, Congr. Numer., 109 (1995), pp. 141–159.

[4] J. P. Georges and D. W. Mauro, On the size of graphs labeled with a condition at distance
two, J. Graph Theory, 22 (1996), pp. 47–57.

[5] J. P. Georges, D. W. Mauro, and M. A. Whittlesey, Relating path coverings to vertex
labelings with a condition at distance two, Discrete Math., 135 (1994), pp. 103–111.

[6] J. P. Georges and D. W. Mauro, Some results on λj
k
-numbers of the products of complete

graphs, Congr. Numer., 140 (1999), pp. 141–160.
[7] J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete

Math., 5 (1992), pp. 586–595.
[8] W. K Hale, Frequency assignment: Theory and application, Proc. IEEE, 68 (1980), pp. 1497–

1514.
[9] J. Van Den Heuvel, R. A. Leese, and M. A. Shepherd, Graph labeling and radio channel

assignment, J. Graph Theory, 29 (1998), pp. 263–283.
[10] K. Jonas, Graph Coloring Analogues with a Condition at Distance Two: L(2,1)-Labelings and

List λ-Labelings, Ph.D. thesis, University of South Carolina, Columbia, SC, 1993.
[11] D. Liu and R. K. Yeh, On distance two labelings of graphs, Ars Combin., 47 (1997), pp. 13–22.
[12] D. Sakai, Labeling chordal graphs: Distance two condition, SIAM J. Discrete Math., 7 (1994),

pp. 133–140.
[13] M. A. Whittlesey, J. P. Georges, and D. W. Mauro, On the λ-number of Qn and related

graphs, SIAM J. Discrete Math., 8 (1995), pp. 499–506.

SUFFICIENT CONDITIONS FOR TWO TREE RECONSTRUCTION
TECHNIQUES TO SUCCEED ON SUFFICIENTLY LONG

SEQUENCES∗

MIKE STEEL†

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 14, No. 1, pp. 36–48

Abstract. The reconstruction of evolutionary trees (phylogenies) from DNA sequence data is
a central problem in biology. We describe simple sufficient conditions for two tree reconstruction
methods (maximum parsimony and maximum compatibility) to correctly reconstruct a tree when
applied to sufficiently many sequence sites generated under a simple stochastic model.

Key words. trees, genetic sequences, maximum parsimony method, stochastic models

AMS subject classifications. 05C05, 92D15

PII. S0895480198343571

1. Introduction. In biology, (graph-theoretic) trees are widely used to repre-
sent the evolutionary relationship between a group of extant species. Such a tree is
sometimes called a “phylogeny” or “evolutionary tree.” The extant species comprise
the set L of leaves (vertices of degree 1) and the tree T describes the evolutionary
history of the species from some hypothetical ancestor (located on some edge of the
tree). Ideally, each vertex of T that is not in L has degree 3, in which case T is said
to be fully resolved.

An important task in biology is to reconstruct such trees from observed features
or data describing the extant species. We can regard each item of data as a function
from L into some set R of r states (where r = |R|). Such functions are called r-
state characters and they correspond to characteristics (morphological, physiological,
genetic) on which the extant species differ. For example, in genetics, each site in a
collection of aligned DNA sequences (one for each extant species, and with the same
number of aligned sites for each species) provides a 4-state (or 2-state) character. For
further biological details the interested reader is referred to [13].

The maximum parsimony method (abbreviatedMP) is a very popular technique
for reconstructing evolutionary trees from collections of characters. To each character
f and each tree T we associate a value L(f, T) which is the minimum number of edges
that must be assigned different states to its endpoints in order to extend f to assign
states from R to all the vertices of T (we call the corresponding function g : V → R
an extension of f). These concepts are illustrated in Figure 1 and will be defined
more rigorously in the next section.

TheMP method selects the tree (or trees) T that minimizes the sum of L(f, T)
over the characters f in the data. Informally, such a tree minimizes the number of
“mutations” (changes of state across the edges of the tree) that need to be hypoth-
esized in order to explain how the characters could have all evolved on tree T from
some ancestral vertex.

∗Received by the editors August 14, 1998; accepted for publication (in revised form) September 5,
2000; published electronically December 28, 2000. This research was supported by the New Zealand
Marsden Fund.

http://www.siam.org/journals/sidma/14-1/34357.html
†Biomathematics Research Centre, University of Canterbury, Private Bag 4800, Christchurch,

New Zealand (m.steel@math.canterbury.ac.nz).

36

CONSISTENCY CONDITIONS FOR TREE RECONSTRUCTION 37

Fig. 1. A fully resolved tree on leaf set L = {1, . . . , 9}, together with a 3-state character
f : L → {α, β, γ} having L(f, T) = 5. An example of an extension g of f with ch(g, T) = 5 is given
by the additional assignment of states shown in brackets.

The problem of finding anMP tree for a given sequence of characters is NP-hard
and is a special case of the Steiner problem in graph theory (see [5] for details).

We will also consider a related method, called maximum compatibility denoted
MC. Informally, this method selects a tree that maximizes the number of characters
in the data that could have evolved on the tree from the hypothetical ancestor with-
out any parallel or reverse mutations (a more precise definition is given in the next
section).

A fundamental theoretical question is to determine conditions under whichMP
orMC would recover a tree when applied to a large number of characters that evolved
independently on that tree, according to some stochastic model. A variety of Markov-
style models have been proposed for modeling and analyzing the evolution of DNA
sequences (see [13]). The simplest such model, which we will call the Nr model,
assigns equal probability to all possible transitions amongst the r states in R. This
is as familiar to geneticists as the Jukes–Cantor model in the case r = 4 [7].

In a landmark paper [4], Felsenstein investigated whether MP and MC would
tend to select the correct tree if the underlying characters were generated by this
model. He showed that there exist various parameter settings in the N2 model for
which MP and MC will select an incorrect tree with probability tending to 1 as
the sequence length tends to infinity. Indeed, this occurs even when T has just
four leaves (in which caseMP=MC). This statistical inconsistency phenomena has
subsequently been refined and extended by others [6], [8], [11]. Sufficient conditions
for the statistically consistency ofMP orMC have only been described when either
T has just four leaves [10], or for special cases [6], [8], [11], [12].

In this paper we provide the first explicit sufficient conditions for the statistical
consistency of MP (resp., MC) that are applicable to any tree on any number of
leaves under the Nr (resp., N2) models. Essentially, our results are of the form that

38 MIKE STEEL

if the mutation probabilities associated to the edges of a tree under these models
are sufficiently small, and not too unequal across the tree, then the two methods are
statistically consistent. We now formalize some of the concepts described above.

2. Preliminaries. We begin by formalizing the definition of the parsimony score
of a character f : L → R on a tree T = (V,E), where L is set of leaves (degree 1
vertices) of T .

Given a function g : V → R, the changing number of g is defined by ch(g, T) :=
|{e = {u, v} ∈ E : g(u) �= g(v)}|. Given a character f : L → R, the parsimony score
of f on T is defined by

L(f, T) := min
g
{ch(g, T) : g|L = f},

where we adopt the convention throughout this paper that g|L denotes the restriction
of g to L. It is easily shown that L(f, T) ≥ |f(L)| − 1 and thus the quantity

H(f, T) := L(f, T)− |f(L)|+ 1(2.1)

is nonnegative. H(f, T) is sometimes called the homoplasy (or number of “extra
steps”) of f relative to T . This quantity turns out to be useful in the analysis of
maximum parsimony, and it is also the basis of another method we describe now.

First, note that H(f, T) = 0 precisely if there is an extension g of f to V for which
the subset of V that is mapped to any state in R by g forms a connected subtree of T
(in biology this corresponds to being able to describe the evolution of f on T without
any reverse or parallel changes of states). The maximum compatibility method,MC,
selects the tree (or trees) T that maximizes the number of characters f in that data
for which H(f, T) = 0.

To investigate the statistical properties of these two methods we also need to
specify a model by which characters can “evolve” on trees. In this paper we consider
the simplest such model, namely, the symmetric r-state model, due to Neyman [9]
(see also, [1], [3], [4]) and abbreviated hereafter as the Nr model. In this model R
has cardinality r and the model has as its underlying parameters a fully resolved
tree T = (V,E) and a map p : E → (0, r−1

r) that associates to each edge e of T
a corresponding mutation probability p(e). We now describe how this model assigns
states to the vertices of T .

First we select an arbitrary fixed vertex v0 of T and direct all edges of T away
from v0. We then randomly assign, with uniform probability, an element of R to v0,
and then assign states to the remaining vertices recursively as follows: for any arc
(u, v) for which u has been assigned a state but v has not yet been assigned a state,
randomly assign v the same state as u with probability 1− p(e) (where e = {u, v}) or
assign v one of the other states in R with equal probability (viz, p(e)r−1).

In this way we generate a random function G : V → R. Under the Nr model, with
parameters (T, p), let P(G = g) be the probability that G = g, and let P(f, T) denote
the probability that G|L = f (i.e., that G restricted to L equals f). By definition,
and the assumptions of the model,

P(f, T) =
∑

{g:V→R:g|L=f}
P(G = g)

and

P(G = g) =
1

r

∏
{e={u,v}:g(u) 	=g(v)}

p(e)

r − 1
∏

{e={u,v}:g(u)=g(v)}
(1− p(e)),

CONSISTENCY CONDITIONS FOR TREE RECONSTRUCTION 39

from which we immediately see that the probability distribution on characters f (and
extensions g) is independent of our choice of v0.

A tree reconstruction method is statistically consistent under this Nr model with
underlying parameters (T, p) if the probability that the method reconstructs T when
applied to k independently generated characters converges to 1 as k tends to infinity.
An example of such a method is the maximum likelihood technique, as Chang [2]
recently established (for the Nr model and generalizations thereof).

3. Sufficient conditions for correct tree reconstruction. We begin with
some definitions leading to a simple combinatorial sufficient condition for the two
methods described to return a given tree.

An interior edge of T is an edge that is not incident with a leaf. We will let
E̊ denote the set of interior edges of T . Deleting an edge e ∈ E from T produces
a partition πe of the leaves of T into two subsets. Note also that each character f
induces a partition of L by grouping together those leaves that are assigned the same
state by f . If the partition induced by f equals πe, we say that f corresponds to
edge e. Note that f corresponds to some edge of T if and only if L(f, T) = 1. Let
c(e) denote the set of those r(r − 1) characters that correspond to edge e and let
c(T) = ∪e∈E̊c(e).

Suppose we are given a sequence C of characters and a character f . Let n(C, f)

denote the number of occurrences of character f in C, and let n(C, f̂) denote the total
number of occurrences in C of all characters that induce the same partition of L as f .
For an edge e of T let ne(C) =

∑
f∈c(e) n(C, f) = n(C, f̂e), where fe is any character

that corresponds to edge e. Let

n−(C, T) := min
e
{ne(C) : e ∈ E̊},

n+(C, T) := max
f
{n(C, f̂) : L(f, T) > 1},

and

H(C, T) :=
∑
f

n(C, f)H(f, T),

where H(f, T) is described by (2.1).
We pause to briefly provide some interpretation of these definitions. The quantity

n−(C, T) is a measure of the minimum support for any edge of T by the characters
in C, while n+(C, T) is the total number of characters that support some split of the
species set L that does not correspond to any edge of T . The quantity H(C, T) is
sometimes called the homoplasy (or “number of extra steps”) of C relative to T . Note
that H(C, T) ≥ 0.

The following result gives sufficient conditions forMP andMC to return a given
tree from some sequence C of characters, regardless of how these characters arise.

Lemma 1. Let T be any fully resolved tree.
(A) MP selects tree T for a sequence C of r-state characters if

n−(C, T) > H(C, T).

(B) MC selects tree T for a sequence C of 2-state characters if

n−(C, T) > n+(C, T).

40 MIKE STEEL

Proof. For brevity, we let n(f) = n(C, f), n− = n−(C, T), n+ = n+(C, T).
Part (A). For a tree T1, let L(T1) :=

∑
f L(f, T1)n(f). It suffices to show that

L(T1) is strictly minimized when T1 = T. First note that

L(T1) = ∆+H(C, T1),

where ∆ =
∑
f (|f(L)| − 1)n(f). Now, if T1 �= T and since T is fully resolved, T has

at least one interior edge e for which, for all f ∈ c(e), we have L(f, T1) ≥ 2, and since
|f(L)| = 2 for each f ∈ c(e), this implies that H(f, T1) = L(f, T1) − |f(L)| + 1 ≥ 1.
Consequently, H(C, T1) ≥ n−, and so, by the assumption in the lemma,

L(T1) ≥ ∆+ n− > ∆+H(C, T) = L(T),

which establishes the claim.
Part (B). Let ν(T1) denote the number of occurrences in C of a character f with

L(f, T1) = 1. It suffices to show that ν(T1) is strictly maximized when T1 = T. First
note that

ν(T1) =
∑

{f :L(f,T1)=1}
n(f) =

∑
e∈E(T1)

ne(C).

Now, for any tree T1 �= T let E′ denote the subset of interior edges e of T for which
πe �= πe′ for any edge e′ of T1. Since T is fully resolved, E′ �= ∅, and the number of
edges e in T1 for which πe ∩ {πe′ : e′ ∈ E(T)} = ∅ is at most |E′| and for each such
edge ne(C) ≤ n+. Thus,

ν(T)− ν(T1) ≥
∑
e∈E′

ne(C)− |E′|n+ > 0

as required.
When C is generated under the Nr model, we can apply this lemma to obtain

sufficient conditions for the statistical consistency of MC and MP (Corollary 1).
First we introduce the following terminology.

Definition 1. Under the Nr model with parameters (T, p), let

m− := min
f
{P(f, T) : f ∈ c(T)}; m+ := max

f
{P(f, T) : L(f, T) > 1}

and

H :=
∑
f

P(f, T)H(f, T).

The quantity H is the expected homoplasy of the (random) character f on the
underlying tree T .

Corollary 1.
(A) MP is statistically consistent under the Nr model if

m− >
H

r(r − 1) .

(B) MC is statistically consistent under the N2 model if m− > m+.

CONSISTENCY CONDITIONS FOR TREE RECONSTRUCTION 41

Proof. Note that, under the Nr model, if f and f ′ induce the same partition of
L, then P(f, T) = P(f ′, T). Suppose that we have a sequence C of c characters which
evolve identically and independently under the Nr model. Then, by the weak law of
large numbers, as c tends to infinity,

n−(C, T)

c
→p r(r − 1)m−,

where →p denotes convergence in probability, since for each f ∈ c(T) there are pre-
cisely r(r − 1) r-state characters that induce the same partition of L as f .

Also, we have

H(C, T)

c
→p H,

while, for r = 2, we have

n+(C, T)

c
→p 2m+.

The result now follows by Lemma 1.
We can now state our main result.
Theorem 1. Under the Nr model with parameters (T, p) let

psum :=
∑
e

p(e),

p− := min{p(e) : e ∈ E̊}; p+ := max{p(e) : e ∈ E},

and

p± := p− + p+.

Then,
(A) MP is statistically consistent if psum < 1 and

p− ≥ p2
sum

1− psum
;(3.1)

(B) when r = 2,MC is statistically consistent if

p− ≥ p+p± + 2p2
±(1 + p±),(3.2)

and, in particular, this is satisfied whenever

p− ≥ 12p2
+.(3.3)

Remarks.
• Informally, the condition for the consistency of MP is that the mutation
probability p(e) associated to any interior edge should be at least (approx-
imately) the square of the total expected number of mutations in the tree.
Thus it assumes the p(e) values are small and not too unequal.
ForMC the condition described states, informally, that the smallest mutation
probability on any interior edge is of the order of the square of the largest

42 MIKE STEEL

mutation probability. In particular,MC is statistically consistent under the
N2 model whenever p(e) is a constant, p, across the edges of the tree and

p takes a value at most −5+
√

41
16 ≈ 0.087, since in that case p ≥ p(2p) +

2(2p)2(1 + 2p) and so (noting that p− = p+ = p and p± = 2p) we see that
inequality (3.2) is satisfied. More generally for any bound on the ratio of the
p(e) values, Theorem 1(B) implies that there exists an upper bound on p+

(dependent on that bound) for which MC is statistically consistent under
the N2 model.

• Note also that the size r of the state space does not enter into inequality
(3.2). In fact it can be shown that, for any fixed values of p− > 0 and p+ < 1,
if r is sufficiently large, thenMP will be consistent (this is a special case of
Theorem 3 of [12]).

Proof of Theorem 1 (A). Let

L :=
∑
f

P(f, T)L(f, T).

Letting E denote expectation, we have L = E[L(G|L, T)] for an extension G randomly
generated on T under the Nr model. Now, L(G|L, T) ≤ ch(G,T), and so,

L ≤ E[ch(G,T)].(3.4)

However, ch(G,T) is simply a sum of independent 0/1 random variables as follows:
to each edge e = {u, v} independently assign the value 1 if and only if G(u) �= G(v)
(which has probability p(e)), and assign 0 otherwise. Consequently,

E[ch(G,T)] = psum.(3.5)

Let

Q :=
∏
e

(1− p(e)),

which is the probability that that there is no mutation on any edge e of T (i.e., for
each edge e = {u, v} we have G(u) = G(v)). Now,

H = L−
∑
f

P(f, T)(|f(L)| − 1),(3.6)

and ∑
f

P(f, T)(|f(L)| − 1) ≥ P(L(G|L, T) = 1) ≥ P(ch(G,T) = 1).(3.7)

Furthermore, P(ch(G,T) = 1) =
∑
e p(e)

∏
e′ 	=e(1 − p(e′)) ≥ psumQ. Thus, by (3.6)

and inequality (3.7) we have H ≤ L − psumQ, while inequality (3.4) and (3.5) give
L ≤ psum, and hence

H ≤ psum(1−Q).(3.8)

Now, for a character f ∈ c(T), let ef denote the edge of T to which f corresponds.
An extension g of f to V can be obtained by assigning a leaf v0 the value f(v0) (with

CONSISTENCY CONDITIONS FOR TREE RECONSTRUCTION 43

probability 1
r), assigning (appropriate) different states to the ends of ef , and for each

edge e �= ef assigning the same state to each end of e. Consequently,

P(f, T) ≥ P(G = g) =
1

r
× p(e0)

r − 1
∏
e 	=ef

(1− p(e)) >
1

r(r − 1)Qp−.

Thus,

m− ≥ 1

r(r − 1)p−.(3.9)

Now, our hypothesis is that p− ≥ p2sum

1−psum
. Then, 1 − psum ≥ psum

psum+p−
which

together with the purely algebraic inequality

Q > 1− psum

implies that Q > psum

psum+p−
. Rearranging gives Qp− > psum(1 − Q) and thus, in view

of the inequalities (3.8), (3.9) we have

m− >
H

r(r − 1)Q >
H

r(r − 1) .

Part (A) of the theorem now follows from Corollary 1(A).
Part (B). Throughout this proof we will make extensive use of the following two

properties of the Nr model with underlying tree T :
• The conditional probability of generating a character f given that a leaf l ∈ L
of T is in a particular state µ ∈ R is precisely rP(f, T) if f(l) = µ (and is 0
otherwise).
• Let t1 and t2 be two subtrees of T that share one nonleaf vertex, v. Let f1

and f2 denote the restrictions of f to the leaves of t1 and t2, respectively.
Then f1 and f2 are conditionally independent once the state of vertex v is
specified.

Throughout the rest of this proof we will take (without loss of generality) R =
{0, 1}. Let P0 denote the probability of generating the character that maps all leaves to
state 0. We first establish the following inequality. Suppose that f ∈ c(T) corresponds
to edge e ∈ E̊. Then,

P(f, T) >
p(e)

1− p(e)
P0.(3.10)

To establish (3.10) let T1, T2 denote the two rooted subtrees of T whose roots
are the ends of edge e. Without loss of generality we may suppose all the leaves
of T1 (resp., T2) are mapped by f to 0 (resp., 1). For i = 1, 2, and µ, ν ∈ {0, 1},
let Pi(µ, ν) denote the conditional probability, under the N2 model (restricted to
Ti) that all the leaves in Ti are in state µ given that the root vertex (which we
take as our v0) is in state ν. Let α = 1

2 (P1(0, 1)P2(1, 0) + P1(0, 0)P2(1, 1));β =
1
2 (P1(0, 0)P2(1, 0) + P1(0, 1)P2(1, 1)). Then,

P(f, T) = αp(e) + β(1− p(e)),(3.11)

and by virtue of the symmetry in the N2 model which implies that

Pi(0, 0) = Pi(1, 1) and Pi(0, 1) = Pi(1, 0),

44 MIKE STEEL

we see that

P0 = α(1− p(e)) + βp(e).

Straightforward algebraic manipulation then shows that (since p(e) < 1
2),

P(f,T)
P0

>
p(e)

1−p(e) , as required to establish (3.10). Actually all we shall require is the following
corollary of inequality (3.10), namely for any f ∈ c(T),

P(f, T) > P0p−.(3.12)

Most of the remainder of the proof is devoted to establishing the following upper
bounds on P(f, T).

Claim.
• If L(f, T) = 1, then

P(f, T) < p±P0,(3.13)

• while, if L(f, T) > 1, then

P(f, T) < 2p2
±(1 + p±)P0 < p±P0.(3.14)

(Note that inequality (3.13) is required purely to justify the proof of inequality
(3.14).) The proof of inequality (3.13) is by induction on the number n of leaves of
T . The inequality holds for n = 2 since then there is just one edge e and p(e) = p− =
p+;P0 =

1
2 (1− p(e)) and so, since p(e) ∈ (0, 0.5), P(f, T) = 1

2p(e) < p(e)(1− p(e)) =
p±P0, as required. Now, suppose that n > 2. We distinguish two subcases.

• f ∈ c(T),
• f corresponds to a noninterior edge of T .

In the first subcase let T1, T2 be as described above. Consider the two subtrees
{tai , tbi} of Ti that intersect precisely on the vertex vi, where e = {v1, v2} is the edge
associated with f (see Figure 2(a)). For θ = a, b let P θ

i (µ, ν) denote the conditional
probability, under the N2 model restricted to tθi , that the leaves tθi are all in state µ
given that vi is in state ν. Then

Pi(µ, ν) = P a
i (µ, ν)P b

i (µ, ν).(3.15)

Now, if µ �= ν, then the restriction of f to the leaves of each subtree has L value
of 1 on each subtree, so by the inductive hypothesis,

P θ
i (µ, ν) < p±P θ

i (0, 0), (µ �= ν).(3.16)

Now, recalling (3.11) we have P(f, T) = αp(e) + β(1− p(e)) and so, substituting
(3.15) and inequality (3.16) into the definitions of α and β, we deduce that

P(f, T) < K[p(e) + 2p2
±(1− p(e)) + p(e)p4

±],(3.17)

where K = 1
2P a

1 (0, 0)P
b
1 (0, 0)P

a
2 (0, 0)P

b
2 (0, 0).

Also, we have

P0 ≥ (1− p(e))K ≥ (1− p+)K.(3.18)

Now, we can bound the term in brackets in (3.17) by noting that p(e) + 2p2
±(1−

p(e)) + p(e)p4
± < p+ + 2p

2
± + p3

± (since p± < 1), and then, by our assumption (3.2),

CONSISTENCY CONDITIONS FOR TREE RECONSTRUCTION 45

Fig. 2. Representations of T for the proof of the upper bounds (3.13) and (3.14).

we have p+ + 2p
2
± + p3

± ≤ p±(1 − p+). Substituting this into (3.17) and comparing
the result to (3.18) establishes inequality (3.13) in the first subcase.

For the second subcase, we may assume that f maps some leaf, incident with an
edge e, to state 0, and all other leaves of T to state 1.

Let ta, tb denote the other two subtrees of T which intersect precisely on the vertex
at the other end of edge e from the leaf. Then, defining P a(µ, ν), P b(µ, ν) analogously
as before, we have

P(f, T) =
1

2
(P a(1, 1)P b(1, 1)p(e) + P a(1, 0)P b(1, 0)(1− p(e))),

and so

P(f, T) <
1

2
P a(0, 0)P b(0, 0)[p(e) + p2

±(1− p(e))].

Consequently, since p(e) + p2
±(1− p(e)) < p+ + p2

± < p±(1− p+), we have

P(f, T) <
1

2
P a(0, 0)P b(0, 0)p±(1− p+).

Furthermore, since P0 ≥ 1
2P a(0, 0)P b(0, 0)(1− p(e)) ≥ 1

2P a(0, 0)P b(0, 0)(1− p+),
we deduce that inequality (3.13) holds in this subcase also.

We now establish inequality (3.14). We first observe that our condition (3.2)
forces 2p2

±(1+p±) < p± so it is only the first inequality in (3.14) we need to establish.
The proof again is by induction on n. For n = 2, 3 there is nothing to prove.

Suppose n ≥ 4 and L(f, T) > 1. Then, a standard application of Menger’s theorem
from graph theory shows that there are two edge-disjoint paths in T , each of which
connects leaves assigned different states by f [14, Lemma 1]. Thus, we may represent
T as in Figure 2(b), with five subtrees trees T1, . . . , T5 as shown, each pair of which
is disjoint or overlaps at one of two (generally nonadjacent) vertices v0 and v1 as
shown. We call these two vertices reference vertices, and note that each of T1, . . . , T4

46 MIKE STEEL

has exactly one reference vertex (and it is a leaf of that subtree) while T5 has both
reference vertices as leaves.

For i = 1, . . . , 4 and µ ∈ {0, 1} let f iµ be the character defined on the leaf set of
Ti which maps its reference vertex to µ and all other leaves of Ti to the element that
f specifies. Let fµ,ν be the character defined on the leaf set of T5 which maps v0 to
µ, v1 to ν, and every other leaf in T5 to the element that f specifies. For i = 1, . . . , 4
let

Pi(µ) := 2P(f
i
µ, Ti);Li(µ) := L(f iµ, Ti)

and

P5(µ, ν) := 2P(fµ,ν , T5);L5(µ, ν) := L(fµ,ν , T5).

For i = 1, . . . , 5 let P i
0 equal twice the probability of generating on Ti the character

which maps all leaves to 0. Then,

P(f, T) =
1

2

∑
µ,ν

P5(µ, ν)
∏
i=1,2

Pi(µ)
∏
i=3,4

Pi(ν).(3.19)

Now, by induction, we may assume that inequality (3.14) holds for all five sub-
trees, and invoking inequality (3.13) if necessary we deduce that, for i = 1, . . . , 4,
Pi(µ) < p±P i

0 when Li(µ) > 0 (while Pi(µ) = P i
0 otherwise). Similarly, P5(µ, ν) <

p±P 5
0 when L5(µ, ν) > 0, and Pi(µ) = P i

5 otherwise. Consequently for when µ = ν ∈
{0, 1} we introduce at least two powers of p± into the product terms of (3.19), while
for µ �= ν we introduce at least three powers of p±. Thus, we deduce that

P(f, T) < 2p2
±(1 + p±) · 1

2
·
∏

i=1,...,5

P i
0

and inequality (3.14) now follows by observing that

P0 >
1

2
·
∏

i=1,...,5

P i
0.

Finally we establish part (B) of the theorem. In view of inequalities (3.12) and
(3.14) we have

m− > P0p−

and

m+ < 2p2
±(1 + p±)P0.

Now, by our condition (3.2), p− > p+p± + 2p2
±(1 + p±) > 2p2

±(1 + p±), we see that
m− > m+. The first claim in part (B) of the theorem now follows from Corollary
1(B).

Finally we show that inequality (3.3) implies inequality (3.2). Suppose that p− ≥
12p2

+. Then, p+ ≤ 1
12 , and so, we have p− ≥ 12p2

+ ≥ 2p2
+ + 8p

2
+(1 + 2p+) ≥ p+p± +

2p2
±(1 + p±) (since p+ ≥ 1

2p±), as required.

CONSISTENCY CONDITIONS FOR TREE RECONSTRUCTION 47

4. Remarks. An interesting theoretical question is whetherMP is statistically
consistent under the Nr model when p(e) = p (for all edges e) and p is less than some
value p(r) > 0 that is independent of n. This question is open even for the case r = 2
(however, from [11], if such a positive value of p(2) exists, it must be less than 1

8).
Note that the sufficient condition (3.2) described in Theorem 1(B) requires that the
p(e) values to converge to 0 at least as fast as n−2, where n = |L|, so in a certain
sense the sufficient condition described forMC is much stronger than that forMP
(in the case r = 2).

It is also instructive to compare the strengths of the two parts of Theorem 1 for
the case when n = 4. In [4] Felsenstein considered the N2 model on a resolved tree
on four leaves, with two nonadjacent edges having p(e) = s, and the remaining three
edges having p(e) = q. He showed thatMP is statistically inconsistent precisely when
q(1− q) < s2, which, for q small, amounts, approximately, to q < s2. By contrast, the

sufficient condition described in the above theorem forMP would require q ≥ (2s+3q)2

1−2s−3q

which for q � s � 1 amounts, approximately, to q > 4s2. For MC (which agrees
with MP on trees with four leaves) the analogous sufficient condition described by
inequality (3.2) reduces, approximately, to q > 3s2. In either case we see a gap
between sufficiency and necessity conditions for statistical consistency. In fact, for
the case of four leaves it is possible to characterize precisely the conditions on the five
p(e) values for the statistical consistency ofMP (see [10]), however, in general, this
appears to be difficult. Thus a challenge for the future would be to narrow the gap
between necessary and sufficient conditions for the statistical consistency ofMP and
MC. An extension of Theorem 1(B) to r > 2 would also be interesting.

Acknowledgments. The author thanks the Isaac Newton Institute (Cambridge)
for its hospitality, Jotun Hein for offering helpful comments on an earlier version of
this manuscript, and the anonymous referee for several suggestions for improving the
presentation of this paper.

REFERENCES

[1] J.A. Cavender, Taxonomy with confidence, Math. Biosci., 40 (1978), pp. 271–280.
[2] J.T. Chang, Full reconstruction of Markov models on evolutionary trees: Identifiability and

consistency, Math. Biosci., 134 (1996), pp. 189–215.
[3] J.S. Farris, A probability model for inferring evolutionary trees, Syst. Zool., 22 (1973), pp. 250–

256.
[4] J. Felsenstein, Cases in which parsimony or compatibility will be positively misleading, Syst.

Zool., 27 (1978), pp. 401–410.
[5] L.R. Foulds and R.L. Graham, The Steiner problem in phylogeny is NP-complete, Adv. in

Appl. Math., 3 (1982), pp. 43–49.
[6] M.D. Hendy and D. Penny, A framework for the quantitative study of evolutionary trees,

Syst. Biol., 38 (1986), pp. 297–309.
[7] J.T. Jukes and C.R. Cantor, Evolution of protein molecules, in Mammalian Protein

Metabolism, H.N. Munro ed., Academic Press, New York, 1996, pp. 21–132.
[8] J. Kim, General inconsistency conditions for maximum parsimony: Effects of branch length

and increasing the number of taxa, Syst. Biol., 45 (1996), pp. 363–374.
[9] J. Neyman, Molecular studies of evolution: A source of novel statistical problems, in Statistical

Decision Theory and Related Topics, S.S. Gupta and J. Yackel, eds., Academic Press, New
York, 1971, pp. 1–27.

[10] D. Penny, M.D. Hendy, and M.A. Steel, Testing the theory of descent, in Phylogenetic
Analysis of DNA sequences, M.M. Miyamoto and J. Cracraft, eds., Oxford University
Press, Oxford, UK, 1991, pp. 155–183.

[11] M.A. Steel, Distributions on Bicoloured Evolutionary Trees, PhD thesis, Massey University,
Palmerston North, New Zealand, 1989.

48 MIKE STEEL

[12] M.A. Steel and D. Penny, Parsimony, likelihood, and the role of models in molecular phylo-
genetics, Mol. Biol. Evol., 17 (2000), pp. 839–850.

[13] D.L. Swofford, G.J. Olsen, P.J. Waddell, and D.M. Hillis, Phylogenetic inference, in
Molecular Systematics, 2nd ed., D.M. Hillis, C. Moritz, and B.K. Marble, eds., Sinauer
Associates, Sunderland, MA, 1996, pp. 407–514.

[14] C. Tuffley and M. Steel, Links between maximum likelihood and maximum parsimony under
a simple model of site substitution, Bull. Math. Biol., 59 (1997), pp. 581–607.

COMPACT REPRESENTATIONS OF CUTS∗

DAVID HARTVIGSEN†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 1, pp. 49–66

Abstract. Consider the
(
n
2

)
(or O(n2)) min-cut problems on a graph with n nodes and nonneg-

ative edge weights. Gomory and Hu [J. Soc. Indust. Appl. Math., 9 (1961), pp. 551–570] showed
(essentially) that there are at most n−1 different min-cuts. They also described a compact structure
(the flow equivalent tree) of size O(n) with the following property: for any pair of nodes, the value of
a min-cut can be obtained from this structure. Furthermore, they showed how this structure can be
found by solving only n− 1 min-cut problems. This paper contains generalizations of these results.
For example, consider a k-terminal cut problem on a graph: for a given set of k nodes, delete a
minimum weight set of edges (called a k-cut) so that each of the k nodes is in a different component.

There are
(
n
k

)
(or O(nk)) such problems. Hassin [Math. Oper. Res., 13 (1988), pp. 535–542] showed

(essentially) that there are at most
(
n−1
k−1

)
(or O(nk−1)) different min k-cuts. We describe a compact

structure of size O(nk−1) with the following property: for any k nodes, the value of a min k-cut
can be obtained from this structure. We also show how this structure can be found by solving only(
n−1
k−1

)
k-terminal cut problems. This work builds upon the results of Hassin [Math. Oper. Res., 13

(1988), pp. 535–542], [Oper. Res. Lett., 9 (1990), pp. 315–318], and [Lecture Notes in Comput. Sci.
450, 1990, pp. 228–299].

Key words. min-cut, flow tree, k-cut

AMS subject classifications. 05, 68, 90

PII. S0895480196312334

1. Introduction.

1.1. Overview of results. We consider two generalized cut problems in this
paper. A notion common to both problems is the k-cut, which is a partition of a given
set V into k nonempty sets. Each k-cut is given a real weight.

The first problem we consider is the k-terminal cut problem. The objective of a
k-terminal cut problem is to find a minimum weight k-cut that separates k specified
elements of V (i.e., such that each of the k elements is in a different set of the
partition). The second problem is the k-pair cut problem. The objective of this
problem is to find a 2-cut that simultaneously separates each of k specified pairs of
elements of V .

These two cut problems generalized problems typically considered on graphs. For
example, a 2-cut problem and a 1-pair cut problem, where the weights derive from
the edges in a graph with node set V , are classical min-cut problems. (See section 1.2
for a more detailed discussion of related problems on graphs.) These generalizations
lead to new and simple proof techniques and algorithms for several classical problems
on graphs.

Observe that for a given set V there are a number of different problems of each
type. For example, if we let n = |V |, then there are

(
n
2

)
or O(n2) different 2-terminal

cut problems. Regarding when the weights on the 2-cuts derive from nonnegative
weights on the edges of a graph on V , Gomory and Hu [10] showed the following,
somewhat surprising, results.

∗Received by the editors November 22, 1996; accepted for publication (in revised form) October
17, 2000; published electronically January 5, 2001.

http://www.siam.org/journals/sidma/14-1/31233.html
†College of Business Administration, University of Notre Dame, P.O. Box 399, Notre Dame, IN

46556-0399 (David.Hartvigsen.1@nd.edu).

49

50 DAVID HARTVIGSEN

1. There exists a set of at most n− 1 2-cuts that contains a min weight solution
for each 2-terminal cut problem (and this bound is the best possible).

2. There exists a structure (the flow equivalent tree) of size O(n) from which
the solution value of any 2-terminal cut problem can be found (in polynomial
time).

3. There exists an algorithm that simultaneously constructs the set in 1 and the
structure in 2; it requires solving only n− 1 2-terminal cut problems.

Result 1 shows there are significantly fewer min weight solutions than problems.
This is described by a best possible upper bound (n− 1 in this case). Result 2 shows
that there exists a structure whose size is the same order as the best possible upper
bound and that, nevertheless, contains all the information necessary to obtain the
value of a min weight solution to any problem in polynomial time. We refer to such
structures as compact representations of the cuts. Result 3 shows that it is sufficient
to solve a number of problems equal to the best possible upper bound in order to find
all the min weight 2-cut solutions and to construct the compact representation.

Note that result 2 assumes that cut values can be stored in space bounded by a
constant. We make a similar assumption in general: values of k-cuts can be stored in
space bounded by a constant.

Gomory and Hu [10] proved stronger results than results 2 and 3 above: There
exists a special flow equivalent tree, the cut tree, from which the actual min 2-cut for
each 2-terminal cut problem can be found in polynomial time; furthermore, this tree
can be found by solving only n− 1 2-terminal cut problems.

In this paper we present generalizations of results 2 and 3 for the k-terminal cut
and k-pair cut problems. Let us describe our results in the context of the work that
has already been done.

Hassin [19] proved the best possible upper bounds for the k-terminal cut problems
and the k-pair cut problems. In each case the bounds show there are significantly
fewer min weight solutions than problems. For example, he showed there exists a set
of at most

(
n−1
k−1

)
(or O(nk−1)) k-cuts that contains a min weight solution for every

k-terminal cut problem (of which there are O(nk)).

Hassin [19] described a compact representation (of size O(n)) for the (general) 2-
terminal cut problem and hence for the equivalent 1-pair cut problem. Cheng and Hu
[3] described a different compact representation for this problem. Both representations
derive from special tree structures in a graph.

We present in this paper compact representations for all values of k for both cut
problems. For example, for the k-terminal cut problem we present a structure of size
O(nk−1), for fixed k, from which the value of a min weight solution to any of the
O(nk) problems can be found. Furthermore, any such value can be found from this
structure in polynomial time, for fixed k. We observe that for the 3-terminal cut
and the 2-pair cut problems, the compact representations are closely related to the
well-known notion of cycle bases in graphs.

Hassin [19] provided an algorithm for the (general) 2-terminal cut problem that
finds all the min 2-cuts and a compact representation (as in result 3). However, it
requires solving O(n log n) 2-terminal cut problems, which can be more than the best
possible upper bound of n − 1. Cheng and Hu [3] found a different algorithm for
this problem that finds all the min 2-cuts and a different compact representation. It
requires solving only n − 1 2-terminal cut problems. Hassin [16] provided a general
algorithm of the type described in result 3 that can be applied to both of the more
general cut problems studied in this paper. However, the algorithm requires solving

COMPACT REPRESENTATIONS OF CUTS 51

twice the number of problems in the best possible upper bound. For example, for
the k-terminal cut problem Hassin’s algorithm requires solving 2

(
n−1
k−1

)
k-terminal cut

problems to find the set of at most
(
n−1
k−1

)
min k-cuts. Also, the complexity of Hassin’s

algorithm, not including the work of solving the cut problems, is exponential (because
the representation that it utilizes has exponential size).

We present a variant of Hassin’s general algorithm in this paper. Our algorithm
has the following properties: It finds a compact representation as well as all the min
cuts for the k-terminal cut and k-pair cut problems (as well as a more general class
of problems), it requires the solution of at most the best upper bound number of cut
problems (hence the factor of 2 goes away), and the complexity is polynomial for both
types of problems, for fixed k. For the special case of 2-cuts, the algorithm we present
is considerably simpler both to describe and show valid than the 2-cut algorithm of
Cheng and Hu. For the special case of 2-cuts in graphs, our algorithm is different
from the algorithm of Gomory and Hu and appears to be new. Our algorithm is quite
simple and requires no “shrinking.”

The remainder of the paper is organized as follows. We end this section with a
quick overview of the history of the cut problems we study. In section 2 we present our
results for the k-terminal cut problem. In section 3 we review some useful techniques
of Hassin, which we apply in our proofs. In section 4 we prove our results for the k-
terminal cut problem. In section 5 we present and prove our results for the k-pair cut
problem. In section 6 we consider the algorithmic question of how to efficiently find
the compact representations for the two types of problems discussed above. Section
7 contains some open problems.

1.2. History of the k-terminal and k-pair cut problems. In the literature,
a graphical k-terminal cut problem (where the cut weights derive from nonnegative
edge weights) is sometimes called a multiterminal cut problem. Dahlhaus et al. [7] have
proved the following. The graphical k-terminal cut problem is NP-hard for k ≥ 3, even
if k is fixed and all the edge weights are equal to 1 (see also [8]); if only planar graphs
are considered, the problem is still NP-hard; however, if k is fixed and only planar
graphs are considered, then there exists a polynomial time algorithm. The history of
this problem and several applications are also briefly discussed in [7]. Additional work
on the graphical problem using the techniques of polyhedral combinatorics appears
in [4], [6], and [8]. Heuristics for this problem have been studied in [7] and [22].
Numerous applications of the 2-terminal cut problem appear in [2] and [27].

An algorithm for finding all the minimum weight 2-cuts, as in result 3, can be
used to find the overall minimum weight 2-cut in a graph. This problem has found
application in algorithms for solving the traveling salesman problem (see [5], [25], and
[26]) and network reliability problems (see [13]). Padberg and Rinaldi [26] presented
a variant of the algorithm of Gomory and Hu that can be implemented more easily
and empirically runs faster. Gusfield [12] showed how the algorithm of Gomory and
Hu can be significantly simplified by eliminating the need for “shrinking” in the con-
struction of the flow equivalent tree. (The algorithm presented in this paper, when
it is specialized to the graphical 2-terminal cut case, appears to be different from
Gusfield’s algorithm.)

We note that, surprisingly, there is an algorithm presented in [9] that finds the
overall min k-cut in a graph in polynomial time for fixed k, starting from scratch.
Related work appears in [14], [20], and [21]. Hao and Orlin [13] presented an algorithm
for finding the overall min 2-cut that effectively requires the solution of only one max
flow problem. Related work appears in [24] and [29].

52 DAVID HARTVIGSEN

Let us end this review of the k-terminal cut problem by mentioning some other
related results. Granot and Hassin [11] proved variants of results 1–3 for the case
of graphs with both edge and node weights. Hassin [17] proved variants of results
1–3 for the related “xcut problem.” Hartvigsen [15] showed how the 2-terminal cut
problem and the flow equivalent tree can be generalized to matroids. Finally, Trotter
[30] showed how a different aspect of Gomory and Hu’s work can be generalized to
matroids and in so doing provided a generalization of the notion of cut tree.

In the literature, the k-pair cut problem (in graphs) is sometimes called the mul-
ticommodity cut problem. It is closely related to the multicommodity flow problem,
which is commonly used to model communications, logistics, manufacturing, and
transportation systems (see [2] for numerous examples and solution techniques). The
relationship between these problems (in particular, when they have the same value
for a given set of pairs of nodes) has been widely studied. For an excellent survey
of these results, see [28]. A key result of this type is the 2-commodity flow theorem
of Hu [23]. Note that a k-pair cut problem may have no feasible solution (since we
only consider solutions that are 2-cuts; see section 5.1). A different problem arises,
for example, if we consider solutions that are j-cuts for j ≤ k.

2. The k-terminal cut problem and our results. Recall that a single k-cut
is a partition of a set V into k nonempty subsets and that we give each such k-cut
a real weight. A single k-terminal cut problem is the following: given V ′ ⊆ V , with
|V ′| = k, find a minimum weight k-cut of V such that each element of V ′ is in a
different set of the partition. Let us emphasize that even for the case k = 2, this is a
generalization of the well-known min cut problem, where V denotes the node set of a
graph and the weights of the 2-cuts derive from nonnegative weights on the edges of
the graph on V .

Observe that for a given set V , with |V | = n, there are
(
n
k

)
different k-terminal

cut problems. Hassin showed, however, that there are significantly fewer min weight
solutions to these problems. Next we state his result. Note that

(
n
k

)
is O(nk).

Theorem 2.1 (see [19]). There exists a set of at most
(
n−1
k−1

)
(or O(nk−1)) k-cuts

that contains a min weight solution for every k-terminal cut problem. (Furthermore,
this result is the “best possible.”)

As noted in the introduction, Gomory and Hu [10] first proved the special case
of Theorem 2.1 when k = 2 and the weights on the 2-cuts derive from nonnegative
weights on the edges of a graph with node set V .

Hassin [19] proved another interesting result for the (general) case k = 2. The
idea is that the solution value to any of the original O(n2) min-cut problems can be
found by referring only to an object of size O(n). Note that such a result is a bit
surprising since it requires O(n) space to write down any one 2-cut (e.g., by listing
the corresponding node partition), and there can be n− 1 different min 2-cuts. After
a quick definition, we can precisely state his result.

Let H = (V,E) be a complete graph on V . Set the weight of each edge uv ∈ E
to be the weight of a min 2-cut for u and v (in the original problem). Let us call any
maximum weight spanning tree of H a compact representation tree (or a CR tree).
Observe that this tree requires O(n) space. Hassin’s result is the following.

Theorem 2.2 (see [19]). The value of a min 2-cut for any pair u, v ∈ V can be
obtained from a CR tree T as follows: add the edge uv to T and find the unique cycle
that contains it; the minimum weight of an edge of T in this cycle is the value of a
min 2-cut for u and v.

As noted in the introduction, Gomory and Hu [10] proved the special case of this

COMPACT REPRESENTATIONS OF CUTS 53

theorem when the weights on the 2-cuts derive from nonnegative weights on the edges
of a graph with node set V . They referred to the CR tree as a flow equivalent tree.

One objective of this paper is to generalize, to all k, Hassin’s notion of a CR tree.
That is, we want to create a compact structure of size O(nk−1) from which we can
obtain the solution value to any k-terminal cut problem. The trick is to use matrices
instead of graphs, as follows.

Consider the k-terminal cut problems on a set V . Let M be a
(

n
k×(n

k−1)
)

matrix

whose rows are indexed on the subsets of V of size k and whose columns are indexed
on the subsets of V of size k − 1. Let Mij = 1 if j is a subset of i, and 0 otherwise.
Thus each row of M corresponds to a k-terminal cut problem and each row contains
k 1’s. A base of M is a maximal independent (over GF(2)) set of rows of M .

Let the weight of each row of M be the solution value of the corresponding k-
terminal cut problem, and let the weight of a base be the sum of the weights of the
rows in the base. A matrix consisting of the rows in a maximum weight base of M is
called a compact representation matrix (or a CR matrix) for the solutions to all the
k-terminal cut problems.

To see how the notion of a CR matrix generalizes the notion of a CR tree, consider
the following two examples.

Example 1. When k = 2, the matrix M is the edge-node incidence matrix for
a complete graph constructed on V . It is well known that a set of rows of such a
matrix is independent if and only if the corresponding edges in the complete graph
are acyclic. Hence a CR matrix corresponds to Hassin’s CR tree. This CR matrix
has n− 1 rows each with only two nonzero entries.

Example 2. When k = 3, the matrix M is the triangle-edge incidence matrix
for a complete graph constructed on V . In this case the rows are incidence vectors
for cycles in the complete graph and hence are vectors in the well-known cycle space
of this graph. A CR matrix corresponds to a maximum weight base for the cycle
space that consists of triangles (although the weights on the triangles do not derive
from weights on the edges of these triangles). This CR matrix has

(
n−1

2

)
(this is the

dimension of the cycle space for a complete graph) rows each with only three nonzero
entries.

Next we state our main results for k-cuts. The first result is that the solution
value to any k-terminal cut problem can be found from the CR matrix. The second
result is that the CR matrix is compact in the sense that it requires the same amount
of space as the maximum number of different k-cut solutions, for fixed k. We prove
these results in section 4.

Theorem 2.3. The value of a min k-cut for any set V ′ ⊆ V , where |V ′| = k,
can be obtained from a CR matrix as follows: add the incidence vector for V ′ (as it
occurs in M) to the CR matrix and find the unique circuit (minimal dependent set of
rows over GF (2)) that contains it; the minimum weight of a row of the CR matrix in
this circuit is the value of a min k-cut for V ′.

Theorem 2.4. A CR matrix for the k-terminal cut problems on V can be stored
in O(nk−1) space, for fixed k.

Theorem 2.1 is a special case of Theorem 2.3 by Example 1. Observe that the
circuit in Theorem 2.3 can be found with Gaussian elimination. Also observe that,
for fixed k, a CR matrix has polynomial size. Thus, for fixed k, the work to find a
min k-cut value from a CR matrix is polynomial.

3. General results. We begin this section by reviewing some related work of
Hassin that we use later. We finish this section by proving a simple, but useful, result

54 DAVID HARTVIGSEN

in linear algebra. All algebra done in this paper is over GF (2).

Hassin [19] considered the following general setting. A finite set of problems is
given together with a finite set of solutions. Each solution is given a distinct real
weight. A matrix A is also given where there is a row of A corresponding to each
problem, a column of A corresponding to each solution, entry aij = 1 if solution j
is feasible for problem i, and aij = 0 otherwise. The weight of a problem equals the
minimum weight of a solution that is feasible for that problem. The following is one
of Hassin’s key results.

Theorem 3.1 (see Corollary 2.2 in [19]). There exists a set of at most rank(A)
solutions that contains the minimum weight solution for every problem.

Hassin used this result to prove Theorem 2.1 of this paper and a version of The-
orem 2.1 for the k-pair cut problem (see Theorem 5.2 in this paper). That is, he
calculated the ranks of the matrices A for these two problems and constructed exam-
ples to show that these bounds are the best possible.

Hassin also introduced the notion of a maximum solution base for A, which is
defined to be a maximum weight base of the rows of A (where each row has the same
weight as the associated problem). He showed the following.

Theorem 3.2 (see Theorem 2.3 in [19]). The value of a minimum weight solution
to any problem can be obtained from a maximum solution base for A as follows: add the
row from A for this problem to the maximum solution base for A and find the unique
circuit (minimal dependent set of rows over GF (2)) that contains it; the minimum
weight of a row of the solution base in this circuit is the value of a minimum weight
solution to this problem.

It is interesting to note that the matrices A for the two types of cut problems that
we consider in this paper each have an exponential number of columns in n, although
they have a polynomial rank in n, for fixed k. Hence the corresponding maximum
solution bases of the matrices A are not “compact” representations of all the solution
values. This leads us to make the following definition.

A matrix R is called a representation matrix for a matrix A if and only if

1. R and A have the same number of rows and
2. a set of rows of R is independent if and only if the corresponding set of rows

of A is independent.

Clearly a representation matrix R for A can be substituted for A in the statement
of Theorem 3.2. Hence one of our objectives is to find representation matrices for our
two cut problems whose maximum weight bases require a “small” amount of space.
In particular, we construct representation matrices whose bases have a size that is not
only polynomial in n, for fixed k, but which can be stored in at most as much space
as the maximum number of different min weight solutions. The way we accomplish
this is to choose representation matrices that have a “small” number of 1’s in each
row (that is, a number of 1’s that is bounded by a constant in k). We will use the
following simple proposition to help us identify representation matrices.

Proposition 3.3. Let A, B, and C be three matrices such that BC = A and
rank(B) = rank(A). Then B is a representation matrix for A.

Proof. For a matrix M (over any field), let colsp(M) denote the vector space
generated by the columns of M . Then BC = A implies colsp(A) ⊆ colsp(B). Since
rank(B) = rank(A), we can conclude colsp(A) = colsp(B). Let B′ be a subset of rows
of B and let A′ be the corresponding subset of rows of A. Then colsp(B′) = colsp(A′),
which implies that rank(B′) = rank(A′). It follows that the rows of B′are independent

COMPACT REPRESENTATIONS OF CUTS 55

if and only if the rows of A′are independent. Thus B is a representation matrix for
A.

4. Proof of the main results for k-terminal cut problems. In this section
we prove Theorems 2.3 and 2.4.

For the collection of k-terminal cut problems on a set V , consider the following:
the associated matrix A (as defined in section 3) and the associated CR matrix M
(as defined in section 2). Assume that corresponding rows of A and M refer to the
same k-terminal cut problem. The main result of this section is the following.

Theorem 4.1. M is a representation matrix for A.
This is our main result because Theorem 2.3 follows immediately.
Corollary 4.2. Theorem 2.3.
Proof of Corollary 4.2. The corollary follows immediately from Theorem 4.1 and

Theorem 3.2.
We use Proposition 3.3 from the previous section to prove Theorem 4.1. Thus

we must produce a matrix, say, D, such that MD = A, and we must show that
rank(M) = rank(A). We make use of the following result of Hassin.

Theorem 4.3 (see Theorem 3.2 in [19]). For the k-terminal cut problem, rank(A) =(
n−1
k−1

)
.

We define the matrix D as follows.
Let D be a matrix whose rows are indexed on the subsets of V of size k−1 (hence

D has
(
n
k−1

)
rows) and whose columns are indexed on the k-cuts. Let (V1, . . . , Vk)

denote an arbitrary k-cut, and let s (V1, . . . , Vk) denote the corresponding column in
D. Then s (V1, . . . , Vk) is defined to be the 0–1 incidence vector of the subsets V ′′ ⊂ V
for which the following two conditions hold.

1. |V ′′| = k − 1.
2. If k is odd: |V ′′ ∩ Vi| ≤ 1, 1 ≤ i ≤ k;

If k is even: |V ′′ ∩ Vi| = 1, 1 ≤ i ≤ k − 1.
Hence V ′′ ∩ Vk = ∅, when k is even. Let S denote the set of all k-cut solutions

and, for S′ ⊆ S, let s (S′) = {s(V1, . . . , Vk) : (V1, . . . , Vk) ∈ S′}.
Let us extend this notation to the matrix M . Recall that the columns of M are

indexed on the subsets of V of size k − 1. Let us assume these subsets occur in the
same order for M , from left to right, as they do for D, from top to bottom. Each row
of M corresponds to a k-terminal cut problem, that is, a subset V ′ ⊆ V , such that
|V ′| = k. Let us denote each such row as p(V ′). Thus p(V ′) is a 0–1 incidence vector
of the subsets of V ′ of size k− 1. Let P denote the set of all k-terminal cut problems
and, for P′ ⊆ P, let p (P′) = {p(V ′) : V ′ ∈ P′}.

Proposition 4.4. MD = A.
Proof. Let P and S denote the collections of all k-terminal cut problems and k-

cut solutions, respectively, on V . Then for arbitrary V ′ ∈ P and (V1, . . . , Vk) ∈ S, it
suffices to show that (V1, . . . , Vk) is feasible for V ′ if and only if p(V ′) ·s(V1, . . . , Vk) =
1.

(⇒) Assume (V1, . . . , Vk) is feasible for V ′.
Assume that k = |V ′| is odd. p(V ′) has a 1 in precisely those entries corresponding

to subsets of V ′ of size k − 1. Because (V1, . . . , Vk) is feasible for V ′, every entry for
which p(V ′) is 1 is also a 1 in s(V1, . . . , Vk). The number of such entries is |V ′|. Since
|V ′| is odd, p(V ′) · s(V1, . . . , Vk) = 1.

Assume that k = |V ′| is even. Observe that there is only one entry that is 1 in
both p(V ′) and s(V1, . . . , Vk): the entry corresponding to the subset of V ′ of size k−1
that does not intersect Vk. Hence p(V ′) · s(V1, . . . , Vk) = 1.

56 DAVID HARTVIGSEN

(⇐) Assume (V1, . . . , Vk) is not feasible for V ′.
Assume that k = |V ′| is odd. There must exist at least one set in V1, . . . , Vk

that contains at least two members of V ′. If there is exactly one set in V1, . . . , Vk
that contains exactly two members of V ′ and all others contain zero or one, then
there are precisely two entries that are 1 in both p(V ′) and s(V1, . . . , Vk). Hence
p(V ′) · s(V1, . . . , Vk) = 0. In all other cases, there are no entries that are 1 in both
p(V ′) and s(V1, . . . , Vk), yielding the same conclusion.

Assume that k = |V ′| is even. The argument is exactly the same as above except
that if Vk contains exactly two members of V ′ and each of V1, . . . , Vk−1 contains zero
or one, then there are no entries that are 1 in both p(V ′) and s(V1, . . . , Vk).

Proposition 4.5. rank(M) =
(
n−1
k−1

)
.

Proof. Let P and S denote the collections of all k-terminal cut problems and
k-cut solutions, respectively, on a set V . Then we want to show that rank(p (P)) =(
n−1
k−1

)
. Arbitrarily pick v ∈ V . Let Pv be the collection of k-terminal cut problems

that contain v. Observe that |Pv| =
(
n−1
k−1

)
. We claim that p (Pv) is a base for

p (P). First, observe that the vectors in p (Pv) are independent since p (V ′), for
each V ′ ∈ Pv, has a 1 in the position indexed by V ′\ {v} and all other vectors in
p (Pv) have a 0 in this position. Second, to show that p (Pv) spans p (P), consider
an arbitrary k-terminal cut problem V ′ ∈ P such that v /∈ V ′. Consider the subsets
P′v = {V ′′ : V ′′ ∈ Pv and V ′′ ⊂ V ′ ∪ {v}}. We claim that the sum of the vectors
in p (P′v) equals p (V ′). Note that the vectors in p (P′v) can contain a 1 only in
positions indexed by subsets V ′′ ⊂ V ′ ∪ {v}, where |V ′′| = k − 1. First, consider
an arbitrary such position V ′′ such that v /∈ V ′′. The only vector in p (P′v) that is
1 in such a position is p (V ′′ ∪ {v}). Hence the sum of the vectors in p (P′v) is 1 in
such a position. Second, consider an arbitrary such position V ′′ such that v ∈ V ′′.
Let {v1, v2} = V ′\V ′′. The only vectors in p (P′v) that are 1 in such a position are
p (V ′′ ∪ {v1}) and p (V ′′ ∪ {v2}). Hence the sum of the vectors in p (P′v) is 0 in such
a position. Thus, p (Pv) is a base for p (P).

Proof of Theorem 4.1. The theorem follows from Theorem 4.3 and Propositions
3.3, 4.4, and 4.5.

Proof of Theorem 2.4. By Proposition 4.5, a CR matrix has
(
n−1
k−1

)
rows. By

definition, each row has k 1’s. Also by definition, a CR matrix has
(
n
k−1

)
columns

to which we can assign names. Thus a CR matrix can be stored in k
(
n−1
k−1

)
space by

replacing each row with a list of the names of the k columns that contain 1’s. The
result follows.

5. The k-pair cut problem.

5.1. The problem and our results. As noted in the introduction, our second
problem is related to the well-known multicommodity flow problem. Given a ground
set V , a k-pair cut problem is a collection of (not necessarily distinct) pairs {si, ti}ki=1

of V , where si �= ti. (In the multicommodity flow problem there are k commodities,
each of which must be sent between the corresponding pair of nodes in a network.
Some commodities may have the same corresponding pair of nodes. However, in our
more general setting, we do not assume a network structure exists.) For this problem,
we consider only 2-cut solutions; that is, partitions (V1, V2) of V into two nonempty
sets. Each 2-cut solution is given a real weight. A 2-cut solution (V1, V2) is called

feasible for a k-pair cut problem {si, ti}ki=1 if and only if si and ti are in different
sets of the partition for every i = 1, . . . , k. So the objective for a given k-pair cut
problem is to find a min weight feasible 2-cut solution. Note that a 1-pair cut problem

COMPACT REPRESENTATIONS OF CUTS 57

is always equivalent to a 2-terminal cut problem. However, a k-pair cut problem for
k > 1 is also equivalent to a 2-terminal cut problem if all k pairs are identical.

Let us address the question of how many different k-pair cut problems there are
for a set V . There are

(
n
2

)
different k-pair cut problems with one distinct pair among

the {si, ti}ki=1. There are
((n2)

2

)
different k-pair cut problems with two distinct pairs

among the {si, ti}ki=1. Since there cannot be more than
(
n
2

)
distinct pairs, there are

min(k,(n2))∑
m=1

((n
2

)
m

)

different k-pair cut problems. Hassin showed that there exists a significantly smaller
set of min weight 2-cut solutions to these problems.

Definition 5.1. Let s =
∑min(k,n−1)
m=1

(
n−1
m

)
.

Theorem 5.2 (see [19]). There exists a set of at most s 2-cut solutions that
contains a min weight 2-cut solution for every k-pair cut problem. (Furthermore, this
result is the “best possible.”)

Next we present a structure that compactly represents all the solutions to the
k-pair cut problems. As for the k-terminal cut problem, the structure is a matrix. We
call this matrix compact because (as we show) it can be stored in O(s) space, for fixed
k. The matrix for the 1-pair cut problem is identical to the matrix we constructed
for the 2-terminal cut problem. (These two problems are identical.)

Before defining these matrices, it will be convenient to use the following notion.
For a given k-pair cut problem consider the following graph (with no multiple edges):
G (V, {{si, ti} for i = 1, . . . , k}). Thus G has from 1 to k edges. Clearly this problem
has a feasible solution if and only if G has no odd cycles, i.e., G is bipartite. Hence
we may equivalently describe a feasible k-pair cut problem as a collection of pairs of
nonempty sets (Aj , Bj)

r
j=1 such that all 2r of these sets are pairwise disjoint and each

pair (Aj , Bj) is the node partition for one of the (nonsingleton) components of the
bipartite graph G. Note that r can range from 1 to k. A 2-cut solution is feasible for
a k-pair cut problem if and only if Aj and Bj are in different sets of the partition for
every j = 1, . . . , r.

Consider the k-pair cut problems on a set V . Let M ′ be a q ×∑k
m=1

(
n
m

)
matrix

whose rows are indexed on the feasible k-pair cut problems on V and whose columns
are indexed on the subsets of V of size ≤ k. (It is not necessary to explicitly calculate

q.) For a feasible problem {si, ti}ki=1 (or (Aj , Bj)
r
j=1) the corresponding row of M ′ is

the incidence vector of all subsets S ⊆ {s1, t1, . . . , sk, tk} such that

Aj ⊆ S or Bj ⊆ S,but not both, for j = 1, . . . , r.(5.1)

(Note that, for example, Aj ⊆ S and Bj ∩ S �= ∅ is allowed. We show below that |S|
is always ≤ k.)

Let the weight of each row of M ′ be the solution value of the corresponding k-pair
cut problem, and let the weight of a base of M ′ be the sum of the weights of the rows
in the base. A matrix consisting of the rows in a maximum weight base of M ′ is called
a CR matrix for the solutions to all the k-pair cut problems.

Example 3. When k = 1, the matrix M ′ is the edge-node incidence matrix for
a complete graph constructed on V . Hence (as in Example 1 for the 2-terminal cut
problem) a CR matrix here corresponds to Hassin’s CR tree and each row contains
two nonzeros.

58 DAVID HARTVIGSEN

Example 4. For k = 2, consider again the complete graph constructed on V .
The columns of M ′ can be partitioned into two sets that correspond to the nodes
and edges of the complete graph. The rows of M ′ can also be partitioned into two
sets that correspond to the individual edges and to the pairs of distinct edges of the
complete graph. The submatrix of M ′ whose rows correspond to the edges and whose
columns correspond to the nodes is the edge-node incidence matrix for the complete
graph. The submatrix of M ′ whose rows correspond to the pairs of edges and whose
columns correspond to the edges is the incidence matix of triangles and squares in
the well-known cycle space. To see this consider the following: If a row corresponds
to two adjacent edges of the form (s1, t1), (s1, t2), then it contains 1’s in the columns
that correspond to {s1}, {s1, t1}, {s1, t2}, and {t1, t2}. If a row corresponds to two
nonadjacent edges of the form (s1, t1), (s2, t2), then it contains 1’s in the columns
that correspond to {s1, s2}, {s1, t2}, {s2, t1}, and {t1, t2}. Hence, every row of M ′

contains two or four nonzeros.
Next we state our main results for k-pair cuts. The first result is that the solution

value to any k-pair cut problem can be found from the CR matrix. The second result
is that the CR matrix is compact in the sense that it requires the same amount of
space as the maximum number of different k-cut solutions, for fixed k. We prove these
results in the next section.

Theorem 5.3. The value of a min k-pair cut solution for any (feasible) k-pair
cut problem can be obtained from a CR matrix as follows: add the incidence vector
for the problem (as it occurs in M ′) to the CR matrix and find the unique circuit that
contains it; the minimum weight of a row of the CR matrix in this circuit is the value
of a min k-pair cut solution for the problem.

Theorem 5.4. A CR matrix for the k-pair cut problems on V can be stored in
O(s) space, for fixed k.

5.2. Proofs. In this section we prove Theorems 5.3 and 5.4. Let A be the
appropriate matrix as defined in section 3, and let M ′ be the matrix defined in section
5.1. Assume the corresponding rows of A and M ′ refer to the same k-pair problem.
The main result of this section is the following.

Theorem 5.5. M ′ is a representation matrix for A.
This is our main result because Theorem 5.3 follows immediately.
Corollary 5.6. Theorem 5.3.
Proof of Corollary 5.6. The corollary follows immediately from Theorem 5.5 and

Theorem 3.2.
We use Proposition 3.3 to prove Theorem 5.5. Thus we must produce a matrix

D′ such that M ′D′ = A, and we must show that rank(M ′) = rank(A). We make use
of the following result of Hassin.

Theorem 5.7 (see Theorem 3.4 in [19]). For the k-pair cut problem, rank(A) =
s.

Next we show that the matrices M ′ from section 5.1 are well defined.
Proposition 5.8. Consider a feasible k-pair cut problem {si, ti}ki=1 (or (Aj , Bj)

r
j=1)

and the subsets S ⊆ V , defined in (5.1). Then, for each such S, |S| ≤ k.

Proof. Let G denote the graph defined in section 5.1 for {si, ti}ki=1, and let
Cj = (Vj = Aj ∪ Bj , Ej), for j = 1, . . . , r, denote the (nonsingleton) components of
G. Observe that, by definition,

|S| ≤
r∑
j=1

(|Aj |+ |Bj | − 1) .

COMPACT REPRESENTATIONS OF CUTS 59

Also observe that, since each Cj is connected,

|Vj | − 1 ≤ |Ej | for j = 1, . . . , r.

Thus we have

r∑
j=1

(|Vj | − 1) ≤
r∑
j=1

|Ej |.

It follows that

|S| ≤
r∑
j=1

(|Aj |+ |Bj | − 1) =

r∑
j=1

(|Vj | − 1) ≤
r∑
j=1

|Ej | ≤ k.

We define the matrix D′ as follows.
Let D′ be a matrix whose rows are indexed on the subsets of V of size ≤ k (in

the same order from top to bottom as the columns of M ′ from left to right). Let
the columns of D′ be indexed on the 2-cuts. In particular, for each 2-cut (V1, V2) let
s′ (V1, V2) denote the corresponding column in D′. Then s′ (V1, V2) is defined to be
the 0–1 incidence vector of the subsets V ′′ ⊂ V such that |V ′′| ≤ k and V ′′ ⊆ V1. For

a problem {si, ti}ki=1 (or (Aj , Bj)
r
j=1), let p′

(
{si, ti}ki=1

)
(or p′ (Aj , Bj)

r
j=1) denote

the corresponding row of M ′.
Proposition 5.9. M ′D′ = A.
Proof. Let {si, ti}ki=1 (or (Aj , Bj)

r
j=1) be an arbitrary k-pair cut problem, and

let (V1, V2) be an arbitrary 2-cut. Then it suffices to show that (V1, V2) is feasible for

{si, ti}ki=1 if and only if p′
(
{si, ti}ki=1

)
· s′ (V1, V2) = 1 .

To begin, let us assume r = 1. Recall that s′ (V1, V2) is the incidence vector for

all subsets of V1 of size ≤ k and p′
(
{si, ti}ki=1

)
is the incidence vector for all subsets

of A1 ∪B1 of size ≤ k that either contain A1 but not all of B1 or contain B1 but not
all of A1. We consider the following cases.

Case 1. Suppose (V1, V2) is feasible for (A1, B1). Let us assume, without loss
of generality, that A1 ⊆ V1. Then there is only one common subset between those

indexed by s′ (V1, V2) and p′
(
{si, ti}ki=1

)
, namely, the set A1. The result follows.

Case 2. Suppose A1 ∪ B1 is contained in V1 or V2. If A1 ∪ B1 is contained in

V2, then s′ (V1, V2) and p′
(
{si, ti}ki=1

)
have no common subsets. Suppose A1 ∪B1 is

contained in V1. The number of subsets indexed by p′
(
{si, ti}ki=1

)
that contain A1

is equal to the number of proper subsets of B1, which is 2|B1| − 1. The number of

subsets indexed by p′
(
{si, ti}ki=1

)
that contain B1 is equal to the number of proper

subsets of A1, which is 2|A1| − 1. Hence the total number of subsets indexed by both

s′ (V1, V2) and p′
(
{si, ti}ki=1

)
is
(
2|A1| − 1

)
+
(
2|B1| − 1

)
, which is even. The result

follows.
Case 3. Suppose V1 (hence, V2) contains a proper, nonempty subset of nodes in

both A1 and B1. Then s′ (V1, V2) and p′
(
{si, ti}ki=1

)
index no common subsets and

the result follows.
Case 4. Suppose V1 contains A1 and a proper, nonempty subset of nodes in

B1. Let B′ denote the subset of B1 in V1. Then s′ (V1, V2) and p′
(
{si, ti}ki=1

)
have

60 DAVID HARTVIGSEN

2|B
′| common subsets. Conversely, if V2 contains A1 and a proper, nonempty subset of

nodes in B1, then s′ (V1, V2) and p′
(
{si, ti}ki=1

)
index no common subsets. Analogous

arguments hold if V1 contains B1 and a proper, nonempty subset of nodes in A1. The
result follows.

Next we consider the case that r > 1. Let p′ (Aj , Bj) denote the incidence vector
associated with the problem defined by (Aj , Bj). Let Sj denote the sets that are
indexed by both the vectors s′ (V1, V2) and p′ (Aj , Bj) for j = 1, . . . , r. Then the sets

that are indexed by both the vectors s′ (V1, V2) and p′
(
{si, ti}ki=1

)
are precisely those

sets that can each be obtained as follows: take one set from each of Sj for j = 1, . . . , r
and then take the union of these sets. Hence the number of sets that are common to
the vectors s′ (V1, V2) and p′

(
{si, ti}ki=1

)
is equal to

∏r
j=1 |Sj |. From the r = 1 part

of this proof, we know that |Sj | equals 1 if (V1, V2) separates (Aj , Bj) and is even

otherwise. Hence
∏r
j=1 |Sj | equals 1 if (V1, V2) is feasible for {si, ti}ki=1 and is even

otherwise. The result follows.

As before, if S denotes the set of all 2-cut solutions, then for S′ ⊆ S let s′ (S′) =
{s(V1, V2) : (V1, V2) ∈ S′}. Similarly, if P denotes the set of all k-pair cut problems,

then for P′ ⊆ P let p′ (P′) =
{
p′
(
(Aj , Bj)

r
j=1

)
: (Aj , Bj)

r
j=1 ∈ P′

}
.

Proposition 5.10. rank(M ′) = s.

Proof. Pick an arbitrary v ∈ V . Let Pv denote all the k-pair problems of the form
{{v, t} : t ∈ T} or, equivalently, (v, T), where v /∈ T . Thus T ranges over all subsets

of V \v of size ≤ k. Observe that |Pv| =
∑min(k,n−1)
m=1

(
n−1
m

)
= s. We show that the

vectors p′(Pv) are independent, and then we show that they span all the vectors in P.

Consider an arbitrary subset, say, B, of V \v of size ≤ k. Observe that there is
only one vector in p′(Pv) that has a 1 in the entry indexed by B, namely, p′(v,B).
Thus p′(Pv) contains an identity matrix of size s. Hence the vectors in p′(Pv) are
independent.

Consider an arbitrary k-pair problem (Aj , Bj)
r
j=1.

Case 1. To begin, let us assume r = 1 and v /∈ A1 ∪B1.

Let P ′v denote the k-pair problems (v, T) in Pv such that p′ (A1, B1) has a 1 in
position T . Let sum(p′(P ′v)) denote the sum of the vectors in p′(P ′v). We show that
sum(p′(P ′v)) = p′ (A1, B1). Let (v, T) denote an arbitrary problem in P ′v. As we noted
above in constructing the identity matrix, p′ (v, T) is the only vector in p′(P ′v) that
has a 1 in position T . Thus sum(p′(P ′v)) has a 1 in every position in which p′ (A1, B1)
has a 1. Also note that every vector in p′(P ′v) has a 1 in position {v}. We showed
in the proof of Proposition 5.9 (Case 2) that p′ (A1, B1) has an even number of 1’s,
hence |p′(P ′v)| is even and sum(p′(P ′v)) has a 0 in position {v}. It remains to show
that, for any problem (v, T) in P ′v, the positions in p′ (v, T) that are 1 and do not
correspond to T or v occur in an even number of vectors in p′(P ′v). Such positions
correspond to subsets of the form {v} ∪ T ′, where T ′ is a proper subset of T . Such
positions are equal to 1 for all vectors in p′(P ′v) with problems of the form (v, T ′′),
where T ′ � T ′′ � A1 ∪B1, and either

1. A1 ⊆ T ′′ or
2. B1 ⊆ T ′′, but not both.

The number of vectors of type 1 is zero (if B1 ⊆ T ′) or 2|B1\T ′| − 2 (otherwise).
The number of vectors of type 2 is zero (if A1 ⊆ T ′) or 2|A1\T ′| − 2 (otherwise). The
total number of such vectors is the sum of these two numbers, which is even.

Case 2. Now let us assume r > 1 and v /∈ ⋃rj=1 (Aj ∪Bj). Let P ′v denote the

COMPACT REPRESENTATIONS OF CUTS 61

k-pair problems (v, T) in Pv such that p′ (Aj , Bj)
r
j=1 has a 1 in position T . We again

must show that sum(p′(P ′v)) = p′ (Aj , Bj)
r
j=1. As above, sum(p′(P ′v)) has a 1 in

every position in which p′ (Aj , Bj)
r
j=1 has a 1. Also, as above, sum(p′(P ′v)) has a 0

in position v. If we let (v, T) denote an arbitrary problem in P ′v, then it remains to
show that the positions in p′ (v, T) that are 1 and do not correspond to T or v occur
in an even number of vectors in p′(P ′v). Such positions correspond to subsets of the
form {v, T ′}, where T ′ is a proper subset of T . Each set T ′ can be expressed as the
union of one set for each j of the form T ′′j = T ′∩ (Aj ∪Bj). Using the same reasoning
as in Case 1, the number of sets of type T ′′j can be expressed as aj + bj , where aj =

zero or 2|Bj\T ′| − 2, and bj = zero or 2|Aj\T ′| − 2.
Hence, the number of vectors in p′(P ′v) with a 1 in a position {v, T ′} is

r∏
j=1

(aj + bj) ,

which is even.
Case 3. Next let us assume r = 1 and v ∈ A1 ∪B1. We may additionally assume

that v ∈ A1 and |A1| > 1. Let P ′v denote the k-pair problems (v, T) in Pv such that
p′ (A1, B1) has a 1 in position T . (Note that the sets T we consider here are different
from the sets T considered in Case 1 in that there is one member of A1 ∪ B1 they
never contain, namely v.) Let sum(p′(P ′v)) denote the sum of the vectors in p′(P ′v).
We show that sum(p′(P ′v)) = p′ (A1, B1). Let (v, T) denote an arbitrary problem in
P ′v. As we noted above in constructing the identity matrix, p′ (v, T) is the only vector
in p′(P ′v) that has a 1 in position T . Thus sum(p′(P ′v)) has a 1 in every position in
which p′ (A1, B1) has a 1 with an index T that does not contain v, that is, for all
indices T such that B1 ⊆ T and v /∈ T .

Let us consider the remaining indices of p′ (A1, B1) that have value 1. These
indices T ′ must satisfy B1 ⊆ T ′ and v ∈ T ′, or they must satisfy A1 ⊆ T ′. The number
of problems (v, T) that have a 1 in an index that satisfies the first condition is 2|A1\v|−
1, and the number that satisfies the second condition is 1 (just (v,A1 ∪B1\v)). Both
of these numbers are odd, as required.

Finally, we must show that the positions in p′ (v, T) that are 1 and do not cor-
respond to a 1 in p′ (A1, B1) occur in an even number of vectors in p′(P ′v). Such
positions correspond to subsets of the form {v, T ′}, where T ′ � T and B1 � T ′. Each
such position has value 1 in 2|A1\v\T | vectors in p′(P ′v), which is even.

Case 4. Next let us assume r > 1 and v ∈ A1 ∪B1. We may additionally assume
that v ∈ A1. The argument for this case is similar to the argument for Case 2. We
leave it to the reader.

Proof of Theorem 5.5. The theorem follows from Theorem 5.7 and Propositions
3.3, 5.9, and 5.10.

Proof of Theorem 5.4. By Proposition 5.10, a CR matrix has s rows. From
the definition, it is not difficult to see that each row contains at most 2k 1’s. (The
maximum occurs when the k edges that define the problem are pairwise nonadjacent.)

Also, by definition, a CR matrix has
∑k
m=1

(
n
m

)
columns to which we can assign names.

Thus a CR matrix can be stored in s2k space by replacing each row with a list of the
names of the at most 2k columns that contain 1’s.

6. Construction of compact representations. Our objective in this section
is to present an algorithm for constructing the compact representation matrices we

62 DAVID HARTVIGSEN

have described for the two cut problems. This algorithm generalizes Gomory and
Hu’s result 3 (given in section 1.1).

Our algorithm takes as input a representation matrix. The weights of the rows are
initially unknown but can be found by solving the corresponding cut problem. Hence
an important component of the complexity of the algorithm is how many problems
have to be solved. Our algorithm is closely based on the one presented by Hassin
[16], which constructs maximum solution bases (defined in section 2). However, our
algorithm achieves a better complexity. In particular, our algorithm requires solving
a smaller number of problems: the number of rows in a maximum solution base (or a
CR matrix). Hassin’s algorithm requires solving twice this number of problems. As
we have seen, this number is polynomial for our examples, for fixed k.

With Hassin’s algorithm, the complexity of the work in addition to solving the cut
problems is exponential (since the algorithm utilizes the matrix A; see section 2). With
our algorithm this additional work is polynomial (for fixed k) for our cut problems.
This could be significant for an implementation of this algorithm. In particular, if a
cut problem can be solved in polynomial time, then the entire compact representation
can be constructed in polynomial time with our algorithm. An interesting example
is the k-terminal cut problem on planar graphs for which there exists a polynomial
time algorithm for fixed k (see [7]).

Finally, Hassin’s algorithm requires that all solutions have different weights. Our
algorithm does not require this assumption.

As in section 2, let us assume we have a finite set of problems, say, P , and a
finite set of solutions, say, S. Each solution has a distinct real weight and we have a
problem-solution incidence matrix A. Let M be a representation matrix for A. The
weight of a problem equals the minimum weight of a solution that is feasible for that
problem; hence each row of A and M has a weight corresponding to the problem. (As
we noted, however, these row weights are unknown at the start of the algorithm.)

A matrix consisting of the rows in a maximum weight base of M is called a CR
matrix for the solutions S. (Note that, in general, this matrix can have any number
of columns and hence may not actually be “compact.” It is compact, however, for the
two cut problems studied in this paper.)

Next we present our algorithm. This algorithm is based on Algorithms 3.3 and
3.4 in Hassin [16]. One difference between our algorithm and Hassin’s is that we
do not explicitly construct a minimal cover (i.e., a set of solutions that contains a
feasible solution for every problem), which partly accounts for the extra factor of 2
in the complexity of Hassin’s algorithm. Another difference between the algorithms
is that we input a representation matrix for A, instead of A itself. This can improve
the complexity when the representation matrix is smaller than A. We also express
the complexity of our algorithm in terms of elementary operations rather than solely
in terms of the number of problems that are solved (as Hassin did).

Algorithm. Compact representation.

Input. A representation matrix M for problems P and solutions S; and weights w
for the solutions.

Output. A set of rows P ′ ⊆ P of M that is a CR matrix and the set S′ ⊆ S of min
weight solutions.

Step 0. Set S′ := ∅; P ′ := ∅.
Step 1. Set P ∗ := {p ∈ P : rows P ′ ∪ {p} of M are independent}. If P ∗ = ∅, output

P ′ and S′; done.

COMPACT REPRESENTATIONS OF CUTS 63

Step 2. For each p ∈ P ∗: If there exists a feasible solution in S′ for p, then set

w(p) = min {w(s) : s ∈ S′and s is feasible for p} ;
otherwise, set w(p) := +∞.

Step 3. Let p∗ ∈ P ∗ achieve max {w(p) : p ∈ P ∗}. Set P ′ := P ′ ∪ {p∗}.
Step 4. Find a min weight solution s∗ for p∗. If w(s∗) < w(p∗), set S′ := S′ ∪ {s∗}.

Go to Step 1.
End.

In order to prove the validity of the algorithm, we make use of the following
procedure and two propositions. It seems most natural to prove these results by
referring to some elementary results in matroid theory. For background the reader is
referred to [1] and [31].

Procedure. Generalized greedy.
Input. A matrix M with row weights; an independent set B′ of rows of M .
Step 1. Set X := ∅ and put the set of rows of M\B′ into nonincreasing order by

weight (break ties arbitrarily).
Step 2. Consider, in order, each row x of the rows of M\B′ and do the following: If

B′ ∪X ∪ {x} is independent, set X := X ∪ {x}.
End.

Proposition 6.1. Let B′ be contained in a maximum weight base of the rows
of a matrix M with row weights, and let X be the output of the generalized greedy
procedure. Then B′ ∪X is a maximum weight base of the rows of M .

Proof. Let N denote the matroid on the rows of M whose independent sets
are the independent sets of rows of M . Consider the following collection of sets:
{Y ⊆ {the rows of M\B′} : B′ ∪ Y is independent}. This collection of sets is known
to form a matroid, say, N ′, on M\B′ (i.e., the matroid obtained from N by “con-
tracting” the elements of B′). Then the generalized greedy procedure is simply the
well-known greedy algorithm on N ′ and hence finds a maximum weight base X of
the matroid N ′. The proposition claims that B′ ∪X is a maximum weight base for
N . Clearly B′ ∪X is a base for N . To see that it has maximum weight, let B be a
maximum weight base for N that contains B′. Suppose the weight of B exceeds the
weight of B′ ∪X. Then the weight of B\B′ must exceed the weight of X. But B\B′
is an independent set in N ′ and this contradicts our choice of X.

Proposition 6.2. Let M be a representation matrix for a collection of problems
and solutions. Let the rows of M have weights that derive from the minimum weight
solutions to the corresponding problems. Consider the equivalence classes of rows
defined as follows: two rows are in the same class if and only if they have the same
weight. Let B′ be contained in a maximum weight base of the rows of M and suppose
that B′ contains no row in some class, say, C. Then, for every c ∈ C, B′ ∪ {c} is
contained in a maximum weight base.

Proof. Let B be a maximum weight base that contains B′ and suppose c ∈ C, but
c /∈ B. Let D be the unique circuit formed by adding c to B. By Theorem 3.2 there
exists an element of D\c that has the same weight as c, say, d. From basic matroid
theory, B\c ∪ d is also a base and, by our choice of d, it has the same weight as B.
The result follows.

Theorem 6.3. The compact representation algorithm works.
Proof. Let us begin with an observation: If we change or perturb some of the

weights of the solutions S by a very small amount and then find a maximum weight
base of M , then this base will also have maximum weight under the original weights.
Our first objective is to perturb these weights in a special way.

64 DAVID HARTVIGSEN

Let us partition the solutions S into equivalence classes so that two solutions are
in the same class if and only if they have the same weight. Apply the algorithm.
Whenever a solution s∗ is added to S′ in Step 4, do the following: Add a very small
number ε to the weight of all solutions, except s∗, in the equivalence class that contains
s∗. Thus this class is split into two classes, one of which contains only s∗.

Next consider a second application of the algorithm, but using the new solution
weights. Note that in this application we can choose the same sequence of problems p∗

in Step 3 and, due to our choice of weights, the solutions s∗ that we find in Step 4 are
unique; so let us assume that we do this. Now we show that the algorithm constructs
a maximum weight base under the new weights, and hence, by our observation above,
a maximum weight base under the original weights.

Let us assume, inductively, that we are entering Step 1 with a set of rows P ′

that is contained in a maximum weight base of M . It suffices to show that in Step 3,
P ′ ∪ p∗ is contained in a maximum weight base of M . To see this, observe that two
things can happen in Step 4: either w(s∗) < w(p∗) or w(s∗) = w(p∗). If we find that
w(s∗) < w(p∗), then s∗ /∈ S′; furthermore, since this min weight solution is unique,
P ′ contains no problem in the equivalence class of p∗ and Proposition 6.2 tells us that
P ′ ∪ p∗ is contained in a maximum weight base of M . We then add a new solution
to the set S′ in Step 4. Suppose we find that w(s∗) = w(p∗). Observe that in all
subsequent passes through Step 2, the value of w for any problem cannot increase.
Thus p∗ must be a maximum weight row in M that can be added to P ′ to form an
independent set. Proposition 6.1 tells us that P ′ ∪ p∗ is contained in a maximum
weight base of M .

In order to analyze the complexity of the algorithm, let us assume we have an
oracle C that tells us if a particular solution is feasible for a particular problem. Let
us say its worst case complexity is C∗. Let us also assume we have an oracle R that
produces the minimum weight solution for any problem. Let R∗ denote the worst
case complexity of R. Let d denote the number of columns of M .

Theorem 6.4. The worst case time complexity of the compact representation
algorithm is O (rank(M) {|P | rank(M)d + |P |C∗ + R∗}).

Proof. The algorithm repeats Steps 1–4 a number of times equal to the final size of
|P ′|, which is rank(M). Consider a pass through Step 1. Assume we have performed
Gauss–Jordan elimination on the rows P ′. Then checking if the rows P ′ ∪ {p} are
independent takes O (rank(M)d) elementary operations. We must make O (|P |) such
checks; hence this step requires O (|P | rank(M)d) time (including the amount of time
to put the rows of P ′ back into Gauss–Jordan form in Step 3). Because S′ has at most
one solution added to it in each iteration, Step 2 requires only checking to see if the
newest addition to S′ is feasible for at most |P | problems. Hence this step requires
O(|P |C∗) time. Step 3 requires O(|P |) time, which is dominated by other steps. Step
4 requires R∗ time. The result follows.

Finally, we can see how the complexity of the compact representation algorithm
specializes to the two cut problems we have studied in this paper.

For the k-terminal cut problem we have the following values:

• rank(M) =
(
n−1
k−1

)
,

• |P | = (nk),
• d =

(
n
k−1

)
,

• C∗ = O(k) (if the problems and solutions are stored as subsets of V).

For the k-pair cut problem we have the following values:

• rank(M) =
∑min(k,n−1)
m=1

(
n−1
m

)
,

COMPACT REPRESENTATIONS OF CUTS 65

• |P | = O

(∑min(k,(n2))
m=1

((n2)
m

))
(note that not all problems are feasible),

• d =
∑k
m=1

(
n
m

)
,

• C∗ = O(k) (if the problems and solutions are stored as subsets of V).

Hence for both problems we solve rank(M) cut problems and the additional work
is polynomial for fixed k.

7. Open problems. In this section we present the following two open problems
for the k-terminal cut and k-pair cut problems considered in this paper.

1. What is the best complexity of actually finding a min-cut value from a com-
pact representation?

2. Can Gomory and Hu’s result on cut trees be generalized; that is, does there
exist a compact structure from which not only a min-cut value but also the
actual min-cut can be obtained in polynomial time?

Acknowledgment. The author would like to thank Refael Hassin for his helpful
comments on this paper.

REFERENCES

[1] R.E. Bixby, Matroids and operations research, in Advanced Techniques in the Practice of
Operations Research, H.S. Greenberg, F.H. Murphy, and S.H. Shaw, eds., North-Holland,
New York, 1982, pp. 333–458.

[2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows, Prentice-Hall, Englewood
Cliffs, NJ, 1993.

[3] C.K. Cheng and T.C. Hu, Maximum concurrent flows and minimum cuts, Algorithmica, 8
(1992), pp. 233–249.

[4] S. Chopra and M.R. Rao, On the multiway cut polyhedra, Networks, 21 (1991), pp. 51–89.
[5] H.P. Crowder and M.W. Padberg, Solving large-scale symmetric travelling salesman prob-

lems to optimality, Management Sci., 26 (1980), pp. 495–509.
[6] W.H. Cunningham, The optimal multiterminal cut problem, DIMACS Ser. Discrete Math.

Theoret. Comput. Sci., 5 (1991), pp. 105–120.
[7] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, and M. Yannakakis, The

complexity of multiterminal cuts, SIAM J. Comput., 23 (1994), pp. 864–894.
[8] M. Fiala, The minimum 3-cut problem: An application of polyhedral combinatorics, Honors

Project, Carleton University, 1986.
[9] O. Goldschmidt and D.S. Hochbaum, A polynomial algorithm for the k-cut problem for fixed

k, Math. Oper. Res., 19 (1994), pp. 24–37.
[10] R.E. Gomory and T.C. Hu, Multi-terminal network flows, J. Soc. Indust. Appl. Math., 9

(1961), pp. 551–570.
[11] F. Granot and R. Hassin, Multi-terminal maximum flows in node-capacitated networks, Dis-

crete Appl. Math., 13 (1986), pp. 157–163.
[12] D. Gusfield, Very simple methods for all pairs network flow analysis, SIAM J. Comput., 19

(1990), pp. 143–155.
[13] J. Hao and J.B. Orlin, A faster algorithm for finding a minimum cut in a graph, J. Algo-

rithms, 17 (1994), pp. 424–446.
[14] D. Hartvigsen, Minimum path bases, J. Algorithms, 15 (1993), pp. 125–142.
[15] D. Hartvigsen, Generalizing the all-pairs min cut problem, Discrete Math., 147 (1995),

pp. 151–169.
[16] R. Hassin, An algorithm for computing maximum solution bases, Oper. Res. Lett., 9 (1990),

pp. 315–318.
[17] R. Hassin, Multiterminal xcut problems, Ann. Oper. Res., 33 (1989), pp. 215–225.
[18] R. Hassin, Simultaneous solution of families of problems, in Algorithms, Lecture Notes in

Comput. Sci. 450, T. Asano, T. Ibarake, H. Imai, and T. Nishizeki, eds., Springer-Verlag,
Tokyo, 1990, pp. 288–299.

[19] R. Hassin, Solution bases of multiterminal cut problems, Math. Oper. Res., 13 (1988), pp.
535–542.

66 DAVID HARTVIGSEN

[20] X. He, An improved algorithm for the planar 3-cut problem, J. Algorithms, 12 (1991), pp.
23–37.

[21] D.S. Hochbaum and D.B. Shmoys, An O(|V |2) algorithm for the planar 3-cut problem, SIAM
J. Algebraic Discrete Methods, 6 (1985), pp. 707–712.

[22] D.S. Hochbaum and L. Tsai, A greedy algorithm for the 3-cut problem and its worst-case
bound, Tech. Rep. IP-318, University of California, Berkeley, 1983.

[23] T.C. Hu, Multicommodity network flows, Oper. Res., 11 (1963), pp. 344–360.
[24] H. Nagamochi and T. Ibaraki, Computing edge-connectivity in multigraphs and capacitated

graphs, SIAM J. Discrete Math., 5 (1992), pp. 54–66.
[25] M.W. Padberg and M. Grötschel, Polyhedral computations in the traveling salesman prob-

lem, in The Traveling Salesman Problem, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan,
and D.B. Shmoys, eds., John Wiley, Chichester, 1985, pp. 307–360.

[26] M.W. Padberg and G. Rinaldi, Optimization of a 532-city symmetric traveling salesman
problem, Oper. Res. Lett., 6 (1987), pp. 1–7.

[27] J.C. Picard and M. Queyranne, Selected applications of minimum cuts in networks, INFOR,
20 (1982), pp. 394–422.

[28] A. Schrijver, Min-max results in combinatorial optimization, in Mathematical Programming,
The State of the Art, A. Bachem, M. Grotschel, and B. Korte, eds., Springer-Verlag, Berlin,
1983, pp. 439–500.

[29] M. Stoer and F. Wagner, A simple min cut algorithm, J. ACM, 44 (1997), pp. 585–591.
[30] L. E. Trotter, On the generality of multi-terminal flow theory, Ann. Discrete Math., 1 (1977),

pp. 517–525.
[31] D.J.A. Welsh, Matroid Theory, Academic Press, London, 1976.

BETTER APPROXIMATION GUARANTEES FOR JOB-SHOP
SCHEDULING∗

LESLIE ANN GOLDBERG† , MIKE PATERSON† , ARAVIND SRINIVASAN‡ , AND
ELIZABETH SWEEDYK§

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 1, pp. 67–92

Abstract. Job-shop scheduling is a classical NP-hard problem. Shmoys, Stein, and Wein
presented the first polynomial-time approximation algorithm for this problem that has a good (poly-
logarithmic) approximation guarantee. We improve the approximation guarantee of their work and
present further improvements for some important NP-hard special cases of this problem (e.g., in the
preemptive case where machines can suspend work on operations and later resume). We also present
NC algorithms with improved approximation guarantees for some NP-hard special cases.

Key words. approximation, guarantees, job-shop, scheduling

AMS subject classifications. 68Q25, 68R05

PII. S0895480199326104

1. Introduction. Job-shop scheduling is a classical NP-hard minimization prob-
lem [10]. We improve the approximation guarantees for this problem and for some of
its important special cases, both in the sequential and parallel algorithmic domains;
the improvements are over the current best algorithms of Leighton, Maggs, and Rao
[11] and Shmoys, Stein, and Wein [21]. In job-shop scheduling, we have n jobs and m
machines. A job consists of a sequence of operations, each of which is to be processed
on a specific machine for a specified integral amount of time; a job can have more
than one operation on a given machine. The operations of a job must be processed
in the given sequence, and a machine can process at most one operation at any given

∗Received by the editors March 22, 1999; accepted for publication (in revised form) October
19, 2000; published electronically January 16, 2001. A preliminary version of this work appears in
Proceedings of the Eighth Annual ACM–SIAM Symposium on Discrete Algorithms, New Orleans,
LA, 1997, ACM, New York, pp. 599–608.

http://www.siam.org/journals/sidma/14-1/32610.html
†Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK (leslie@dcs.

warwick.ac.uk, msp@dcs.warwick.ac.uk). Part of the first author’s work was performed at Sandia
National Laboratories and was supported by the U.S. Department of Energy under contract DE-
AC04-76AL85000. The work of the first author was also supported by ESPRIT Project RAND-
II(21726) and by EPSRC grant GR/L60982. The work of the first and second authors was supported
by ESPRIT Project ALCOM-IT(20244) and by EU Fifth Framework Project ALCOM–FT(IST-1999-
14186).

‡Bell Laboratories, Lucent Technologies, 600-700 Mountain Avenue, Murray Hill, NJ 07974-0636
(srin@research.bell-labs.com). This work was done while this author was at (i) the National Univer-
sity of Singapore, supported in part by National University of Singapore Research Grants RP950662
and RP960620; (ii) Cornell University, Ithaca, NY, supported by an IBM Graduate Fellowship; (iii)
the School of Mathematics, Institute for Advanced Study, Princeton, NJ, supported by grant 93-6-6
of the Alfred P. Sloan Foundation to the Institute for Advanced Study; (iv) DIMACS (NSF Center
for Discrete Mathematics and Theoretical Computer Science), supported by NSF grant NSF-STC91-
19999 to DIMACS and by support to DIMACS from the New Jersey Commission on Science and
Technology; (v) the Sandia National Laboratories, New Mexico; (vi) the Department of Computer
Science, University of Warwick, Coventry, UK; and (vii) the Department of Computer Science, Uni-
versity of Melbourne, Victoria, Australia, sponsored by a “Travel Grants for Young Asian Scholars”
scheme of the University of Melbourne; this part of the work was done while this author was on
study leave.

§Department of Computer Science, Harvey Mudd College, Olin Science Center, 301 E. Twelfth
Street, Claremont, CA 91711-5980 (z@cs.hmc.edu). The research of this author was supported by an
NSF Research Training grant. Part of this research was done while this author was visiting Sandia
National Laboratories.

67

68 GOLDBERG, PATERSON, SRINIVASAN, AND SWEEDYK

time. The problem is to schedule the jobs so that the makespan, the time when all
jobs have been completed, is minimized. An important special case of this problem is
preemptive scheduling, wherein machines can suspend work on operations, switch to
other operations, and later resume the suspended operations (if this is not allowed,
we have the nonpreemptive scenario, which we take as the default); in such a case, all
operation lengths may be taken to be one. Even this special case with n = m = 3
is NP-hard, as long as the input is encoded concisely [16, 22]. We present further
improved approximation factors for preemptive scheduling and related special cases
of job-shop scheduling.

Formally, a job-shop scheduling instance consists of jobs J1, J2, . . . , Jn, machines
M1,M2, . . . ,Mm, and for each Jj , a sequence of µj operations (Mj,1, tj,1), (Mj,2, tj,2),
. . . , (Mj,µj , tj,µj). Each operation is a (machine, processing time) pair: each Mj,k

represents some machine Mi, and the pair (Mj,i, tj,i) signifies that the corresponding
operation of job Jj must be processed on machine Mj,i for an uninterrupted integral
amount of time tj,i. No machine can process more than one operation at a time; the
operations of each given job must be scheduled in the given order. (For each job Jj ,
the waiting time from the completion of an operation (Mj,i, tj,i) until the scheduling of
(Mj,i+1, tj,i+1) is allowed to be any nonnegative amount.) The problem that we focus
on throughout this paper is to come up with a schedule that has a small makespan
for general job-shop scheduling and for some of its important special cases.

1.1. Earlier work. As described earlier, even very restricted special cases of
job-shop scheduling are NP-hard. Furthermore, the problem seems quite intractable
in practice, even for relatively small instances. Call a job-shop instance acyclic if no
job has more than one operation that needs to run on any given machine. A single
instance of acyclic job-shop scheduling consisting of 10 jobs, 10 machines, and 100
operations resisted attempts at exact solution for 22 years, until its resolution by
Carlier and Pinson [6]. More such exact solutions for certain instances (with no more
than 20 jobs or machines) were computationally provided by Applegate and Cook,
who also left open the exact solution of certain acyclic problems, e.g., some with
15 jobs, 15 machines, and 225 operations [3]. The reader is referred to Martin and
Shmoys for a recent approach to computing optimal schedules for such problems [14].

Thus, efficient exact solution of all instances with, say, 30 jobs, 30 machines,
and 900 operations seems quite beyond our reach at this point; an obvious next
question is to look at efficient approximability. Define a ρ-approximation algorithm as
a polynomial-time algorithm that always outputs a feasible schedule with a makespan
of at most ρ times optimal; ρ is called the approximation guarantee. A negative
result is known: if there is a ρ-approximation algorithm for job-shop scheduling with
ρ < 5/4, then P = NP [23].

There are two simple lower bounds on the makespan of any feasible schedule:
Pmax, the maximum total processing time needed for any job, and Πmax, the maximum
total amount of time for which any machine has to process operations. Recall the
definition of acyclic job-shop scheduling given at the beginning of this subsection.
For the NP-hard special case of acyclic job-shop scheduling wherein all operations
have unit length, a breakthrough was achieved by Leighton, Maggs, and Rao in [11],
showing that a schedule of makespan O(Pmax + Πmax) always exists! (See sections 6.1
and 6.2 of Scheideler [17] for a shorter proof of this result.) Such a schedule can also
be computed in polynomial time [12]. Feige and Scheideler have presented many new
advances in acyclic job-shop scheduling [8].

What about upper bounds for general job-shop scheduling? It is not hard to

APPROXIMATION GUARANTEES FOR JOB-SHOP SCHEDULING 69

see that a simple greedy algorithm, which always schedules available operations on
machines, delivers a schedule of makespan at most PmaxΠmax; one would, however,
like to aim for much better. Let µ = maxj µj denote the maximum number of
operations per job, and let pmax be the maximum processing time of any operation.
By invoking ideas from [11, 19, 20] and by introducing some new techniques, good
approximation algorithms were developed in [21]. Their deterministic approximation
bounds were slightly improved in [18] to yield the following proposition. (To avoid
problems with small positive numbers, henceforth let log x denote log2 x if x ≥ 2 and
1 if x < 2; similarly, let log log x denote log2 log2 x if x ≥ 4 and 1 if x < 4.)

Proposition 1.1 (see [21, 18]). There is a deterministic polynomial-time algo-
rithm that delivers a schedule of makespan

O

(
(Pmax + Πmax) · log(mµ)

log log(mµ)
· log(min{mµ, pmax})

)

for general job-shop scheduling. If we replace m by n in this bound, then such a
schedule can also be computed in RNC.

This is a ρ-approximation algorithm with

ρ = O(log(mµ) log(min{mµ, pmax})/ log log(mµ)).

See [21, 9] for further results on approximating some special cases of shop scheduling
that are not discussed here. See [15] for definitions of the complexity classes NC and
RNC.

1.2. Our results. Our first result improves Proposition 1.1 by a doubly loga-
rithmic factor and provides further improvements for important special cases.

Theorem 1.2. There are the following deterministic algorithms for general job-
shop scheduling, delivering schedules of makespan O((Pmax + Πmax) · ρ) :

(a) a polynomial-time algorithm, with

ρ =
log(mµ)

log log(mµ)
·
⌈

log(min{mµ, pmax})
log log(mµ)

⌉
,

and if we replace m by n in this bound, then such a schedule can also be
computed in NC;

(b) a polynomial-time algorithm with

ρ =
log m

log log m
· log(min{mµ, pmax}); and

(c) an NC algorithm with

ρ =
log m

log log m
· log(min{nµ, pmax}).

Thus, part (a) improves on the previous approximation bound by a doubly loga-
rithmic factor. The impact of parts (b) and (c) is best seen for preemptive scheduling,
wherein pmax = 1, and for the related situations where pmax is “small”. Our moti-
vation for focusing on these cases is twofold. First, preemptability is known to be a
powerful primitive in various scheduling models; see, e.g., [4]. Second, the result of
Leighton, Maggs, and Rao shows that preemptability is powerful for acyclic job-shops

70 GOLDBERG, PATERSON, SRINIVASAN, AND SWEEDYK

(in the sense that there is a schedule of makespan O(Pmax + Πmax) in the preemp-
tive case). Recall that job-shop scheduling is NP-hard even when n = m = 3 and
pmax = 1. Parts (b) and (c) of Theorem 1.2 show that, as long as the number of
machines is small or fixed, we get very good approximations. (It is trivial to get an
approximation factor of m: our approximation ratio is O(log m/ log log m) if pmax
is fixed.) Note that for the case in which pmax is small, part (c) is both a deran-
domization and an improvement of the previous best parallel algorithm for job-shop
scheduling (see Proposition 1.1).

We further explore the issue of when good approximations are possible, once again
with a view to generalizing the result of Leighton, Maggs, and Rao [11]; this is done
by the somewhat technical Theorem 1.3. In the statement of the theorem, “with
high probability” means “with probability at least 1 − ε, for a positive constant ε.”
The failure probability ε can be made arbitrarily small (exponentially small in the
size of the problem instance) by repeating the algorithm many times. Theorem 1.3
shows that (a) if no job requires too much of any given machine for processing, or
(b) if repeated uses of the same machine by a given job are well-separated in time,
then good approximations are possible. Say that a job-shop instance is w-separated
if every distinct pair ((Mj,�, tj,�), (Mj,r, tj,r)) of operations of the same job with the
same machine (i.e., every pair such that Mj,� = Mj,r) has |�− r| ≥ w.

Theorem 1.3. There is a randomized polynomial-time algorithm for job-shop
scheduling that, with high probability, delivers a schedule of makespan O((Pmax +
Πmax) · ρ), where

(a) if every job needs at most u time units on each machine, then

ρ =
log u

log log u
·
⌈

log(min{mµ, pmax})
log log u

⌉
;

(b) if the job-shop instance is w-separated and pmax = 1, then

ρ = 1 if w ≥ log(Pmax + Πmax)/2;

ρ =
log(Pmax + Πmax)

w log(log(Pmax + Πmax)/w)
otherwise.

Part (a) of Theorem 1.3 shows quantitatively the advantages of having multiple
copies of each machine; in such a case, we can try to spread out the operations of a
job somewhat equitably to the various copies. Part (b) of Theorem 1.3 shows that if
we have some (limited) flexibility in rearranging the operation sequence of a job, then
it may pay to spread out multiple usages of the same machine.

1.3. Main contributions. Most of our results rely on probabilistic ideas; in
particular, we exploit a “random delays” technique due to [11]. We make four contri-
butions, which we first sketch in general terms. The rough idea behind the “random
delays” technique is as follows. We give each job a delay chosen randomly from a suit-
able range and independently of the other jobs, and we imagine each job waiting out
this delay and then running without interruption; next we argue that, with high prob-
ability, not too many jobs contend for any given machine at the same time [11, 21]. We
then resolve contentions by “expanding” the above “schedule”; the “low contention”
property is invoked to argue that a small amount of such expansion suffices. The ap-
proach of [21] to this “expansion” problem is as follows. First, they present an upper
bound on the maximum amount of contention on any machine at any step, which is
shown to hold with high probability. Suppose we are given such a schedule, in which

APPROXIMATION GUARANTEES FOR JOB-SHOP SCHEDULING 71

at most s operations contend for any machine at any time. If all operations are of the
same length, this can be converted into a valid schedule by an s-fold expansion of each
time step. However, the operation lengths may be disparate. But we may round all
operation lengths up to the nearest power of 2; thus, there will be only O(log pmax)
operation lengths. The approach of [21] is then to carefully decompose the sched-
ule into certain intervals such that within each interval, all operation lengths are the
same. These, along with some other ideas, constitute the “expansion” approach of
[21].

Our first contribution is a better combinatorial solution to the above expansion
problem, which leads to a smaller expansion than that of [21]. In particular, we do not
handle different operation lengths separately, but we show a way of combining them.
The second contribution shows that a relaxed notion of “low contention” suffices:
we do not require that the contention on machines be low at each time step. The
first contribution helps to prove Theorem 1.2(a); parts (b) and (c) of Theorem 1.2
make use of the second contribution. We derandomize the sequential formulations
using a technique of [2] and then parallelize. A simple but crucial ingredient of
Theorem 1.2 is a new way to structure the operations of jobs in an initial (infeasible)
schedule; we call this well-structuredness and present it in section 2. This notion is
our third contribution. Finally, Theorem 1.3 comes about by introducing random
delays and by using the Lovász local lemma (LLL) [7]. Although this is also done in
[11], our improvements arise from a study of the correlations involved and by using
Theorem 1.2(a). This study of correlations is our fourth contribution. The rest of this
paper is organized as follows. Section 2 sets up some preliminary notions, section 3
presents the proof of Theorem 1.2, and Theorem 1.3 is proved in section 4.

2. Preliminaries. For any nonnegative integer k, we let [k] denote the set
{1, 2, . . . , k}. The base of the natural logarithm is denoted by e as usual and, for
convenience, we may use exp(x) to denote ex.

As in [21], we assume throughout that all operation lengths are powers of 2. This
can be achieved by multiplying each operation length by at most 2. This assumption
on operation lengths will only affect our approximation factor and running time by
a constant factor. Thus, Pmax, Πmax, and pmax should be replaced by some P ′max ≤
2Pmax, Π′max ≤ 2Πmax, and p′max ≤ 2pmax, respectively, in what follows. To retain
simplicity we have avoided using such new notation.

2.1. Reductions. It is shown in [21] that, in deterministic polynomial time, we
can reduce the general shop-scheduling problem to the case (i) where pmax ≤ nµ, and
(ii) where n ≤ poly(m,µ), while incurring an additive O(Pmax + Πmax) term in the
makespan of the schedule produced. The reduction (i) also works in NC. (Of the two
reductions, (ii) is more involved; it uses, e.g., an algorithm due to [20].)

Thus, for our sequential algorithms we assume that n ≤ poly(m,µ) and that
pmax ≤ poly(m,µ); while for our NC algorithms we assume only that pmax ≤ nµ.

2.2. Bounds. We use the following Chernoff–Hoeffding bounds on the expecta-
tion and tails of distributions (see [15]).

Fact 2.1. Let X1, X2, . . . , X� ∈ [0, 1] be independent random variables with

X
.
=
∑
iXi. Then for any δ > 0, E[(1 + δ)

X
] ≤ eδE[X].

We define G(µ, δ)
.
= (eδ/(1+ δ)1+δ)µ. Using Markov’s inequality and Fact 2.1, we

obtain the following bound on the tail of the binomial distribution.
Fact 2.2. Let X1, X2, . . . , X� ∈ [0, 1] be independent random variables with

X
.
=
∑
iXi and E[X] = µ. Then for any δ > 0, Pr[X ≥ µ(1 + δ)] ≤ G(µ, δ).

72 GOLDBERG, PATERSON, SRINIVASAN, AND SWEEDYK

2.3. Random delays. Our algorithms use random initial delays which were
developed in [11] and used in [21]. A B-delayed schedule of a job-shop instance is
constructed as follows. Each job Jj is assigned a delay dj in {0, 1, . . . , B − 1}. In the
resulting B-delayed schedule, the operations of Jj are scheduled consecutively, starting
at time dj . A random B-delayed schedule is a B-delayed schedule in which the delays
have been chosen independently and uniformly at random from {0, 1, . . . , B−1}. Our
algorithms schedule a job-shop instance by choosing a random B-delayed schedule
for some suitable B and then expanding this schedule to resolve conflicts between
operations that use the same machine at the same time.

For a B-delayed schedule S, the contention, C(Mi, t), is the number of operations
scheduled on machine Mi in the time interval [t, t+1). (Recall that operation lengths
are integral.) For any job Jj , define the random variable Xi,j,t to be 1 if some operation
of Jj is scheduled on Mi in the time interval [t, t + 1) by S, and 0 otherwise. Since
no two operations of Jj contend for Mi simultaneously, C(Mi, t) =

∑
j Xi,j,t. If the

delays are chosen uniformly at random and B ≥ Πmax, then E[Xi,j,t] is at most the
total processing time of Jj on Mi divided by Πmax. Thus, E[C(Mi, t)] =

∑
j E[Xi,j,t] ≤

Πmax/Πmax = 1. We also note that the random variables {Xi,j,t | j ∈ [n]} are mutually
independent for any given i and t. We record all of this as follows.

Fact 2.3. If B ≥ Πmax and S is a random B-delayed schedule, then for any
machine Mi and any time t, C(Mi, t) =

∑
j Xi,j,t, where the 0-1 random variables

{Xi,j,t | j ∈ [n]} are mutually independent. Also, E[C(Mi, t)] ≤ 1.

2.4. Well-structuredness. Recall that all operation lengths are assumed to be
powers of 2. We say that a delayed schedule S is well-structured if for each k, all
operations with length 2k begin in S at a time instant that is an integral multiple
of 2k. We shall use the following simple way of constructing such schedules from
randomly delayed schedules. First, create a new job-shop instance by replacing each
operation (Mj,�, tj,�) by the operation (Mj,�, 2·tj,�). Suppose S is a random B-delayed
schedule for this modified instance for some B; we will call S a padded random B-
delayed schedule. From S, we can construct a well-structured delayed schedule, S ′,
for the original job-shop instance: simply insert (Mj,l, tj,l) with the correct boundary
in the slot assigned to (Mj,l, 2 · tj,l) by S. S′ will be called a well-structured random
B-delayed schedule for the original job-shop instance.

3. Proof of Theorem 1.2. In this section we prove Theorem 1.2. In section 3.1
we give a randomized polynomial-time algorithm that proves part (b) of the theorem.
In section 3.2 we improve the algorithm to prove part (a). Finally we discuss the
derandomization and parallelization of these algorithms in section 3.3. Throughout,
we shall assume upper bounds on n and pmax as described in section 2.1; this explains
terms such as log(min{mµ, pmax}) in the bounds of Theorem 1.2. Given a delayed
schedule S, define C(t)

.
= maxi C(Mi, t).

Lemma 3.1. There is a randomized polynomial-time algorithm that takes a job-
shop instance and produces a well-structured delayed schedule which has a makespan
L ≤ 2(Pmax + Πmax). With high probability, this schedule satisfies

(a) ∀i ∈ [m] ∀t ∈ {0, 1, . . . , L− 1}, C(Mi, t) ≤ α, and

(b)
∑L−1
t=0 C(t) ≤ β(Pmax + Πmax),

where α = c1 log(mµ)/ log log(mµ) and β = c2 log m/ log log m, for sufficiently large
constants c1, c2 > 0.

Proof. Recall that all operation lengths are assumed to be powers of 2. Let
B = 2Πmax, and let S be a padded random B-delayed schedule of the new instance,

APPROXIMATION GUARANTEES FOR JOB-SHOP SCHEDULING 73

as described in section 2.4. S has a makespan of at most 2(Pmax + Πmax). Let S ′ be
the well-structured random B-delayed schedule for the original instance that can be
constructed from S, as described in section 2.4. The contention on any machine at
any time under S ′ is clearly no more than under S. Thus in order to show that S ′
satisfies (a) and (b) with high probability, it suffices to show that S has this property.
We will prove this now.

Part (a). The following proof is based on that of [21]. Fix any positive integer k
and any Mi. For any set U = {u1, u2, . . . , uk} of k units of processing that need to be
done on Mi, let Collide(U) be the event that in S all these k units get scheduled at

the same unit of time on Mi. It is not hard to see that Pr[Collide(U)] ≤ (1/B)
k−1

.

(If u1, . . . , uk are from different jobs, then Pr[Collide(U)] ≤ (1/B)
k−1

. Otherwise,
Pr[Collide(U)] = 0.) Recall that B = 2Πmax. Since there are at most

(
2Πmax

k

)
ways of

choosing U , we get

Pr[∃t : C(Mi, t) ≥ k] = Pr[∃U : Collide(U)] ≤
(

2Πmax

k

)
(1/(2Πmax))k−1,

and so Pr[∃t : C(Mi, t) ≥ k] ≤ 2Πmax/k!. Thus,

Pr[∃t ∃i : C(Mi, t) ≥ k] ≤ 2mΠmax/k!.

But Πmax ≤ nµpmax, which by our assumptions in section 2.1 is poly(m,µ). Since
�α! > (mµ)c1/2 for sufficiently large m or µ, we can satisfy (a) with high probability
if we choose c1 sufficiently large.

Part (b). Let γ = βε/2, where ε is the desired constant in the probability bound.
Let the constant c2 in the definition of β be sufficiently large so that γ > 1. Fix any
Mi and t, and let λ = E[C(Mi, t)]. (By Fact 2.3, λ ≤ 1.) By Fact 2.1, with 1 + δ = γ,

E[γC(Mi,t)] ≤ e(γ−1)λ ≤ e(γ−1).

Hence, for any given t,

E[γC(t)] = E[γmaxi∈[m] C(Mi,t)] ≤ E

∑
i∈[m]

γC(Mi,t)

 =

∑
i∈[m]

E[γC(Mi,t)](3.1)

≤ meγ−1.

Since the function x �→ γx is convex, by Jensen’s inequality we get that E[γC(t)] ≥
γE[C(t)]. If we choose c2 sufficiently large, then γγ ≥ meγ−1. Combining these
observations with bound (3.1), we get E[C(t)] ≤ γ. By linearity of expectation,
E[
∑
t C(t)] ≤ 2γ(Pmax + Πmax) and finally, by Markov’s inequality, we have

Pr

[∑
t

C(t) > β(Pmax + Πmax)

]
≤ 2γ/β = ε.

3.1. Proof of Theorem 1.2(b). Recall that our goal is a polynomial-time
algorithm which delivers a schedule with makespan O((Pmax + Πmax) · logm

log logm ·
log(min{mµ, pmax})). Assume S is a delayed schedule satisfying the conditions of
Lemma 3.1 with makespan L = O(Pmax+Πmax). We begin by partitioning the sched-
ule into frames, i.e., time intervals {[ipmax, (i + 1)pmax), i = 0, 1, . . . , �L/pmax − 1}.

74 GOLDBERG, PATERSON, SRINIVASAN, AND SWEEDYK

Job 1:

A (M1)

Job 2:

B (M1) C (M2) D (M3)

Job 3:

E (M3) F (M4)

Job 4:

G (M4) H (M1) I (M2)

Job 5:

J (M2) K (M2)

Fig. 1. One frame of S, where pmax = 8, A–K are the labels of operations, and M1–M4 are
the machines.

�
A

� B, J �F

� �E � C, K �D

� � � �G �H �I � �

✜
✜

✜
✜

✜
✜✜

✡
✡

✡
✡

❏
❏

❏
❏

✡
✡

✡
✡

❏
❏

❏
❏

✂
✂

✂
✂

❇
❇
❇
❇

✂
✂

✂
✂

❇
❇
❇
❇

✂
✂

✂
✂

❇
❇
❇
❇

✂
✂

✂
✂

❇
❇
❇
❇

Fig. 2. Assigning operations to nodes of T . For example, if u denotes the leftmost node on the
second-highest level, then S1(u) = {B}, S5(u) = {J}, and S�(u) = ∅ for every other
.

By the definition of pmax and the fact that S is well structured, no operation straddles
a frame. For example, see Figure 1.

We construct a feasible schedule for the operations performed under schedule S for
each frame. Concatenating these schedules yields a feasible schedule for the original
problem. We give the frame-scheduling algorithm where, without loss of generality,
we assume that its input is the first frame.

Let T be a rooted complete binary tree with pmax leaves. For every node u of T ,
let l(u) and r(u) be the labels, respectively, of the leftmost and rightmost leaves
of the subtree rooted at u. We shall associate the operations scheduled during the
frame with the nodes of T in a natural way. For i = 1, . . . ,m we define Si(u) to
be those operations that are scheduled on Mi by S for precisely the time interval
[l(u), r(u) + 1); each operation scheduled by S in the first frame is in exactly one
Si(u). For example, see Figure 2. Let p(u) = (r(u)− l(u) + 1) ·maxi ||Si(u)||, where
||Si(u)|| denotes the cardinality of Si(u). p(u) is the amount of time needed to perform
the operations associated with u. For example, see Figure 3. Let the nodes of T be
numbered as u1, u2, . . . in the preorder traversal of T . Define f(u1) = 0 and for
j ≥ 2, let f(uj) =

∑
k<j p(uk). For example, see Figure 4. The algorithm simply

APPROXIMATION GUARANTEES FOR JOB-SHOP SCHEDULING 75

�
8

�4 �4

� �2 � 4 �2

� � � �

1
�

1
�

1
� �

✜
✜

✜
✜

✜
✜✜

✡
✡

✡
✡

❏
❏

❏
❏

✡
✡

✡
✡

❏
❏

❏
❏

✂
✂

✂
✂

❇
❇
❇
❇

✂
✂

✂
✂

❇
❇
❇
❇

✂
✂

✂
✂

❇
❇
❇
❇

✂
✂

✂
✂

❇
❇
❇
❇

Fig. 3. Calculating p for each node.

� u1, 0

� u2, 8 � u9, 15

� u3, 12 � u6, 12 � u10, 19 � u13, 25

� u4, 12 � u5, 12 � u7, 14 � u8, 14 � u11, 23 � u12, 24 � u14, 27 � u15, 27

✚
✚

✚
✚

✚
✚

✚
✚✚

✡
✡

✡
✡

✡
✡✡

❏
❏

❏
❏

❏
❏❏

✡
✡

✡
✡

✡
✡✡

❏
❏

❏
❏

❏
❏❏

✂
✂

✂
✂

✂
✂✂

❇
❇
❇
❇
❇
❇❇

✂
✂

✂
✂

✂
✂✂

❇
❇
❇
❇
❇
❇❇

✂
✂

✂
✂

✂
✂✂

❇
❇
❇
❇
❇
❇❇

✂
✂

✂
✂

✂
✂✂

❇
❇
❇
❇
❇
❇❇

Fig. 4. Calculating f for each node.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Job 1:

A
M1

Job 2:

B
M1

C
M2

D
M3

Job 3:

E
M3

F
M4

Job 4:

G
M4

H
M1

I
M2

Job 5:

J
M2

K
M2

Fig. 5. The schedule S′.

76 GOLDBERG, PATERSON, SRINIVASAN, AND SWEEDYK

schedules the operations in Si(u) on machine Mi consecutively beginning at time
f(u) + 1 and concluding by the end of timestep f(u) + p(u). Let S ′ be the resulting
schedule. For example, see Figure 5. Note that our algorithm does not necessarily
give the same schedule as the algorithm of Shmoys, Stein, and Wein. For instance, our
algorithm produces a different schedule than the one that their algorithm produces
on the example given in [21]. Part (b) of Theorem 1.2 follows from both Lemma 3.1
and the following lemma.

Lemma 3.2. S ′ is feasible and has makespan at most
∑
u∈T p(u), which is at

most (1 + log2 pmax) ·∑pmax−1
j=0 C(j), where C(t) is the maximum contention at time

t under schedule S.
Proof. By construction, no machine performs more than one operation at a time.

Suppose O1 and O2 are distinct operations of job J scheduled in the first frame.
Assume O1 ∈ Si(u) and O2 ∈ Sj(v), where possibly i = j. Assume O1 concludes
before O2 begins under S; thus u and v are roots of disjoint subtrees of T and u
precedes v in the preorder traversal of T . Thus, O1 concludes before O2 begins in S ′
and the new schedule is feasible.

Clearly the makespan of S ′ is at most
∑
u∈T p(u). Fix a node u at some height

k in T . (We take leaves to have height 0.) Then p(u) = 2kmaxi ||Si(u)||. Since the
maximum number of jobs scheduled at any time t on any machine under S is C(t),
we get that ∀t ∈ [l(u), . . . , r(u)], maxi ||Si(u)|| ≤ C(t). Thus,

p(u) ≤ 2kmax
i
||Si(u)|| ≤

∑
t∈[l(u),...,r(u)]

C(t).

Since each leaf of T has (1 + log2 pmax) ancestors, the makespan of S ′ is at most

∑
u∈T

p(u) ≤
∑
u∈T

∑
t∈[l(u),...,r(u)]

C(t) = (1 + log2 pmax) ·
pmax−1∑
t=0

C(t).

3.2. Proof of Theorem 1.2(a). Recall that our goal is a polynomial-time

algorithm which delivers a schedule with makespan O((Pmax + Πmax) · log(mµ)
log log(mµ) ·

� log(min{mµ,pmax})
log log(mµ)). We give a slightly different frame-scheduling algorithm and show

that the feasible schedule for each frame has makespan O(pmaxα �log(pmax)/ log α),
where α = c1 log(mµ)/ log log(mµ) as in Lemma 3.1. Without loss of generality, we
assume that α is a power of 2 (by increasing it if necessary). Thus, under the assump-
tions from section 2.1, the final schedule satisfies the bounds of Theorem 1.2(a).

The difficulty with the algorithm given in section 3.1 is that the operations may
be badly distributed to the nodes of T by S, which would make S ′ inefficient. To
clarify, consider the example given in Figures 1–5. In this case, node u10 is assigned
operations C and K and node u11 is assigned operation H. The algorithm schedules
operations C and K before operation H. However, since H is on a different machine
from C and K, it could have been scheduled to overlap C or K. In this section,
we show how to overcome this problem by “pushing down” operations C and K to
nodes u11 and u12.

The algorithm that we describe here starts with the allocation of operations to
nodes of T that is defined in section 3.1. That is, Si(u) is taken to be the set of
operations that are scheduled on Mi by S for time interval [l(u), r(u) + 1). The
algorithm then chops T into disjoint subtrees in a manner described below. For each
subtree, it redistributes the operations that are allocated to the nodes of the subtree

APPROXIMATION GUARANTEES FOR JOB-SHOP SCHEDULING 77

by “pushing” some operations from parents to children (in a manner which will be
described shortly). After the redistribution, Ri(u) is the set of machine-i operations
that are allocated to node u. p(u) is then taken to be the maximum over all i of
the sum of the lengths of the operations in Ri(u). The algorithm then finishes the
algorithm of section 3.1: the p-values computed for each node are used to compute
f(v) (for every node v). Then the operations in Ri(v) are scheduled beginning at time
f(v) + 1 and concluding by the end of timestep f(v) + p(v).

The partitioning of T is done by removing all edges from parents with height
equal to 0 modulo log α. (Thus, every resulting subtree T ′ has height at most log α.)

Let lg denote the logarithm to the base 2. (In some places below, we will not be
able to use log x since, as defined by us, log x does not always equal the logarithm of
x to the base 2. So we need lg.)

The redistribution of operations for subtree T ′ proceeds in a top-down manner,
independently for each machine Mi. We will illustrate the process with the job-shop
instance in Figure 6, where we assume (for descriptive purposes) that T has only
one subtree T ′. Start at the root, u1, of T ′. Suppose that u1 has h operations
allocated to it. (In this case, h = 3.) Let h′ = 2�lg h	 (in this case, h′ = 4) and
allocate h′ − h dummy operations ∅ to T ′ as in Figure 7. (The reason for adding
the dummy operations is to make the number of operations at the root equal to a
power of 2.) If the height of the subtree rooted at u1 (in this case, 2) is at least lg(h′)
(which is also 2 in this case), then the h′ operations originally allocated to u1 are
reallocated to the h′ nodes that are at distance lg(h′) below u as in Figure 8. Next,
the operations are further reallocated recursively in the subtrees below u1. (In this
case, the operations are recursively reallocated in the subtrees rooted at u2 and u5.)
If, in one of these recursive calls, the height, k, of the subtree being considered is
less than lg(h′) (where h′ is the number of originally allocated operations at the root,
counting dummy operations), then h′/2k of the operations originally allocated to the
root are reallocated to each of the leaves. For example, in the recursive call on the
subtree rooted at u2 in Figure 8, h′ = 4 (because a dummy operation is added to
u2 to make the number of operations a power of 2) and the height, k, of the subtree
below u2 is 1. Thus, h′/21 operations are pushed from u2 to each of its children as in
Figure 9. The recursive call at u5 and the recursive calls at the leaves do not further
redistribute operations.

A more formal description of the pushdown algorithm is as follows. As above,
we assume that ||Si(v)|| is a power of 2 for all i and v; furthermore, although we will
push some operations down the tree, Si(v) will refer throughout this paper to the
original set of operations scheduled on Mi for the time interval [l(v), r(v) + 1). First,
partition the tree T into disjoint subtrees, by removing all edges from parents with
height equal to 0 modulo log α. We then proceed independently for each subtree T ′

that is produced from the partition and for each machine Mi, by calling a recursive
procedure pushdown(T ′, i), which we describe now. Given a binary tree T ′′ with root
u and a machine index i, pushdown(T ′′, i) is as follows. If T ′′ is a leaf, the procedure
does nothing. Otherwise, suppose ||Si(u)|| = h′, with h′ being a power of 2. If the
height k of T ′′ is at least lg(h′), then the h′ operations of Si(u) are reallocated to
the h′ nodes that are at distance lg(h′) below u; else if k < lg(h′), then h′/2k of the
operations in Si(u) are reallocated to each of the leaves of T ′′. Finally, we recursively
call the procedure on the left and right subtrees of T ′′.

Note that if the new algorithm is applied to the problem instance from Figures 1–
5, then the makespan is reduced by one, because operations C and K are pushed

78 GOLDBERG, PATERSON, SRINIVASAN, AND SWEEDYK

Job 1: A

Job 2: B

Job 3: C D

Job 4: E F

Job 5: G

Job 6: H

Job 7: I

Job 6: J

Fig. 6. One frame of S, focusing only on operations for a single machine.

u1

u2

u3 u4

u5

u6 u7

�
A,B,H, ∅

� C, I, J � G

� E � � F �D

✜
✜

✜
✜

✜
✜✜

✡
✡

✡
✡

❏
❏

❏
❏

✡
✡

✡
✡

❏
❏

❏
❏

Fig. 7. Assigning a dummy operation ∅ to the root of T ′.

u1

u2

u3 u4

u5

u6 u7

�

� C, I, J �G

� E,A � B � F,H �D, ∅

✜
✜

✜
✜

✜
✜✜

✡
✡

✡
✡

❏
❏

❏
❏

✡
✡

✡
✡

❏
❏

❏
❏

Fig. 8. Redistributing the operations originally allocated to u1.

u1

u2

u3 u4

u5

u6 u7

�

� �G

�

E,A,C, I
�

B, J, ∅
�

F,H
�

D, ∅

✜
✜

✜
✜

✜
✜✜

✡
✡

✡
✡

❏
❏

❏
❏

✡
✡

✡
✡

❏
❏

❏
❏

Fig. 9. Redistributing the operations originally allocated to u2.

APPROXIMATION GUARANTEES FOR JOB-SHOP SCHEDULING 79

✛ ✲ leaves of T❄

✻

j

❄

✻
k

✜
✜

✜
✜

✜
✜

✜✜

T ′

�

w
❏

❏
❏❏
�

v

Fig. 10. The case in which w is a leaf.

✛ ✲ leaves of T❄

✻

j

❄✻r
❄
✻k

✜
✜

✜
✜

✜
✜

✜✜

T ′

�

w
❏

❏❏
�

v

Fig. 11. The case in which w is not a leaf.

down to the leaves so operation H is scheduled to overlap operation C.

Let S ′ denote the schedule produced (from S) by the new algorithm.

Lemma 3.3. S ′ is a feasible schedule with makespan O(pmaxα�log pmax/ log α).
Proof. The proof that S ′ is feasible follows exactly as before. The makespan of

S ′ is no more than
∑
u∈T p(u).

Consider a subtree T ′ of the partition. Assume the leaves of T ′ are at height j in
T . Let w be a node in T ′, and let V be the subset of nodes of T ′ consisting of w and
its ancestors in T ′.

First, suppose w is a leaf. Let v be a node in V and assume that v has height k
in T ′ with ||Si(v)|| = h. (See Figure 10.)

Then v contributes at most 2�lg h	/2k operations to Ri(w) and each has length
2j+k. The time needed to perform these operations is 2�lg h	−k · 2j+k = 2�lg h	+j . By
Lemma 3.1, part (a),

∑
v∈V ||Si(v)|| ≤ 2α. (The factor of 2 arises from the (possible)

padding of Si(v) with dummy operations.) Thus p(w) ≤ 2j+1α.

Now suppose w is at height r > 0 in T ′. (See Figure 11.) A node v ∈ V at height
r+k in T ′ contributes at most one operation to Ri(w), and its length is 2j+k+r. Thus

80 GOLDBERG, PATERSON, SRINIVASAN, AND SWEEDYK

p(w) ≤∑logα−r
k=0 2j+k+r ≤ 2j+1α.

Thus, if node w is at height r+j in T and is in the layer of the partition containing
T ′, then p(w) ≤ 2j+1α; also, there are pmax/2r+j nodes at this height in T . The sum
of these p(w)’s is thus at most 2αpmax/2r. Therefore each layer contributes at most
4αpmax, and there are �(log pmax)/(log α) layers. Thus,

∑
v∈T p(v) satisfies the bound

of the lemma.

3.3. Derandomization and parallelization. Note that all portions of our
algorithm are deterministic (and can be implemented in NC), except for the setting
of the initial random delays, which we now show how to derandomize. The method
of conditional probabilities could be applied to give the sequential derandomization;
however, that result will follow from the NC algorithm that we present. We begin
with a technical lemma.

Lemma 3.4. Let x1, x2, . . . , x� be nonnegative integers such that
∑
i xi = �a for

some a ≥ 1. Let k ≤ a be any positive integer. Then,
∑�
i=1

(
xi
k

) ≥ � · (ak).
Proof. For real x, we define, as usual,

(
x
k

) .
= (x(x− 1) · · · (x− k + 1))/k!. We first

verify that the function f(x) =
(
x
k

)
is nondecreasing and convex for x ≥ k, by a simple

check that the first and second derivatives of f are nonnegative for x ≥ k. Think of
minimizing

∑
i

(
xi
k

)
subject to the given constraints. If xi ≤ (k − 1) for some i, then

there should be an index j such that xj ≥ (k + 1), since
∑
i xi ≥ �k. Thus, we can

lessen the objective function by simultaneously setting xi := xi + 1 and xj := xj − 1.
Hence we may assume that all the integers xi are at least k. By the convexity of f
for x ≥ k, we see that the objective function is at least

∑�
i=1

(
a
k

)
.

Define, for z = (z1, z2, . . . , zn) ∈ �n, a family of symmetric polynomials Sj(z), j =
0, 1, . . . , n, where S0(z) ≡ 1, and for 1 ≤ j ≤ n, Sj(z)

.
=
∑

1≤i1<i2···<ij≤n zi1zi2 · · · zij .

We recall one of the main results of [2]. (This is not explicitly presented in [2] but is
an obvious corollary of the results of section 4 in [2].) In the statement of Proposition
3.5 below, the function G refers to the one introduced in section 2.2 of this paper.
Namely, G(µ, δ) = (eδ/(1 + δ)1+δ)µ.

Proposition 3.5 (see [2]). Suppose we are given m independent random vari-
ables y1, . . . , ym, each of which takes values uniformly in R = {0, 1, . . . , 2b−1}, where
b = O(log N); here N is a parameter that roughly stands for “input length,” and
m = NO(1). Suppose we are also given, for each j ∈ [m], a finite set of binary ran-
dom variables {zjt : t = 1, 2, . . .}, where zjt is 1 if and only if yj lies in some fixed
subset Rjt of R. Also given are r random variables

Ui =

m∑
j=1

zj,f(i,j), i ∈ [r],

where f is some arbitrary given function. If E[Ui] < 1 for each i, then given any
positive integer k such that k = O(log N), we can find, deterministically using NO(1)

processors and O(logO(1) N) time on the EREW PRAM, a setting y1 := w1, . . . , ym :=
wm such that ∑

i∈[r]
Sk(z1,f(i,1), . . . , zm,f(i,m)) ≤ rG(1, k − 1)(1 + N−c)

for any desired constant c > 0. See [15] for a definition of the EREW PRAM.
In our setting, the random variables yi are the initial random delays of the jobs.

It is easy to verify that each random variable C(Mi, t) is of the form of some Uj in

APPROXIMATION GUARANTEES FOR JOB-SHOP SCHEDULING 81

the notation of Proposition 3.5. By giving the initial random delays in the range
{0, 1, . . . , 2Πmax} instead of from {0, 1, . . . , 2Πmax − 1}, we can ensure the condition
E[Uj] < 1 of Proposition 3.5 (E[C(Mi, t)] ≤ 2Πmax/(2Πmax + 1) now). Let α and β
be as in Lemma 3.1, and note that both are logarithmically bounded in the length
of the input, as required for the parameter k in Proposition 3.5. Let the random
variables Xi,j,t be as in Fact 2.3. From the proof of part (a) of Lemma 3.1, we see
that

∑
i,tG(1, α− 1) is smaller than 1; thus, by Proposition 3.5, we can find a setting

<w for the initial delays in NC such that∑
i,t

Sα(Xi,1,t, Xi,2,t, . . . , Xi,n,t) < 1.(3.2)

If the congestion of some machine Mi at some t were at least α due to the above
setting of the initial delays to <w, then the left-hand side of (3.2) would be at least 1,
contradicting (3.2). Thus, we have an NC derandomization of Theorem 1.2(a).

As for Theorem 1.2(b), we can similarly find an NC assignment of initial delays
<w such that∑

i,t

Sβ(Xi,1,t, Xi,2,t, . . . , Xi,n,t) = O((Pmax + Πmax)mG(1, β − 1))(3.3)

= O((Pmax + Πmax)).

Let C(t) be the (deterministic) maximum contention at time t, due to this setting.
Note that (

C(t)

β

)
≤
∑
i

Sβ(Xi,1,t, Xi,2,t, . . . , Xi,n,t).

Thus, by (3.3), we see that

∑
t

(
C(t)

β

)
= O((Pmax + Πmax)).

We invoke Lemma 3.4 to conclude that
∑
t C(t) = O((Pmax + Πmax)β); thus, we have

an NC derandomization of Theorem 1.2(b).
We remark that the work of Mahajan, Ramos, and Subrahmanyam [13] could also

be used to obtain an NC derandomization.

4. Proof of Theorem 1.3. We now set about to prove Theorem 1.3; we are
very much motivated here by the framework of [5, 1, 12] and of section 6.1 of [17].
The new ideas we need are due to the two basic ways in which job-shop scheduling
generalizes packet routing: both acyclicity and the “pmax = 1” condition can be
violated. Theorem 4.3 is used first (in the next subsection) and proved later; this is
to help the reader get to some of the new ideas quickly. The algorithms are shown in
sections 4.2 and 4.3.

4.1. Preliminary results. We start with a standard fact about the function G
of section 2.2, where G(µ, δ) = (eδ/(1 + δ)1+δ)µ.

Fact 4.1. (a) If δ ∈ [0, 1], then eδ/(1 + δ)(1+δ) ≤ e−δ
2/3. (b) If 0 < µ1 ≤ µ2,

then for any δ ≥ 0, G(µ1, µ2δ/µ1) ≤ G(µ2, δ).

Proof. (a) The proof follows from observing that the function δ �→ ln(e−δ
2/3(1 +

δ)(1+δ)e−δ) is 0 when δ = 0, and that its derivative is ln(1 + δ) − 2δ/3, which is
nonnegative for δ ∈ [0, 1].

82 GOLDBERG, PATERSON, SRINIVASAN, AND SWEEDYK

(b) We need to show that

(1 + δ)(1+δ)µ2 ≤
(

1 +
µ2δ

µ1

)(1+µ2δ

µ1
)µ1

,

i.e., that Φ(v)
.
= (1 + vδ) ln(1 + vδ)− v(1 + δ) ln(1 + δ) ≥ 0∀v ≥ 1. We have Φ(1) = 0;

Φ′(v) = δ + δ ln(1 + vδ) − (1 + δ) ln(1 + δ). For v ≥ 1, Φ′(v) ≥ δ − ln(1 + δ)
≥ 0.

The next lemma follows from [18].

Lemma 4.2 (see [18]). Let X1, . . . , X� ∈ {0, 1} be random variables such that,
for any set T ⊆ {1, 2, . . . , �}, Pr[

∧
i∈T (Xi = 1)] ≤ ∏i∈T Pr[Xi = 1]; informally, the

Xi are “negatively correlated.” Then if X =
∑
iXi with E[X] ≤ µ, we have, for any

δ ≥ 0, Pr[X ≥ µ(1 + δ)] ≤ G(µ, δ).

Suppose we are given a job-shop instance I. A delayed schedule S for I is any
“schedule” in which each job Jj waits for some arbitrary nonnegative integral amount
of time dj and then gets processed continuously. (Thus, S is a delayed schedule if and
only if there exists some nonnegative integer B such that S is a B-delayed schedule.)
Suppose, for some nonnegative integer B′, we choose integers d′1, d

′
2, . . . , d

′
j uniformly

at random and independently, from {0, 1, . . . , B′−1}. The (random) schedule obtained
by giving an initial delay of d′j (in addition to the dj above) to each job Jj will be called
a random (B′,S)-delayed schedule. Note that this also will be a delayed schedule.

We require a few more definitions related to S as above. Suppose L denotes
the makespan of S. Then, given an integer �, an �-interval is any time interval of
the form [t, t + �), where t is an integer such that 0 ≤ t ≤ L − 1. We denote the
interval [t, t + �) by Ft. The contention of machine Mi in interval Fk in the schedule
S, denoted CS,�(i, k), is the total processing time on Mi within Fk, in the schedule
S. (Suppose, for instance, an operation O of length � + 2 uses Mi and is scheduled
to run on Mi in the interval [t, t + � + 2), in S. Then, for example, O contributes a
value of � to CS,�(i, t) and a value of three to CS,�(i, t + �− 1).)

Given any integers j1, j2 such that 1 ≤ j1 ≤ j2 ≤ n, we let C ′S,�(i, k, j1, j2) denote
the total processing time on machine Mi in the interval Fk in the schedule S that is
imposed by jobs Jj1 , Jj1+1, . . . , Jj2 . (In particular, C ′S,�(i, k, 1, n) = CS,�(i, k).)

Given a delayed schedule S, we call S an (L, �, C)-schedule if and only if

• the makespan of S is at most L, and
• for all machines Mi and all �-intervals Fk, CS,�(i, k) ≤ C.

We emphasize that this notation will be employed only for delayed schedules.

We start with Theorem 4.3, which will be of much help in proving Theorem 1.3.
Given an (L, �, C0)-schedule for a job-shop instance, Theorem 4.3 shows a sufficient
condition under which we can efficiently construct an (L + B, �′, C1)-schedule for
appropriate values of B, �′ and C1. In most of our applications of the theorem, we
will have (i) �′ � �, (ii) B � L, and (iii) C1 sufficiently small so that the new “relative
congestion” C1/�

′ is not much more than the original relative congestion C0/�. Thus,
by slightly increasing the makespan of the delayed schedule, we are able to bound the
relative congestion in intervals of much smaller length. (Note from (i) that �′ � �.)
Appropriate repetitions of this idea, along with some other tools, will help us prove
Theorem 1.3.

For convenience, we define x+ = max(x, 0).

Theorem 4.3. There is a sufficiently large constant c3 > 0 such that the following
holds. Suppose S is an (L, �, C)-schedule for a given job-shop instance I for some

APPROXIMATION GUARANTEES FOR JOB-SHOP SCHEDULING 83

L, �, C. Let nonnegative integers �′ ≤ � and B ≤ � − �′ + 1 be arbitrary; let S ′ be a
random (B,S)-delayed schedule.

Suppose δ > 0 is such that for all integers i ∈ [m], 0 ≤ k ≤ L + B − 1 and
1 ≤ j1 ≤ j2 ≤ n,

Pr

[
C ′S′,�′(i, k, j1, j2) ≥ �′

B
· (C ′S,�(i, (k −B + 1)+, j1, j2) + Cδ)

]
≤ (max{L,B,C})−c3 .

Then there is a Las Vegas algorithm to construct an (L+B, �′, C�
′
B · (1 + 3δ))-schedule

for I; the expected running time of the algorithm is poly(m,L, �, C). The proof of
Theorem 4.3 will be presented in section 4.5. Using ideas from our earlier proofs, we
obtain the following corollary.

Corollary 4.4. For general job-shop scheduling, there is a polynomial-time Las
Vegas algorithm to construct a schedule of makespan

O

(
(Pmax + Πmax) · log(Pmax + Πmax)

log log(Pmax + Πmax)
·
⌈

log(min{mµ, pmax})
log log(Pmax + Πmax)

⌉)
.

Proof. Let I be a job-shop scheduling instance with associated values Pmax and
Πmax; define L = 2Pmax and B = 2Πmax. Let I ′ be the modified instance formed by re-
placing each operation (Mj,k, tj,k) by the operation (Mj,k, 2·tj,k). We trivially have an
(L,B,B)-schedule S for I ′. Choose λ = c′ log(Pmax + Πmax)/ log log(Pmax + Πmax);
c′ is a suitably large constant as specified below.

Let S ′ denote the random (B,S)-delayed schedule. From the proof of Lemma 3.1(a),
we find that Pr[C ′S′,1(i, k, j1, j2) ≥ λ] ≤ (max{L,B,C})−c3 will hold for all i, k, j1, j2,
by making c′ large. Thus, by setting �′ = 1 in Theorem 4.3, we can efficiently find
an (L + B, 1, C0)-schedule for I ′, where C0 = O(λ). So we can efficiently construct a
well-structured schedule for I with makespan O(Pmax + Πmax) in which, for all ma-
chines Mi and time steps t, the number of operations scheduled on machine Mi in the
time interval [t, t + 1) is at most O(λ). The corollary now follows from the proof of
Theorem 1.2(a) by using this fact in place of Lemma 3.1.

We now present Lemma 4.5, which shows a way of using Theorem 4.3. The notion
of “w-separated” in part (b) of the lemma is as defined in section 1.2. Namely, every
distinct pair of operations of the same job with the same machine has at least w − 1
operations between them.

Lemma 4.5. (a) Consider any job-shop instance I in which any job needs at
most u units of processing on any machine. Suppose S is some (L, �, C)-schedule for
I. For nonnegative integers �′ ≤ � and B ≤ �− �′+ 1, suppose S ′ denotes the random
(B,S)-delayed schedule. Then, for any δ > 0 and all i, k, j1, j2,

Pr

[
C ′S′,�′(i, k, j1, j2) ≥ �′

B
· (C ′S,�(i, (k −B + 1)+, j1, j2) + Cδ)

]
≤ G(C�′/(Bu), δ).

(b) Suppose I is a w-separated job-shop instance with pmax = 1 and that S denotes
the (unique) 0-delayed schedule for I. Let S ′ denote the random Πmax-delayed schedule
for I. Then, for any δ > 0 and ∀i, k, j1, j2,

Pr

[
C ′S′,w(i, k, j1, j2) ≥ w

Πmax
· (C ′S,Πmax+w−1(i, (k −Πmax + 1)+, j1, j2) + Πmaxδ)

]
≤ G(w, δ).

84 GOLDBERG, PATERSON, SRINIVASAN, AND SWEEDYK

Proof. To have some common notation for parts (a) and (b), we define the follow-
ing quantities for part (b). First, in part (b), S is a (Pmax, �, C)-schedule, where, e.g.,
� = Πmax + w − 1 and C = Πmax. Also, in part (b), S ′ is the random (B,S)-delayed
schedule, where B = Πmax; we also set �′ = w in part (b). Note that the conditions
�′ ≤ � and B ≤ �− �′ + 1 now hold for part (b) also.

We now make some observations common to parts (a) and (b). Fix i, k, j1, j2.
Since all new delays introduced by S ′ lie in {0, 1, . . . , B − 1}, the only units of pro-
cessing that can get scheduled on Mi in the interval [k, k + �′) in S ′ are those that
were scheduled on Mi in the interval I .

= [(k − B + 1)+, k + �′) in S. Note that the
length of I is at most �′ + B − 1 ≤ �. For each job Jj , number its single units of
processing scheduled on Mi in I in S, as Uj,1, Uj,2, Since the length of I is at
most �, the definition of C ′ shows that the number of such units for each job Jj is at
most C ′S,�(i, (k −B + 1)+, j, j).

Let Xj,t be the indicator random variable for Uj,t getting scheduled in the interval
[k, k + �′) in S ′. We have

C ′S′,�′(i, k, j1, j2) ≤
j2∑
j=j1

∑
t

Xj,t.(4.1)

Since E[Xj,t] ≤ �′/B for each j, t, we have

ν
.
= E[C ′S′,�′(i, k, j1, j2)] ≤

j2∑
j=j1

(C ′S,�(i, (k −B + 1)+, j, j)�′/B)(4.2)

= C ′S,�(i, (k −B + 1)+, j1, j2)�
′/B.

We now handle part (a). By (4.1), C ′′ .
= C ′S′,�′(i, k, j1, j2)/u is at most

∑j2
j=j1

Yj ,

where Yj
.
= u−1

∑
tXj,t. By the definition of u, Yj ≤ 1 for each j. So the random

variables {Yj : j ∈ [j1, j2]} lie in [0, 1] and are independent. A Chernoff–Hoeffding
bound shows for any δ′ ≥ 0 that

Pr[C ′S′,�′(i, k, j1, j2) ≥ ν(1 + δ′)] = Pr[C ′′ ≥ (ν/u) · (1 + δ′)] ≤ G(ν/u, δ′).(4.3)

Next, C ′S,�(i, (k − B + 1)+, j1, j2) ≤ C, since S is an (L, �, C)-schedule. So, applying
(4.2) and Fact 4.1(b) to (4.3) completes the proof for part (a).

For part (b), consider any job Jj . Since �′ = w here, the definition of w-separated
shows that we cannot have Xj,t = Xj,t′ = 1, if t �= t′. This easily leads us to see that
the random variables {Xj,t : j, t} are negatively correlated, in the sense of Lemma
4.2. So, an application of Lemma 4.2 and Fact 4.1(b) to (4.1) and (4.2) completes the
proof for part (b).

Next we will use these results to prove Theorem 1.3 in sections 4.2 and 4.3.

4.2. Proof of Theorem 1.3(b). Recall that we are considering any w-separated
job-shop instance I with pmax = 1 now. Let S be the 0-delayed schedule for I. Thus,
S is a (Pmax, �, C)-schedule, where, e.g., � = Πmax + w − 1 and C = Πmax. Also let
S ′ be the random (B,S)-delayed schedule, where B = Πmax; i.e., S ′ is the random
B-delayed schedule for I. Define �′ = w.

We can ensure that G(w, δ) ≤ (Pmax + Πmax)−c3 , by choosing (i) δ = c′′ if w ≥
log(Pmax + Πmax)/2, and (ii) δ = c′′ log(Pmax + Πmax)/(w log(log(Pmax + Πmax)/w))
if w < log(Pmax + Πmax)/2 for some suitably large constant c′′. By Lemma 4.5(b) and

APPROXIMATION GUARANTEES FOR JOB-SHOP SCHEDULING 85

Theorem 4.3, we can then efficiently construct a (Pmax + Πmax, w, w(1+3δ))-schedule
S ′′ for I. We partition S ′′ into �(Pmax + Πmax)/w intervals each of length w; crucially,
each of these intervals (subproblems) is an acyclic job-shop instance. Also, in each
of these subproblems, pmax = 1, and any machine has at most w(1 + 3δ) operations
to be scheduled on it. Via the result of [12], each subproblem can be efficiently
scheduled with makespan O(w + w(1 + δ)) = O(w(1 + δ)). We then concatenate all
these schedules, leading to a final makespan of O((Pmax + Πmax)(1 + δ)).

4.3. Proof of Theorem 1.3(a). Recall that our goal is to show the existence

of a schedule with makespan O((Pmax+Πmax) · log u
log log u · � log(min{mµ,pmax})

log log u), assuming
that every job needs at most u time units on each machine. We assume that u ≥ 2.
Indeed, if u = 1, then we have an acyclic job-shop instance with pmax = 1; so we will
be able to efficiently construct a schedule of length O(Pmax + Πmax) [11, 12]. The
algorithm is presented in section 4.3.2; we start with a useful tool.

4.3.1. L′-splitting. Suppose we are given an (L, �, C)-schedule S for a job-shop
instance I and want to split it into subproblems each of makespan at most L′, where
pmax < L′ < L. If pmax = 1, this is easy, as seen in section 4.2. Consider the case
where pmax is arbitrary. We now show a simple way of partitioning the operations
of S into at most �L/(L′ − pmax) subproblems P1,P2, We will also output an
(L′, �, C)-schedule Si for each Pi. These subproblems will be such that they can
be solved independently and the resulting schedules can be concatenated to give a
feasible schedule for I. This “L′-splitting” process is as follows.

We consider all operations that are completely finished by time L′ in S; scheduling
this set of operations becomes our first subproblem P1. S provides a natural (L′, �, C)-
schedule S1 for P1. If we have covered all operations by this process, we stop; if not,
we define the next subproblem P2 as follows. Define t1 = 0. Let t2 be the smallest
integer such that (i) t2 ≤ L′ and (ii) there is some operation O starting at time t2 in
S such that O is not completely finished by time L′. (Note that L′−pmax < t2 ≤ L′.)
Our second subproblem P2 consists of all operations (a) finishing by time t2 + L′

in S and (b) not covered by P1. The time interval [t2, t2 + L′) in S provides an
(L′, �, C)-schedule S2 for P2 in the obvious way. Once again, if we have not covered
all operations, we define t3 to be the smallest integer such that (i) t3 ≤ t2 + L′ and
(ii) there is some operation O starting at time t3 in S such that O is not completely
finished by time t2 + L′. We have t3 > t2 + L′ − pmax; thus t3 > 2(L′ − pmax). P3
consists of all operations finishing by time t3 + L′ that were not covered by P1 and
P2. We iterate this until all operations are covered.

In general, we have ti+1 ≥ i(L′ − pmax); so the total number of subproblems
created is at most �L/(L′ − pmax). It is also easy to see that we have an (L′, �, C)-
schedule Si for each Pi. Also, the subproblems can be solved independently and the
resulting schedules can be concatenated to give a feasible schedule for I.

4.3.2. Algorithm and analysis. We choose a sufficiently large positive con-
stant b0. Define L0 = Pmax + Πmax, and Li = log Li−1 for i ≥ 1. We repeat this
iteration until we arrive at a t for which either Lt+1 ≥ Lt or Lt+1 ≤ 36b20. (Thus, the
iteration proceeds for O(log∗(Pmax + Πmax)) steps.) Also, for 1 ≤ i ≤ t, define

Ci
.
= L3

i

(
1 +

b0√
L1

) i−1∏
j=1

((
1 +

b0√
Lj+1

)
· 1

1− (Lj+1/Lj)3

)
.(4.4)

86 GOLDBERG, PATERSON, SRINIVASAN, AND SWEEDYK

Recall that Li ≥ 36b20 for 1 ≤ i ≤ t. If b0 is large enough, we have

Ci ≤ L3
i exp

 i∑
j=1

b0√
Lj

+ O

i−1∑
j=1

(
Lj+1
Lj

)3

 ≤ L3

i exp(3b0/
√

Li) ≤ 2L3
i .

(4.5)
The second inequality follows from the fact that the terms L−1j increase exponentially

with L−1j ≤ (36b20)
−1 and b0 sufficiently large.

The algorithm is as follows. First, if u2 > Pmax + Πmax, then Corollary 4.4 shows
that we can construct a schedule of makespan as claimed by Theorem 1.3(a). So
suppose u2 ≤ Pmax + Πmax. The algorithm consists of a preprocessing step and a
general (recursive) step, motivated by the approach of section 6.1 of [17].

Preprocessing step. We start with the obvious (Pmax, �, Πmax)-schedule S, where
� can be taken arbitrarily large.

First, we handle the case where u ≥ b0L1. We call this the “simple case.”
Define �′ = u2, B = Πmax, and δ = 1. If b0 is large enough, then G(u, δ) ≤
(Pmax + Πmax)−c3 . Thus, by Lemma 4.5(a) and Theorem 4.3, we can efficiently con-
struct a (Pmax + Πmax, u

2, 4u2)-schedule S ′. We apply u2-splitting to S ′, as defined
in section 4.3.1. Since u ≥ 2 and pmax ≤ u, the total number of subproblems is at
most �(Pmax + Πmax)/(u2 − pmax) ≤ O((Pmax + Πmax)/u2). Also, each of the sub-
problems has “Pmax” at most u2 and “Πmax” at most 4u2. So, by Corollary 4.4,
each of these subproblems can be efficiently given a valid schedule of makespan

O(u2 · log u
log log u · � log(min{mµ,pmax})

log log u). As seen above, the number of subproblems is

O((Pmax + Πmax)/u2), so the concatenation of these schedules yields a final schedule
of makespan as claimed by Theorem 1.3(a).

We now move on to the more interesting case where u < b0L1. We define �′ =
L3
1, B = Πmax, and δ = b0/(3

√
L1). By Fact 4.1(a) and since u < b0L1, we have

G(�′/u, δ) ≤ exp(−b0L1/27), which can be made at most (Pmax + Πmax)−c3 if b0
is chosen sufficiently large. By Lemma 4.5(a) and Theorem 4.3, we can efficiently
construct a (Pmax + Πmax, L

3
1, C1)-schedule S ′. (See (4.4) for the definition of the

Ci.) We apply L4
1-splitting to S ′ to obtain some subproblems, each of which also

comes with an (L4
1, L

3
1, C1)-schedule. The number of subproblems is at most

�L0/(L4
1 − pmax) ≤ �L0/(L4

1 − b0L1)
≤ L0/(L4

1 − b0L1) + 1

≤ L0

L4
1

· (1 + O(1/L3
1) + O(L4

1/L0))

≤ L0

L4
1

· (1 + O(1/L3
1)).(4.6)

Next, we show a recursive scheme to handle each of these subproblems.
General step. Suppose, in general, we have a subproblem which comes with an

(L4
i , L

3
i , Ci)-schedule, 1 ≤ i ≤ t. First we dispose of some easy cases. If i = t, then

Li = O(1); by (4.5), Ci = O(1) also. Thus, we can efficiently find a schedule of
length O(1). So we assume i ≤ t − 1. Next, suppose u2 ≥ L3

i /2. Note that the
“Pmax” and “Πmax” values of the given subproblem are, respectively, at most L4

i and
Ci · (L4

i /L
3
i) = O(L4

i). Thus, if u2 ≥ L3
i /2, then Corollary 4.4 shows that we can

construct a schedule of makespan

O

(
L4
i ·

log u

log log u
·
⌈

log(min{mµ, pmax})
log log u

⌉)
.(4.7)

APPROXIMATION GUARANTEES FOR JOB-SHOP SCHEDULING 87

So we assume that u2 < L3
i /2.

We now show a scheme that will construct a feasible schedule for the problem if
u ≥ b0Li+1; if u < b0Li+1, we will show how to reduce this problem to a number of
subproblems, each of which comes with an (L4

i+1, L
3
i+1, Ci+1)-schedule.

First, suppose u ≥ b0Li+1. We follow our approach for the simple case of the
preprocessing step. Define B = L3

i /2, � = L3
i , �′ = u2, and δ = 1. Since u2 < L3

i /2,
we have B + �′ ≤ � as required by Theorem 4.3. So, if b0 is sufficiently large, we will
have

G(Ci�
′/(Bu), δ) ≤ (L4

i + Ci)
−c3 ,(4.8)

since L3
i < Ci ≤ 2L3

i by (4.4) and (4.5). As in the “simple case,” we can get an
(L4
i+B, �′, O(�′))-schedule, apply �′-splitting to it, and solve the resulting subproblems

using Corollary 4.4. The final schedule will have makespan as in (4.7).
Finally, suppose u < b0Li+1. We follow the general idea of the “interesting

case” of the preprocessing step. Define B = L3
i − L3

i+1, � = L3
i , �′ = L3

i+1, and

δ = b0/(3
√

Li+1). Once again, since u < b0Li+1, we will have (4.8). Thus, as in the
“interesting case,” we construct an (L4

i + L3
i , L

3
i+1, Ci+1)-schedule and apply L4

i+1-
splitting to it. As a result, we get some number of subproblems, each of which is
equipped with an (L4

i+1, L
3
i+1, Ci+1)-schedule; we recurse on these independently. As

in the derivation of (4.6), the number of subproblems is at most

�(L4
i + L3

i)/(L4
i+1 − b0Li+1) ≤ L4

i

L4
i+1

· (1 + O(1/L3
i+1)).(4.9)

Let the final set of subproblems we solve be those that come with an (L4
p, L

3
p, Cp)-

schedule for some p. The product of the terms in (4.6) and (4.9) as i runs from 1 to
p− 1 is O(L0/L

4
p). Thus, by (4.7), the final makespan is

O

(
(L0/L

4
p)L

4
p ·

log u

log log u
·
⌈

log(min{mµ, pmax})
log log u

⌉)

= O

(
L0 · log u

log log u
·
⌈

log(min{mµ, pmax})
log log u

⌉)
,

as claimed by Theorem 1.3(a).

4.4. Basic ideas from earlier constructivizations of the LLL. This section
is based on the work of [5, 1, 12]. The main result here is Theorem 4.7, which will be
used in section 4.5 to prove Theorem 4.3.

Given an undirected graph G = (V,E), recall that a set C ⊆ V is a dominating
set of G if and only if all vertices in V −C have some neighbor in C. For any positive
integer �, we define G� to be the graph on the same vertex set V , with two vertices
adjacent if and only if they are distinct and there is a path of length at most � that
connects them in G. We let ∆(G) denote the maximum degree of the vertices in G.
Also, suppose R is some random process and that each vertex in V represents some
event related to R. We say that G is a dependency graph for R if and only if for each
v ∈ V and any set of vertices S such that no element of S is adjacent to v in G, we
have that the event corresponding to v is independent of any Boolean combination of
the events corresponding to the elements of S.

In Lemma 4.6 and following, the phrase “connected component” means “maximal
connected subgraph,” as usual.

88 GOLDBERG, PATERSON, SRINIVASAN, AND SWEEDYK

Lemma 4.6. Given an undirected graph G1 = (V,E) with a dominating set
C, let G2 be the subgraph of G3

1 that is induced by C. Pick an arbitrary maximal
independent set I in G2, and let G3 be the subgraph of G3

2 induced by I. Suppose
G1 has a connected component with N vertices. Then G3 has a connected component
with at least N/((∆(G1) + 1)(∆(G1))

3) vertices.

Proof. Let C1 = (U,E′) be a connected component of G1 with N vertices.
Then, the vertices in C ∩ U are connected in G2, which is seen as follows. Sup-
pose v1, u1, u2, . . . , ut, vt is a path in C1, where v1 and vt are in C ∩U , and u1, . . . , ut
are all in U − (C ∩ U). Then, since C ∩ U is a dominating set in C1, for 1 < i < t,
ui must have some neighbor vi ∈ C ∩ U . Hence, there are paths vi, ui, ui+1, vi+1 for
1 ≤ i < t so v1 and vt are connected in G2. Thus, all of the vertices in C ∩ U are
connected in G2. Since C ∩ U is a dominating set in C1, it is also easy to check
that |C ∩ U | ≥ N/(∆(C1) + 1) ≥ N/(∆(G1) + 1). Thus, C ∩ U yields a connected
component C2 in G2 that has at least N/(∆(G1) + 1) vertices.

Since ∆(C2) ≤ (∆(G1))
3 − 1, one can similarly show that I ∩ (C ∩ U) yields a

connected component C3 in G3 that has at least

|C ∩ U |
∆(C2) + 1

≥ |C ∩ U |
(∆(G1))3

≥ N

(∆(G1) + 1)(∆(G1))3

vertices.

We present a key ingredient of [5, 1, 12] in the following theorem.

Theorem 4.7. Let a graph G = (V,E) be a dependency graph for a random
process R, with the probability of occurrence of the event represented by any vertex
of G being at most r. Run the process R, and let C ⊆ V be the vertices of G that
represent the events (among the elements of V) that occurred during the run. (Thus,
C is a random subset of V with some distribution.) Let G1 be the subgraph of G
induced by C ∪C ′, where C ′ is the set of vertices of G that have at least one neighbor
in C. Then, for any x ≥ 1, the probability of G1 having a connected component with

at least x(∆(G) + 1)(∆(G))3 vertices is at most |V |∆(G)
−18∑

y≥x (∆(G)
18

r)
y
.

Proof. Observe that, by construction, C is a dominating set for G1. Construct
G2, I, and G3 as in the statement of Lemma 4.6. Note that ∆(G1) ≤ ∆(G). Thus,
by Lemma 4.6, we need only to bound the probability of G3 having a connected
component with x or more vertices.

Suppose that a size-y set S of vertices of G forms a connected component in G3.
Then there is a subtree T of G3 which spans the vertices in S. T can be represented
by a list L which lists all of the vertices that are visited in a depth-first traversal of T .
Each vertex in T (except the root) is visited both before its children and after each
child (the root is visited only after each child), so each vertex appears on L once for
each edge adjacent to it in T . Thus, the length of L is 2(y − 1). If two vertices are
adjacent on L, then they are adjacent in G3, which implies that the distance between
them in G is at most 9. Thus, given G, the number of possible sets S is at most the
number of possible lists L, which is at most |V | (the number of choices for the first

vertex on L) times (∆(G)9)
2(y−1)

(the number of choices for the rest of L). Thus, the
number of sets S which could possibly correspond to size-y connected components
in G3 is at most |V |∆(G)

−18
∆(G)

18y
.

The definition of I implies that the vertices in G3 form an independent set in G.
Furthermore, given any independent set S of size y in G, Bayes’s theorem and the
definition of dependency graphs show that the probability that all elements of S are

APPROXIMATION GUARANTEES FOR JOB-SHOP SCHEDULING 89

in G3 is at most ry. Thus, the probability that G3 has a connected component of

size y is at most |V |∆(G)
−18

(∆(G)
18

r)
y
.

4.5. Proof of Theorem 4.3. We now assume the notation of Theorem 4.3 and
prove the theorem. Define the following “bad” events:

E(i, k, j1, j2) ≡
(

C ′S′,�′(i, k, j1, j2) ≥ �′

B
· (C ′S,�(i, (k −B + 1)+, j1, j2) + Cδ)

)
;

E ′(i, k, j1) ≡ (∃j2 ≥ j1 : E(i, k, j1, j2)).

By the assumption of Theorem 4.3, Pr[E(i, k, j1, j2)] ≤ (max{L,B,C})−c3∀(i, k, j1, j2).
Now, for the given instance I, Pmax ≤ L and Πmax ≤ C · �L/� ≤ CL. Thus, in par-
ticular, at most CL jobs use any given machine Mi. So, we have ∀(i, k, j1) that

Pr[E ′(i, k, j1)] ≤ p
.
= CL(max{L,B,C})−c3 .(4.10)

The algorithm processes the jobs in the order J1, J2, When it is job Jj ’s
turn, we give it a random delay from {0, 1, . . . , B − 1} and check if this makes, for
any pair (i, k), the event E(i, k, 1, j) true. If so, we temporarily set aside Jj and all
yet-unprocessed jobs that use machine Mi. Let J1 denote the set of jobs which do get
assigned a delay by this process. We shall basically show that, with high probability,
the problem of assigning delays to the jobs not in J1 gets decomposed into a set of
much smaller subproblems. To this end, we first set up some notation in order to
apply Theorem 4.7.

Construct an undirected graph G with the events E ′(i, k, 1) as nodes, with an edge
between two distinct nodes E ′(i, k, 1) and E ′(i′, k′, 1) if and only if either (P1) i = i′,
or (P2) there is some job that uses both the machines Mi and Mi′ . It is easy to check
that G is a valid dependency graph for the events E ′(i, k, 1). The number of vertices
in G is at most m(L + B). Recall that at most CL jobs use any given machine and
that each such job uses at most L− 1 other machines. Thus, each node can have at
most L + B neighbors of type (P1) and at most CL(L− 1)(L + B) neighbors of type
(P2). So ∆(G) is at most

L + B + CL(L− 1)(L + B) ≤ CL2(L + B)− 1.

Run the above random process of randomly scheduling and setting aside (if nec-
essary) some of the jobs. Let C be the set of events E ′(i, k, 1) that actually happened.
Let C′ be the set of nodes of G that have at least one neighbor in C, and let G1 be
the subgraph of G that is induced by C ∪ C′. Thus, by applying Theorem 4.7 with
|V | ≤ m(L + B), ∆(G) ≤ CL2(L + B)− 1, x = log m, and r = p, we see from (4.10)
that

(4.11)

Pr[G1 has a connected component with at least (CL2(L + B))4 log m nodes] ≤ 1/2

if c3 is appropriately large.
We repeat the above process until all connected components of G1 have at most

(CL2(L + B))4 log m nodes. By (4.11), we expect to run the above process at most
twice.

What have we achieved? First, let us give all the jobs in J1 their assigned delays
and remove them from consideration. The key observation is as follows. Fix any

90 GOLDBERG, PATERSON, SRINIVASAN, AND SWEEDYK

remaining job Jj . Then, for no two machines Mi and Mi′ that are both used by Jj
can we have two nodes E ′(i, k, 1) and E ′(i′, k′, 1) in different connected components of
G1. This is because E ′(i, k, 1) and E ′(i′, k′, 1) are neighbors in G. Thus, the problem
in each connected component of G1 can be solved completely independently of the
other connected components.

So all connected components of G1 have at most (CL2(L + B))4 log m nodes. To
further reduce this component size, we repeat the above process on each connected
component CCt of G1 separately, as follows. Fix any such CCt. Define f1(i) to be the
least index j such that Jj �∈ J1 and such that Jj uses Mi. (If all jobs that use Mi are
in J1, we define f1(i) = n + 1 for convenience.) Note that all jobs Jj that use Mi and
have j ≥ f1(i) lie outside the set J1. We process the jobs lying outside J1 in order
as before. When it is job Jj ’s turn, we give it a random delay from {0, 1, . . . , B − 1}
and check if this makes, for any pair (i, k), the event E(i, k, f1(i), j) true. (This is
mostly the same as before, except that now we have “f1(i)” in place of “1”.) If so, we
temporarily set aside Jj and all yet-unprocessed jobs lying outside J1 that use Mi.

We proceed similarly as above. Let J2 denote the set of jobs which get assigned a
delay by this process. We now show that the problem of assigning delays to the jobs
not in J1 ∪J2 gets decomposed into even smaller subproblems with high probability.
In place of the bad events {E ′(i, k, 1)}, the bad events now are {E ′(i, k, f1(i))}. We
can once again invoke Theorem 4.7; we take |V | ≤ (CL2(L + B))4 log m, ∆(G) ≤
CL2(L + B)− 1, x = log log m, and r = p. As before, if c3 is large enough, we expect
to repeat this process at most twice before ensuring that all resulting “connected
components” have at most (CL2(L + B))4 log log m nodes.

We now consider any connected component CC ′t remaining after the above two
passes. (Once again, all these components can be handled independently.) Define
f2(i) to be the least index j such that Jj �∈ (J1 ∪ J2) and such that Jj uses Mi. We
now show how to give delays to all jobs lying outside (J1 ∪ J2) in a manner that
avoids all the events E ′(i, k, f2(i)). There are two cases.

Case I. log log m ≤ L + B + C. In this case, the number of “nodes” (events
E ′(i, k, f2(i))) in CC ′t is poly(L,B,C). Thus, if we start with a random B-delayed
schedule for the jobs associated with CC ′t, the probability that at least one “bad”
event associated with CC ′t (i.e., at least one node of CC ′t) happens is at most 1/2, if
c3 is large enough. So we expect to run this process on CC ′t at most twice.

Case II. log log m > L+B+C. The number of nodes in CC ′t is O(poly(log log m))
in this case. So the number of machines associated with CC ′t is also O(poly(log log m)),
and hence the number of jobs associated with CC ′t is at most O(L · poly(log log m)),
i.e., O(poly(log log m)).

We recall the LLL.
Lemma 4.8 (see [7]). Let E1, E2, . . . , E� be any events with Pr[Ei] ≤ q∀i. If

each Ei is mutually independent of all but at most d of the other events Ej and if

eq(d + 1) ≤ 1, then Pr[
∧�
i=1 Ei] > 0.

As seen above, any event E ′(i, k, f2(i)) depends on at most CL2(L + B)− 1 other
such events. Also, Pr[E ′(i, k, f2(i))] ≤ p∀i, k. Thus, if c3 is sufficiently large, the LLL
shows that there exists a way of giving a delay in {0, 1, . . . , B−1} to each job associated
with CC ′t in order to avoid all the events E ′(i, k, f2(i)) associated with CC ′t. But here,
there are at most O(poly(log log m)) jobs, and each has only B ≤ log log m possible
initial delays! Thus, exhaustive search can be applied to find a “good” B-delayed
schedule that we know to exist: the time needed for CC ′t is at most

(log log m)O(poly(log logm)) = mo(1).

APPROXIMATION GUARANTEES FOR JOB-SHOP SCHEDULING 91

Let S ′′ be the final delayed schedule produced. Consider any interval (k, k + �′).
We have

CS′′,�′(i, k) ≤ �′

B
· (C ′S,�(i, (k −B + 1)+, 1, f1(i)− 1) + Cδ)

+
�′

B
· (C ′S,�(i, (k −B + 1)+, f1(i), f2(i)− 1) + Cδ)

+
�′

B
· (C ′S,�(i, (k −B + 1)+, f2(i), n) + Cδ)

=
�′

B
· (C ′S,�(i, (k −B + 1)+, 1, n) + 3Cδ)

≤ �′

B
· (C + 3Cδ)

as required.
It is also easy to check via linearity of expectation that the expected running time

of the algorithm is poly(m,L, �, C). This concludes the proof of Theorem 4.3.

Acknowledgments. Aravind Srinivasan thanks David Shmoys for introducing
him to this area, for sharing many of his insights, and for his several suggestions.
He also thanks Cliff Stein and Joel Wein for their suggestions and many helpful
discussions. The authors thank Uri Feige for bringing the work of [16] and [22] to their
attention, and Bruce Maggs and Andréa Richa for sending them an updated version
of [12]. The authors also thank the referees for their many helpful suggestions.

REFERENCES

[1] N. Alon, A parallel algorithmic version of the Local Lemma, Random Structures and Algo-
rithms, 2 (1991), pp. 367–378.

[2] N. Alon and A. Srinivasan, Improved parallel approximation of a class of integer program-
ming problems, Algorithmica, 17 (1997), pp. 449–462.

[3] D. Applegate and W. Cook, A computational study of the job-shop scheduling problem,
ORSA J. Comput., 3 (1991), pp. 149–156.

[4] A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour, and B. Schieber, Bandwidth alloca-
tion with preemption, in Proceedings of the 27th Annual ACM Symposium on Theory of
Computing, Las Vegas, NV, 1995, ACM, New York, 1995, pp. 616–625.

[5] J. Beck, An algorithmic approach to the Lovász Local Lemma, Random Structures and Algo-
rithms, 2 (1991), pp. 343–365.

[6] J. Carlier and E. Pinson, An algorithm for solving the job-shop problem, Management Sci.,
35 (1989), pp. 164–176.

[7] P. Erdös and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related
questions, in Infinite and Finite Sets, A. Hajnal, R. Rado, and V. T. Sós, eds., Colloq.
Math. Soc. Janos Bolyai 11, North Holland, Amsterdam, 1975, pp. 609–627.

[8] U. Feige and C. Scheideler, Improved bounds for acyclic job shop scheduling, in Proceedings
of the 30th Annual ACM Symposium on Theory of Computing, Dallas, TX, 1998, ACM,
New York, 1998, pp. 624–633.

[9] L. A. Hall, Approximability of flow shop scheduling, in Proceedings of the 35th Annual IEEE
Symposium on Foundations of Computer Science, Milwaukee, WI, 1995, pp. 82–91.

[10] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, Sequencing and
scheduling: algorithms and complexity, in Logistics of Production and Inventory, Hand-
books Oper. Res. Management Sci., 4, S. C. Graves et al., eds., Elsevier, New York, 1993,
pp. 445–522.

[11] F. T. Leighton, B. Maggs, and S. Rao, Packet routing and jobshop scheduling in
O(congestion + dilation) steps, Combinatorica, 14 (1994), pp. 167–186.

[12] F. T. Leighton, B. Maggs, and A. Richa, Fast algorithms for finding O(congestion +
dilation) packet routing schedules, Combinatorica, 19 (1999), pp. 375–401.

[13] S. Mahajan, E. A. Ramos, and K. V. Subrahmanyam, Solving some discrepancy problems in
NC, in Proceedings of the Annual Conference on Foundations of Software Technology and

92 GOLDBERG, PATERSON, SRINIVASAN, AND SWEEDYK

Theoretical Computer Science, Lecture Notes in Comput. Sci. 1346, Springer, New York,
1997, pp. 22–36.

[14] P. Martin and D. B. Shmoys, A new approach to computing optimal schedules for the job-shop
scheduling problem, in Proceedings of the MPS Conference on Integer Programming and
Combinatorial Optimization, Vancouver, B.C., Canada, 1996, Lecture Notes in Comput.
Sci. 1084, Springer, Berlin, 1996, pp. 389–403.

[15] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cam-
bridge, UK, 1995.

[16] G. Rayzman, Approximation Techniques for Job-Shop Scheduling Problems, M.Sc. Thesis,
Department of Applied Mathematics and Computer Science, The Weizmann Institute of
Science, Rehovot, Israel, 1996.

[17] C. Scheideler, Universal Routing Strategies for Interconnection Networks, Lecture Notes in
Comput. Sci. 1390, Springer, New York, 1998.

[18] J. P. Schmidt, A. Siegel, and A. Srinivasan, Chernoff–Hoeffding bounds for applications
with limited independence, SIAM J. Discrete Math., 8 (1995), pp. 223–250.

[19] S. V. Sevast’yanov, Efficient construction of schedules close to optimal for the cases of arbi-
trary and alternative routes of parts, Soviet Math. Dokl., 29 (1984), pp. 447–450.

[20] S. V. Sevast’yanov, Bounding algorithm for the routing problem with arbitrary paths and
alternative servers, Kibernetika, 22 (1986), pp. 74–79, 134 (in Russian).

[21] D. B. Shmoys, C. Stein, and J. Wein, Improved approximation algorithms for shop scheduling
problems, SIAM J. Comput., 23 (1994), pp. 617–632.

[22] Yu. N. Sotskov and N. V. Shaklevich, NP-hardness of shopt-scheduling problems with three
jobs, Discrete Appl. Math., 59 (1995), pp. 237–266.

[23] D. P. Williamson, L. A. Hall, J. A. Hoogeveen, C. A. J. Hurkens, J. K. Lenstra, S.
V. Sevast’yanov, and D. B. Shmoys, Short shop schedules, Oper. Res., 45 (1997), pp.
288–294.

ENUMERATION OF EQUICOLORABLE TREES∗

NICHOLAS PIPPENGER†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 1, pp. 93–115

Abstract. A tree, being a connected acyclic graph, can be bicolored in two ways, which differ
from each other by exchange of the colors. We shall say that a tree is equicolorable if these bicolorings
assign the two colors to equal numbers of vertices. Labelled equicolored trees have been enumerated
several times in the literature, and from this result it is easy to enumerate labelled equicolorable trees.
The result is that the probability that a randomly chosen n-vertex labelled tree is equicolorable is
asymptotically just twice the probability that its vertices would be equicolored if they were assigned
colors by independent unbiased coin flips. Our goal in this paper is the enumeration of unlabelled
equicolorable trees (that is, trees up to isomorphism), both exactly (in terms of generating functions)
and asymptotically. We treat both the rooted and unrooted versions of this problem and conclude
that in either case the probability that a randomly chosen n-vertex unlabelled tree is equicolorable is
asymptotically 1.40499 . . . times as large as the probability that it would be equicolored if its vertices
were assigned colors by independent unbiased coin flips.

Key words. generating functions, asymptotic enumeration

AMS subject classifications. 05A15, 05A16, 05C05

PII. S0895480100368463

1. Introduction. Our goal in this paper is the enumeration, exact and asymp-
totic, of certain kinds of trees. A tree can have its vertices bicolored (so that adjacent
vertices are oppositely colored) in exactly two ways, which differ by exchange of the
colors. We shall be particularly interested in those trees for which equal numbers of
vertices are assigned the two colors; we call such trees equicolorable. (It is tempting
to call them “balanced,” but the term “balanced trees” is already in use for several
kinds of objects different from those treated here.)

Our solution to this problem also yields the enumeration of equicolored trees,
that is, equicolorable trees that have been assigned one of their two equitable bicol-
orings. For trees that are labelled or rooted, the distinction between enumerating
“equicolorable” and “equicolored” trees is trivial, for there are exactly two equicol-
ored trees for each equicolorable one. However, when we enumerate unlabelled and
unrooted trees, the distinction is significant, for to enumerate equicolored trees we
must count each equicolorable tree once or twice depending on whether or not there
is a color-exchanging automorphism of the tree.

Our approach to these problems can be sketched as follows. For the sake of
example we consider unlabelled but rooted trees. We consider bicolorings of these
trees (not necessarily equicolorings) in which the vertices are colored red and blue,
and in which the root is colored red. Specifying the color of the root fixes the colors
of all other vertices. Let rl,m denote the number of such red-rooted trees with l red
and m blue vertices. Let

r(x, y) =
∑

l≥1,m≥0

rl,m xlym

∗Received by the editors February 28, 2000; accepted for publication (in revised form) October
17, 2000; published electronically January 16, 2001. This research was supported by an NSERC
research grant.

http://www.siam.org/journals/sidma/14-1/36846.html
†Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z4,

Canada (nicholas@cs.ubc.ca).

93

94 NICHOLAS PIPPENGER

be the generating function for red-rooted trees in which the coefficient of xlym is the
number of trees with l red vertices and m blue vertices. Then r(y, x) is the generating
function for blue-rooted trees.

By standard combinatorial methods, we obtain a functional equation determining
r(x, y). Then we make the substitutions x = z exp(iϑ) and y = z exp(−iϑ) and thus
define

rϑ(z) = r
(
z exp(iϑ), z exp(−iϑ))

=
∑
n≥1

k≡n(mod 2)

r(n+k)/2,(n−k)/2 zn exp(ikϑ),

which is a trigonometric series in which the coefficient of zn exp(ikϑ) is the number
of red-rooted trees with n vertices and k more red vertices than blue vertices. In fact,
it will be technically more convenient to work with the related series

cϑ(z) =
rϑ(z) + r−ϑ(z)

2
,

=
∑
n≥1

k≡n(mod 2)

r(n+k)/2,(n−k)/2 zn cos(kϑ)

in which red-rooted and blue-rooted trees are each counted with weight one-half. In
deriving the functional equation for this series, the conjugate series

sϑ(z) =
rϑ(z)− r−ϑ(z)

2i
,

=
∑
n≥1

k≡n(mod 2)

r(n+k)/2,(n−k)/2 zn sin(kϑ)

will play an auxiliary role. Next we use the formula

1

2π

∫ 2π

0

cos(kϑ) dϑ =

{
1 if k = 0,
0 if k �= 0

to segregate the terms corresponding to equicolored trees from the others. Specifically,
the generating function

r∗(z) =
1

2π

∫ 2π

0

cϑ(z) dϑ

enumerates equicolorable rooted trees, since we have counted both the red- and blue-
rooted versions of the tree, each with weight one-half. This method of extracting the
diagonal terms from a bivariate power series appears to be new in the combinatorial
literature. Hautus and Klarner [H] give a method based on contour integration. Our
method is, of course, equivalent but more convenient in the case at hand because of
the role of the conjugate trigonometric series indicated above.

Finally, by standard analytic methods, we determine the asymptotic behavior of
the coefficients in r∗(z). To do this we determine, for each ϑ in the interval [0, 2π)
of integration, the behavior of the coefficients in cϑ(z); then we estimate the integral
of the resulting expression. Since cϑ(z) is periodic in ϑ with period 2π, the integral

ENUMERATION OF EQUICOLORABLE TREES 95

can be taken over any interval of length 2π. In fact, since the greatest contributions
to the integral come when ϑ is near one of two points, 0 and π, it will be technically
convenient to take the interval of integration to be [−π/2, 3π/2), which has 0 and π
as interior points.

The enumeration of equicolorable labelled trees (either rooted or unrooted) fol-
lows easily from the enumeration of equicolored labelled trees, which has been dealt
with already in the literature. Nevertheless, in section 2 we shall solve this problem
again using methods that will extend later to the unlabelled case. This will provide a
testing ground for our methods in a setting where the outcome is known in advance.
The result is that the probability that a randomly chosen n-vertex labelled tree is
equicolorable is asymptotically just twice the probability that its vertices would be
equicolored if they were assigned colors by independent unbiased coin flips (which is(
n
n/2

)
/2n ∼ (2/πn)1/2 for n even and 0 for n odd.) In section 3, we shall enumerate

equicolorable rooted unlabelled trees. Finally, in section 4, we shall enumerate equi-
colorable unrooted unlabelled trees. For both rooted and unrooted trees, we conclude
that the probability that a randomly chosen n-vertex unlabelled tree is equicolorable
is asymptotically 1.40499 . . . times as large as the probability that it would be equi-
colored if its vertices were assigned colors by independent unbiased coin flips.

2. Labelled trees. It was Cayley [C5] who in 1889 first stated that the number
of labelled trees on n vertices is nn−2, although this result is implicit in earlier related
work by Sylvester [S2] in 1857 and Borchardt [B] in 1860. Many proofs of this result
are now known; see Moon [M1, M2]. The one most relevant here, due to Pólya [P1,
P2], is as follows.

A labelled tree on n vertices can be rooted in exactly n different ways, so it will
suffice to show that the number Rn of rooted labelled trees is nn−1. Let

R(z) =
∑
n≥1

Rn
n!

be the exponential generating function for rooted labelled trees. Pólya’s component
principle states that if F (z) is the exponential generating function for labelled “com-
ponents,” then

G(z) = expF (z)(2.1)

is the exponential generating function for labelled structures comprising zero or more
disjoint components. Since a rooted tree comprises a root (enumerated by z), together
with zero or more disjoint rooted trees (the subtrees adjacent to the root, enumerated
by expR(z)), R(z) satisfies the functional equation

R(z) = z expR(z).(2.2)

From this equation, Lagrange’s inversion formula gives nn−1/n! as the coefficient
[zn]R(z) of zn in R(z). Thus we conclude that Rn = nn−1, as claimed.

Since we shall work later with functional equations to which Lagrange’s inver-
sion formula cannot be applied, it will be instructive to see how even without it the
asymptotic behavior of the coefficients of R(z) can be extracted from (2.2).

The key idea will be the use of Darboux’s lemma to deduce the asymptotic be-
havior of the coefficients from the nature of the singularities of R(z). To find the
singularities of R(z) as a function of z, we write (2.2) as Φ

(
z,R(z)

)
= 0, where

Φ(z, w) = z expw − w.

96 NICHOLAS PIPPENGER

To locate the singularities, we calculate

∂

∂w
Φ(z, w) = Φ(z, w) + w − 1.

The singularities occur when this derivative and Φ(z, w) vanish simultaneously for
w = R(z). This happens only for w = W0 = R(Z0) = 1 and z = Z0 = 1/e. To
expand R(z) in the neighborhood of z = Z0, we calculate

∂2

∂w2
Φ(z, w) =

∂

∂w
Φ(z, w) + 1 = Φ(z, w) + w

and

∂

∂z
Φ(z, w) =

(
Φ(z, w) + w

)
/z.

Then we have

∂2

∂w2
Φ(z, w)

∣∣
w=W0,z=Z0

= 1

and

∂

∂z
Φ(z, w)

∣∣
w=W0,z=Z0

= 1/Z0,

so that

Φ(z, w) =
1

2
(w −W0)

2 +O
(
(w −W0)

3
)

− (1− z/Z0) +O
(
(w −W0)(1− z/Z0)

)
+O

(
(1− z/Z0)

2
)
.

Thus at z = Z0, R(z) has a branch point of order 2 and an expansion of the form

R(z) = A(z) +B(z)(1− z/Z0)
1/2,

where A(z) = 1+O(z) and B(z) = −21/2+O(z) are analytic functions of z. Applying
Darboux’s lemma [D] (see also Knuth and Wilf [K]), we conclude that [zn]R(z) is
asymptotic to en/n3/2(2π)1/2 and thus by Stirling’s formula that Rn is asymptotic to
nn−1.

The problem of enumerating equicolored labelled trees will be reduced to the
problem of enumerating certain “rooted spanning trees.” LetKl,m = (V,W,E) denote
the complete bipartite graph with l red vertices V = {v1, . . . , vl}, m blue vertices
W = {w1, . . . , wm}, and lm edges E. (Each edge is an unordered pair comprising one
vertex from V and one from W .) Let Rl,m denote the number of red-rooted spanning
trees in Kl,m, that is, the number of spanning trees in which one of the red vertices
has been distinguished as the root. Since each unrooted spanning tree in Kl,m can be
assigned a red root in exactly l different ways, the number of unrooted spanning trees
in Kl,m is Rl,m/l. In particular, there are Rm,m/m unrooted spanning trees in Km,m.
Each equicolored labelled tree on n = 2m vertices gives rise to

(
2m
m

)
unrooted spanning

trees in Km,m, since the 2m vertices U = {u1, . . . , u2m} can be partitioned into m
red vertices V and m blue vertices W in exactly

(
2m
m

)
different ways. Thus there are(

2m
m

)
Rm,m/m equicolored labelled trees. Since each equicolorable labelled tree can

be equicolored in exactly two different ways, there are
(
2m
m

)
Rm,m/2m equicolorable

ENUMERATION OF EQUICOLORABLE TREES 97

labelled trees on n = 2m vertices. (There are, of course, no equicolorable trees with
an odd number of vertices.)

The problem of enumerating equicolorable labelled trees reduces to the problem
of enumerating red-rooted spanning trees in Kl,m. This latter problem has been
solved by Austin [A] (see also Scoins [S1] and Glicksman [G]), who showed that
Rl,m = lmml−1. The proofs of Austin and Scoins are based on the following idea.

Let

R(x, y) =
∑

l≥1,m≥0

Rl,m
l!m!

be the bivariate exponential generating function for red-rooted spanning trees inKl,m.
The component principle analogous to (2.1) for bivariate exponential generating func-
tions is

G(x, y) = expF (x, y),

where F (x, y) is the generating function for components and G(x, y) is the generating
function for structures comprising zero or more disjoint components. Since a rooted
spanning tree with a red root comprises a red root (enumerated by x), together with
zero or more disjoint rooted trees (which have blue roots, and are thus enumerated
by R(y, x)), R(x, y) satisfies the functional equation

R(x, y) = x expR(y, x).(2.3)

Austin and Scoins use this equation, together with Lagrange’s inversion formula, to
show that the coefficient [xlym]R(x, y) of xlym in R(x, y) is lmml−1/l!m!. Thus
Rl,m = lmml−1, as claimed. In particular, Rm,m = m2m−1. As before, we shall derive
this asymptotic behavior without using Lagrange’s inversion formula.

As indicated in the introduction, we begin by making the substitutions x =
z exp(iϑ) and y = z exp(−iϑ) and thus defining

Rϑ(z) = R
(
z exp(iϑ), z exp(−iϑ)).(2.4)

From (2.3) and (2.4) we obtain

Rϑ(z) = z exp
(
iϑ+R−ϑ(z)

)
(2.5)

as the functional equation satisfied by Rϑ(z).
We shall be interested in real values of ϑ, and it will turn out that the singularities

of Rϑ(z) occur at real values of z. It will be convenient therefore to work with relatives
of Rϑ(z) that are real when ϑ and z are real. Thus we define

Cϑ(z) =
Rϑ(z) +R−ϑ(z)

2
(2.6)

and

Sϑ(z) =
Rϑ(z)−R−ϑ(z)

2i
.(2.7)

We can find the functional equations satisfied by Cϑ(z) and Sϑ(z) by substituting
(2.5) into (2.6) and (2.7), then substituting Rϑ(z) = Cϑ(z) + iSϑ(z) and R−ϑ(z) =
Cϑ(z)− iSϑ(z) into the result to obtain

Cϑ(z) = z expCϑ(z) cos
(
ϑ− Sϑ(z)

)
(2.8)

98 NICHOLAS PIPPENGER

and

Sϑ(z) = z expCϑ(z) sin
(
ϑ− Sϑ(z)

)
.(2.9)

We shall need to determine the singularities of Cϑ(z) as a function of z with ϑ
fixed. To find them, we square (2.8) and (2.9) and add them to obtain

Cϑ(z)
2 + Sϑ(z)

2 = z2 exp
(
2Cϑ(z)

)
.

We then use this result to eliminate Sϑ(z) from (2.8), obtaining

Cϑ(z) = z expCϑ(z) cos
(
ϑ− (z2 exp

(
2Cϑ(z)

)− Cϑ(z)
2
)1/2)

.

This equation can be written as Φϑ
(
z, Cϑ(z)

)
= 0, where

Φϑ(z, w) = z expw cos
(
ϑ− (z2 exp(2w)− w2

)1/2)− w.

To locate the singularities of Cϑ(z), we calculate

∂

∂w
Φϑ(z, w) = Φϑ(z, w)− 1 + z2 exp(2w).

The singularities occur when this derivative and Φ(z, w) vanish simultaneously for
w = Cϑ(z), so that we have

Z±ϑ = ± exp−Cϑ(Z±ϑ).(2.10)

Substituting this relation into (2.8) and (2.9) yields

Cϑ(Z
±
ϑ) = ± cos

(
ϑ− Sϑ(Z

±
ϑ)
)
,(2.11)

and

Sϑ(Z
±
ϑ) = ± sin

(
ϑ− Sϑ(Z

±
ϑ)
)
,(2.12)

where, of course, we must take the same sign throughout all three equations.
The solution to (2.11) and (2.12), and similar pairs of equations, can be expressed

in terms of the coordinates of the cycloid curve, defined parametrically by

X(t) = t+ sin t,

Y (t) = cos t.

This curve is the locus of a marked point on a hoop of radius 1 that rolls without
slipping on the line Y = −1. We define the cycloid function by

cycϑ = Y
(
X−1(ϑ)

)
.

This function is periodic with period 2π. It has a crest cycϑ = 1 − ϑ2/8 + O(ϑ4)
in the neighborhood of ϑ = 0, and a cusp cycϑ = −1 + (9/2)1/3(ϑ − π)2/3 in the
neighborhood of ϑ = π. (Some discussions of the cycloid assume that the hoop rolls
on the line Y = 0, or that ϑ = 0 corresponds to a cusp rather than a crest, or both.)
We shall also need the cocycloid curve, defined by

X(t) = t+ sin t,

Z(t) = sin t,

ENUMERATION OF EQUICOLORABLE TREES 99

and the cocycloid function, defined by

cocycϑ = Z
(
X−1(ϑ)

)
.

This function represents the lag of the center of the hoop behind the marked point.
It is also periodic with period 2π, and it has inflections at ϑ = 0 and ϑ = π with
expansions cocycϑ = ϑ/2 + O(ϑ3) and cocycϑ = −61/3(ϑ− π)1/3 + O(ϑ− π) in the
neighborhoods of these points, respectively. Finally, we have the identity cyc2 ϑ +
cocyc2 ϑ = 1.

These definitions allow us to solve (2.11) and (2.12). We have W+
ϑ = Cϑ(Z

+
ϑ) =

cycϑ, so that

Z+
ϑ = exp(−cycϑ).(2.13)

Taking the minus sign in (2.11) and (2.12) is equivalent to shifting ϑ by π, so we have

Z−ϑ = − exp(−cyc(ϑ− π)
)
.(2.14)

It may appear paradoxical that we have found two singularities for Cϑ(z), whereas
there was only one for R(z) = C0(z). The resolution of this paradox will appear
shortly.

To expand Cϑ(z) in the neighborhood of z = Z+
ϑ , we calculate

∂2

∂w2
Φϑ(z, w) =

∂

∂w
Φϑ(z, w) + 2z2 exp(2w) = Φϑ(z, w)− 1 + 3z2 exp(2w)

and

∂

∂z
Φϑ(z, w) =

(
Φϑ(z, w) + w + z2 exp(2w)

)
/z.

We then have

∂2

∂w2
Φϑ(z, w)

∣∣
w=W+

ϑ
,z=Z+

ϑ

= 2

and

∂

∂z
Φϑ(z, w)

∣∣
w=W+

ϑ
,z=Z+

ϑ

= (1 +W+
ϑ)/Z

+
ϑ ,

so that

Φϑ(z, w) = (w −W+
ϑ)

2 +O
(
(w −W+

ϑ)
3
)− (1 +W+

ϑ)(1− z/Z+
ϑ)

+O
(
(w −W+

ϑ)(1− z/Z+
ϑ)
)
+O

(
(1− z/Z+

ϑ)
2
)
.

Thus at Z+
ϑ , Cϑ(z) has a branch point of order 2 and an expansion of the form

Cϑ(z) = A+
ϑ (z) +B+

ϑ (z)(1− z/Z+
ϑ)

1/2,

where A+
ϑ (z) = cycϑ + O(z − Z+

ϑ) and B+
ϑ (z) = −(1 + cycϑ)1/2 + O(z − Z+

ϑ) are
analytic functions of z. Furthermore, the constants in the O-terms are uniform in ϑ,
since they vary continuously on the compact fundamental domain [−π/2, 3π/2) of ϑ.
Similar arguments give

Cϑ(z) = A−ϑ (z) +B−ϑ (z)(1− z/Z−ϑ)
1/2,

100 NICHOLAS PIPPENGER

where A−ϑ (z) = cyc(ϑ−π)+O(z−Z−ϑ) and B+
ϑ (z) = −

(
1+cyc(ϑ−π)

)1/2
+O(z−Z−ϑ)

for the expansion of Cϑ(z) in the neighborhood of z = Z−ϑ . These formulae resolve
the paradox mentioned above: the singularities of Cϑ(z) “blink” at the cusps of the
cycloid, where the factor multiplying (1 − z/Z±ϑ)

1/2 vanishes. For the singularity at
Z−ϑ , this occurs at ϑ = 0, so that R(z) = C0(z) has just one singularity at z = Z0 =
Z+

0 .
We now proceed, as indicated in the introduction, to extract the desired asymp-

totic information from Cϑ(z). We define

R∗(z) =
1

2π

∫ 3π/2

−π/2
Cϑ(z) dϑ,

a power series in z in which the coefficients of odd powers of z vanish and the coefficient
of the even power z2m is the same as the coefficient of the term xmym in R(x, y). Thus
we have

Rm,m
m!2

=
1

2π

∫ 3π/2

−π/2
[z2m]Cϑ(z) dϑ.

The largest contributions to this integral come from those ϑ for which the singularities
of Cϑ(z) are closest to the origin; for the singularity at Z+

ϑ this occurs for ϑ near 0,
and for Z−ϑ , near π. Accordingly, we set

ε(n) =

(
48 log n

n

)1/2

and break the interval I = [−π/2, 3π/2) into three parts: J+ = [−ε(n), ε(n)], J− =
[π − ε(n), π + ε(n)], and K = I \ (J+ ∪ J−).

First we consider the integral over ϑ inK. We have Z+
ϑ = exp−cycϑ = exp−(1−

ϑ2/8 + O(ϑ4)
)
. Thus for ϑ not in J+, we have Z+

ϑ ≥ r, where r = exp−(1 −
ε(n)2/16

)
= exp−(1 − 3 log n/n

)
. Similarly, for ϑ not in J−, we have Z−ϑ ≤ −r.

Thus for ϑ in K, Cϑ(z) is analytic throughout the disk of radius r centered at the
origin. By Cauchy’s theorem, we have

[zn]Cϑ(z) =
1

2πi

∮
Cϑ(z) dϑ

zn+1

= O

(
1

rn

)

= O

(
en

n3

)
,

where the contour integral is taken in the positive sense around the circle of radius r
centered at the origin. Thus we have

1

2π

∫
K

[zn]Cϑ(z) dϑ = O

(
en

n3

)
.

For ϑ in J+, we have by Darboux’s lemma

[zn]Cϑ(z) = −(1 + cycϑ)1/2
(
n− 3/2

n

)(
1

Z+
ϑ

)n
+O

((
n− 5/2

n

)(
1

Z+
ϑ

)n)

=
en

(2π)1/2n3/2

(
1 +O

(
(log n)2

n

))
exp−(nϑ2/8),

ENUMERATION OF EQUICOLORABLE TREES 101

where we have estimated the leading factor by

−(1+cycϑ)1/2 = −(2+O(ϑ2)
)1/2

= −21/2
(
1+O

(
ε(n)2

))
= −21/2

(
1 +O

(
log n

n

))
,

the singular point by

Z+
ϑ = exp−cycϑ = exp−(1− ϑ2/8 +O(ϑ4)

)
= exp−(1− ϑ2/8)

(
1 +O

(
ε(n)4

))
= exp−(1− ϑ2/8)

(
1 +O

((
log n

n

)2
))

,

and the binomial coefficients by(
n− 3/2

n

)
= − 1

2π1/2n3/2

(
1 +O

(
1

n

))

and (
n− 5/2

n

)
= O

(
1

n5/2

)
.

Thus we have

1

2π

∫
J+

[zn]Cϑ(z) dϑ

=
en

(2π)1/2n3/2

(
1 +O

(
(log n)2

n

))∫ ε(n)

−ε(n)

exp−(nϑ2/8) dϑ

=
en

πn2

(
1 +O

(
(log n)2

n

))
,

where we have evaluated the integral by making the change of variable ϑ = 2ξ/n1/2

to obtain

exp−(nϑ2/8) dϑ =
2

n1/2

∫ δ(n)

−δ(n)

exp−(ξ2/2) dξ

=
2

n1/2

∫ ∞
−∞

exp−(ξ2/2) dξ

− 2

n1/2

∫ −δ(n)

−∞
exp−(ξ2/2) dξ

− 2

n1/2

∫ ∞
δ(n)

exp−(ξ2/2) dξ

=
23/2π1/2

n1/2
+O

(
1

n12(log n)1/2

)
,

where δ(n) = (24 logn)1/2.
For ϑ in J−, similar arguments yield

1

2π

∫
J+

[zn]Cϑ(z) dϑ = ± en

πn2

(
1 +O

(
(log n)2

n

))
,

102 NICHOLAS PIPPENGER

where the plus sign is taken for n even and the minus sign for n odd. (The alterna-
tion of sign arises from the negative branch point Z−ϑ being raised to the power n.)
Combining these estimates, we conclude that

[zn]R∗(z) =
2en

πn2

(
1 +O

(
(log n)2

n

))

for even n. For odd n we know that [zn]R∗(z) = 0, although this asymptotic analysis
yields only [zn]R∗(z) = O

(
en(log n)2/n3

)
. Since Rm,m = m!2[z2m]R∗(z) and m!2 =

2πm2m+1e−2m
(
1 +O(1/m)

)
, we conclude that Rm,m = m2m−1

(
1 +O(1/m)

)
, which

is consistent with the exact result cited above. We observe that the limiting value, as
n tends to infinity through even values, of the ratio of R∗n/Rn (the probability that a
randomly chosen n-vertex labelled tree is equicolorable) to

(
n
n/2

)
/2n ∼ (2/πn)1/2 (the

probability that n vertices, independently assigned colors by unbiased coin flips, are
equicolored) is 2.

3. Rooted trees. The problem of enumerating rooted unlabelled trees was first
broached by Cayley [C1] in 1857. The problem is to determine the number rn of
different rooted trees on n vertices, where two trees are to be considered the same if
there is an isomorphism between them (that is, a one-to-one correspondence between
the vertices that preserves the root, as well as the adjacency relation). Cayley did not
quite give either a recurrence or a functional equation for the generating function for
these trees but rather gave a curious amalgam of the two that allows the number of
rooted trees to be calculated expeditiously.

It was Pólya [P1, P2] who in 1937 first gave an enumeration of rooted trees entirely
in terms of the generating function

r(z) =
∑
n≥1

rn z
n,

and it is his path that we shall follow and extend in our work. Note that, as is
customary when enumerating unlabelled objects, r(z) is an “ordinary,” rather than
an “exponential,” generating function.

Pólya’s first step was to formulate a component principle analogous to (2.1) for
ordinary generating functions enumerating unlabelled objects. This principle states
that if f(z) is the ordinary generating function for unlabelled components, then

g(z) = exp
∑
h≥1

f(zh)

h
(3.1)

is the ordinary generating function for unlabelled structures comprising zero or more
disjoint components. Since a rooted tree comprises a root together with zero or more
disjoint rooted trees (the subtrees adjacent to the root), r(z) satisfies the functional
equation

r(z) = z exp
∑
h≥1

r(zh)

h
.(3.2)

Note that this functional equation is “nonlocal,” in that the right-hand side involves
the evaluation of r not only at z but at its powers z2, z3, . . . as well.

That the asymptotic methods used for labelled trees in section 2 (based on Dar-
boux’s lemma) can also be applied to (3.2) was indicated by Pólya and carried out

ENUMERATION OF EQUICOLORABLE TREES 103

explicitly by Otter [O]. The first step is to find the singularity of r(z) that is closest
to the origin; this corresponds to the radius of convergence z0 of r(z). Since an un-
labelled rooted tree on n vertices has at most n! different labellings, the coefficients
of r(z) are greater than or equal to the corresponding coefficients of R(z), and thus
z0 ≤ Z0 = 1/e. On the other hand, each unlabelled rooted tree corresponds to at least
one unlabelled ordered rooted tree (in which the offspring of each vertex are linearly
ordered). The latter were enumerated by Cayley [C2], who showed that the number
of such trees with n vertices is 1

n

(
2n−2
n−1

) ≤ 4n−1. Thus the coefficients of r(z) are less
than the corresponding coefficients of z/(1− 4z), so that z0 ≥ 1/4.

To find the singularity z0 more precisely, we write (3.2) as Φ
(
z, r(z)

)
= 0, where

Φ(z, w) = z exp
(
w +Ψ(z)

)− w

and

Ψ(z) =
∑
h≥2

r(zh)

h
.

We observe that since r(z) is analytic for z in the disk of radius 1/4 centered at the
origin, Ψ(z), and thus also Φ(z, w), is analytic for z in the disk of radius (1/4)1/2 =
1/2 > 1/e ≥ z0 centered at the origin. To locate the singularity, we calculate

∂

∂w
Φ(z, w) = Φ(z, w) + w − 1.

The singularity occurs when this derivative and Φ(z, w) vanish simultaneously for
w = r(z). This happens only for w = w0 = r(z0) = 1. Thus z0 satisfies the equation

z0 = exp−(1 + Ψ(z0)
)
.

To determine the numerical value z0 = 0.3383 . . . , we use the formula

Ψ(z) =
∑
h≥2

1

h

∑
n≥1

rn z
nh

=
∑
n≥1

rn

(
log

1

1− zn
− zn

)
,

together with the coefficients rn of the series r(z), which can be calculated recursively
from (3.2) (see Table 1).

To expand r(z) in the neighborhood of z = z0, we calculate

(3.2′)
∂2

∂w2
Φ(z, w) =

∂

∂w
Φ(z, w) + 1 = Φ(z, w) + w

and

(3.2′′)
∂

∂z
Φ(z, w) =

(
Φ(z, w) + w

)(
1 + zΨ′(z)

)
/z.

Then we have

∂2

∂w2
Φ(z, w)

∣∣
w=w0,z=z0

= 1

104 NICHOLAS PIPPENGER

and

∂

∂z
Φ(z, w)

∣∣
w=w0,z=z0

=
(
1 + z0Ψ

′(z0)
)
/z0,

so that

Φ(z, w) =
1

2
(w − w0)

2 +O
(
(w − w0)

3
)

−A (1− z/z0) +O
(
(w − w0)(1− z/z0)

)
+O

(
(1− z/z0)

2
)
,

where A = 1+ z0Ψ
′(z0). To determine the numerical value A = 1.215 . . . , we use the

formula

zΨ′(z) =
∑
h≥2

∑
n≥1

nrn z
nh

=
∑
n≥1

nrn

(
zn

1− zn
− zn

)
.

Thus at z = z0, r(z) has a branch point of order 2 and an expansion of the form

r(z) = a(z) + b(z)(1− z/z0)
1/2,

where a(z) = 1 + O(z − z0) and b(z) = −(2A)1/2 + O(z − z0) are analytic func-
tions of z. Applying Darboux’s lemma, we conclude that [zn]r(z) is asymptotic to
A1/2z−n0 /n3/2(2π)1/2, where (A/2π)1/2 = 0.4399

We now turn to the problem of enumerating equicolorable unlabelled rooted trees.
Let rl,m denote the number of red-rooted unlabelled trees with l ≥ 1 red vertices and
m ≥ 0 blue vertices. Let

r(x, y) =
∑

l≥1,m≥0

rl,m xlym

be the bivariate ordinary generating function for red-rooted unlabelled trees. The
component principle analogous to (3.1) for bivariate ordinary generating functions is

g(x, y) = exp
∑
h≥1

f(xh, yh)

h
,

where f(x, y) is the generating function for components and g(x, y) is the generating
function for structures comprising zero or more disjoint components. Since a red-
rooted tree comprises a red root (enumerated by x), together with zero or more disjoint
blue-rooted trees (enumerated by r(y, x)), r(x, y) satisfies the functional equation

r(x, y) = x exp
∑
h≥1

r(yh, xh)

h
.(3.3)

We shall derive from this functional equation the asymptotic behavior of the coeffi-
cients rm,m.

We begin by making the substitutions x = z exp(iϑ) and y = z exp(−iϑ) and thus
defining

rϑ(z) = r
(
z exp(iϑ), z exp(−iϑ)).(3.4)

ENUMERATION OF EQUICOLORABLE TREES 105

From (3.3) and (3.4) we obtain

rϑ(z) = z exp

iϑ+

∑
h≥1

r−hϑ(zh)
h

(3.5)

as the functional equation satisfied by rϑ(z).
As before, it will be convenient to work with relatives of rϑ(z) that are real when

ϑ and z are real. Thus we define

cϑ(z) =
rϑ(z) + r−ϑ(z)

2
(3.6)

and

sϑ(z) =
rϑ(z)− r−ϑ(z)

2i
.(3.7)

We can find the functional equations satisfied by cϑ(z) and sϑ(z) by substituting
(3.5) into (3.6) and (3.7), then substituting rϑ(z) = cϑ(z) + i sϑ(z) and r−ϑ(z) =
cϑ(z)− i sϑ(z) into the result to obtain

cϑ(z) = z exp

∑
h≥1

chϑ(z
h)

h

 cos

ϑ−

∑
h≥1

shϑ(z
h)

h

(3.8)

and

sϑ(z) = z exp

∑
h≥1

chϑ(z
h)

h

 sin

ϑ−

∑
h≥1

shϑ(z
h)

h

 .(3.9)

To determine the singularities of cϑ(z) as a function of z with ϑ fixed, we eliminate
sϑ(z) from (3.8) and (3.9). Squaring and adding these equations, we obtain

cϑ(z)
2 + sϑ(z)

2 = z2 exp
(
2cϑ(z) + 2Ψϑ(z)

)
,

where

Ψϑ(z) =
∑
h≥2

chϑ(z
h)

h
.

This result allows us to eliminate sϑ(z) from (3.8), obtaining

cϑ(z) = z exp
(
cϑ(z) + Ψϑ(z)

)
× cos

(
ϑ− (z2 exp

(
2cϑ(z) + 2Ψϑ(z)

)− cϑ(z)
2
)1/2 −Υϑ(z)

)
,

where

Υϑ(z) =
∑
h≥2

shϑ(z
h)

h
.

This equation can be written as Φϑ
(
z, cϑ(z)

)
= 0, where

Φϑ(z, w) = z exp
(
w+Ψϑ(z)

)
cos
(
ϑ− (z2 exp

(
2w + 2Ψϑ(z)

)− w2
)1/2 −Υϑ(z)

)
−w.

106 NICHOLAS PIPPENGER

To locate the singularities of cϑ(z), we calculate

∂

∂w
Φϑ(z, w) = Φϑ(z, w)− 1 + z2 exp

(
2w + 2Ψϑ(z)

)
.

The singularities occur when this derivative and Φϑ(z, w) vanish simultaneously for
z = z±ϑ and w = cϑ(z

±
ϑ), so that we have

z±ϑ = ± exp−(cϑ(z±ϑ) + Ψϑ(z
±
ϑ)
)
.(3.10)

Substituting this relation into (3.8) and (3.9) yields

cϑ(z
±
ϑ) = ± cos

(
ϑ− sϑ(z

±
ϑ)−Υϑ(z

±
ϑ)
)
,

and

sϑ(z
±
ϑ) = ± sin

(
ϑ− sϑ(z

±
ϑ)−Υϑ(z

±
ϑ)
)
,

where, of course, we must take the same sign throughout all three equations. We can
again express the solutions to these equations in terms of the cycloid function

z+
ϑ = exp−(cyc(ϑ−Υϑ(z

+
ϑ)
)
+Ψϑ(z

+
ϑ

))
(3.11)

and

z−ϑ = − exp−(cyc(ϑ− π −Υϑ(z
−
ϑ)
)
+Ψϑ(z

−
ϑ

))
.

To expand cϑ(z) in the neighborhood of z = z+
ϑ , we calculate

∂2

∂w2
Φϑ(z, w) =

∂

∂w
Φϑ(z, w) + 2z2 exp

(
2w + 2Ψϑ(z)

)
= Φϑ(z, w)− 1 + 3z2 exp

(
2w + 2Ψϑ(z)

)
and

∂

∂z
Φϑ(z, w) =

(
Φϑ(z, w) + w

)(
1 + zΨ′ϑ(z)

)
/z

+ z2 exp
(
3w + 3Ψϑ(z)

) (
1 + zΨ′ϑ(z)

)
+ z exp

(
w +Ψϑ(z)

) (
z2 exp

(
2w + 2Ψϑ(z)

)− w2
)1/2

Υ′ϑ(z).

Then we have

∂2

∂w2
Φϑ(z, w)

∣∣
w=w+

ϑ
,z=z+

ϑ

= 2

and

∂

∂z
Φϑ(z, w)

∣∣
w=w+

ϑ
,z=z+

ϑ

=
(1 + w+

ϑ)
(
1 + z+

ϑΨ
′(z+

ϑ)
)
+
(
1− (w+

ϑ)
2
)1/2

z+
ϑΥ
′
ϑ(z

+
ϑ)

z+
ϑ

,

so that

Φϑ(z, w) = (w − w+
ϑ)

2 +O
(
(w − w+

ϑ)
3
)

−A+
ϑ (1− z/z+

ϑ) +O
(
(w − w+

ϑ)(1− z/z+
ϑ)
)
+O

(
(1− z/z+

ϑ)
2
)
,

ENUMERATION OF EQUICOLORABLE TREES 107

where

A+
ϑ = (1 + w+

ϑ)
(
1 + z+

ϑΨ
′(z+

ϑ)
)
+
(
1− (w+

ϑ)
2
)1/2

z+
ϑΥ
′
ϑ(z

+
ϑ)

=
(
1 + cyc

(
ϑ−Υϑ(z

+
ϑ)
))(

1 + z+
ϑΨ
′(z+

ϑ)
)
+ cocyc

(
ϑ−Υϑ(z

+
ϑ)
)
z+
ϑΥ
′
ϑ(z

+
ϑ).

Thus at z = z+
ϑ , cϑ(z) has a branch point of order 2 and, in the neighborhood of

z = z+
ϑ , an expansion of the form

c+ϑ (z) = a+
ϑ (z) + b+ϑ (z)(1− z/z+

ϑ)
1/2,

where a+
ϑ (z) = cyc

(
ϑ−Υϑ(z+

ϑ)
)
+O(z − z+

ϑ) and b+ϑ (z) = −(A+
ϑ)

1/2 +O(z − z+
ϑ) are

analytic functions of z, and where again the constants in the O-terms are uniform in
ϑ. Similar arguments give, in the neighborhood of z = z−ϑ , an expansion of the form

c−ϑ (z) = a−ϑ (z) + b−ϑ (z)(1− z/z−ϑ)
1/2,

where a−ϑ (z) = cyc
(
ϑ−π−Υϑ(z−ϑ)

)
+O(z− z−ϑ), b

−
ϑ (z) = −(A−ϑ)1/2+O(z− z−ϑ) and

A−ϑ = (−1 + w−ϑ)
(
1 + z−ϑ Ψ

′(z−ϑ)
)− (1− (w−ϑ)

2
)1/2

z−ϑ Υ
′
ϑ(z
−
ϑ)

=
(−1 + cyc

(
ϑ− π −Υϑ(z

−
ϑ)
))(

1 + z−ϑ Ψ
′(z−ϑ)

)
− cocyc

(
ϑ− π −Υϑ(z

−
ϑ)
)
z−ϑ Υ

′
ϑ(z
−
ϑ).

We are now ready to extract the desired asymptotic information from these ex-
pansions for cϑ(z). We define

r∗(z) =
1

2π

∫ 3π/2

−π/2
cϑ(z) dϑ,

a power series in z in which the coefficients of odd powers of z vanish and the coefficient
of the even power z2m is the same as the coefficient of the term xmym in r(x, y). Thus
we have

rm,m =
1

2π

∫ 3π/2

−π/2
[z2m] cϑ(z) dϑ.(3.12)

The estimation of this integral is completely analogous to that in section 2. The only
differences are in the locations of the singularities z±ϑ and in the constant terms of
the functions a±ϑ and b±ϑ . Furthermore, these values affect the leading term of the
asymptotics only through their dependence on ϑ in the neighborhoods of ϑ = 0 (for
the plus superscript) and ϑ = π (for the minus superscript). We begin with the plus
superscript. Simple arguments show that z+

ϑ is an even analytic function of ϑ, and
z+
0 = z0, as in the univariate case. Thus in the neighborhood of ϑ = 0 we have

z+
ϑ = z0

(
1 +

z̈+
0

2z0
ϑ2 +O(ϑ4)

)
,

where dots indicate differentiation with respect to the subscript (as opposed to primes,
which indicate differentiation with respect to a parenthesized argument). To deter-
mine z̈+

0 , we use (3.11). For the cycloid function, we have the expansion cycϑ =
1 − ϑ2/8 + O(ϑ4) in the neighborhood of ϑ = 0. The function Υϑ(z) is an odd

108 NICHOLAS PIPPENGER

analytic function of ϑ, so we have Υϑ(z
+
ϑ) = Υ̇0(z

+
0)ϑ + O(ϑ3) in the neighbor-

hood of ϑ = 0. And the function Ψϑ(z) is an even analytic function of ϑ, so we
have Ψϑ(z

+
ϑ) = Ψ0(z

+
0) +

(
Ψ̈0(z

+
0) +Ψ′0(z

+
0) z̈

+
0

)
ϑ2/2+O(ϑ4) in the neighborhood of

ϑ = 0. Combining these results with (3.11) yields z̈+
0 /2z0 = (B2 − 4C)/8A, where

B = 1− Υ̇0(z
+
0) and C = Ψ̈0(z

+
0), so that

z+
ϑ = z0

(
1 +

B2 − 4C

8A
ϑ2 +O(ϑ4)

)
.

The constant terms of a+
ϑ (z) = 1+O(ϑ2)+O(z−z+

ϑ) and b+ϑ (z) = −(2A)1/2+O(ϑ2)+
O(z − z+

ϑ) are the same as in the univariate case. For the minus superscript, similar
calculations yield

z−ϑ = z0

(
1 +

B2 − 4C

8A
ϑ2 +O(ϑ4)

)
,

a−ϑ (z) = 1 + O(ϑ2) + O(z − z−ϑ), and b−ϑ (z) = −(2A)1/2 + O(ϑ2) + O(z − z−ϑ). With
these expansions, we can estimate (3.12) as in section 2 to obtain

[zn]r∗(z) =
2Az−n0

π(B2 − 4C)1/2 n2

(
1 +O

(
(log n)2

n

))
(3.13)

for even n. For odd n we know that [zn]r∗(z) = 0.
It remains to determine the numerical values of the constants in (3.13). For B,

we start with

ṡ0(z) =
∑

l≥1,m≥0

(l −m)rl,m zl+m = q(z),

where

q(z) =

((
x

∂

∂x
− y

∂

∂y

)
r(x, y)

) ∣∣∣∣
x=z,y=z

.

The coefficients of the series q(z) =
∑
n≥1 qn z

n can be calculated from the coefficients
rl,m, which can in turn be calculated recursively from (3.3) (see Table 1). To determine

the numerical value B = 1− Υ̇0(z0) = 0.8269 . . . , we use the formula

Υ̇0(z) =
∑
h≥2

ṡ0(z)

=
∑
h≥2

∑
n≥1

qn z
nh

=
∑
n≥1

qn

(
zn

1− zn
− zn

)
.

For C, we start with

c̈0(z) = −
∑

l≥1,m≥0

(l −m)2rl,m zl+m = −p(z),

where

p(z) =

((
x

∂

∂x
− y

∂

∂y

)2

r(x, y)

)∣∣∣∣
x=z,y=z

.

ENUMERATION OF EQUICOLORABLE TREES 109

Table 1
Coefficients in the series r(z), q(z), p(z), and r∗(z).

n rn qn pn r∗n
1 1 1 1 0
2 1 0 0 1
3 2 0 2 0
4 4 0 8 2
5 9 1 25 0
6 20 2 68 9
7 48 8 192 0
8 115 18 516 44
9 286 52 1438 0

10 719 130 3964 249
11 1842 348 11098 0
12 4766 904 31056 1506
13 12486 2416 87694 0
14 32973 6404 247960 9687
15 87811 17213 704571 0

The coefficients of the series p(z) =
∑
n≥1 pnz

n can also be calculated from the

coefficients rl,m (see Table 1). To determine the numerical value C = Ψ̈0(z0) =
−0.4450 . . . , we use the formula

Ψ̈0(z) =
∑
h≥2

h c̈0(z)

= −
∑
h≥2

h
∑
n≥1

pn z
nh

= −
∑
n≥1

pn

(
zn

(1− zn)2
− zn

)
.

Combining these results gives 2A/π(B2 − 4C)1/2 = 0.4931 . . . for the constant ap-
pearing in (3.13). We observe that the limiting value, as n tends to infinity through
even values, of the ratio of r∗n/rn (the probability that a randomly chosen n-vertex
rooted tree is equicolorable) to

(
n
n/2

)
/2n ∼ (2/πn)1/2 (the probability that n vertices,

independently assigned colors by unbiased coin flips, are equicolored) is 2A1/2/(B2−
4C)1/2 = 1.40499

4. Unrooted trees. The enumeration of unrooted unlabelled trees was first un-
dertaken by Cayley, who in 1875 [C3] gave it in terms of a two-parameter enumeration
of rooted trees by size and depth. In 1881 [C4], he expressed the numbers un of un-
rooted trees exclusively in terms of the numbers rn of rooted trees. In 1948, Otter
[O] expressed the generating function

u(z) =
∑
n≥1

un z
n

for unrooted trees in terms of the generating function

r(z) =
∑
n≥1

rn z
n

for rooted trees,

u(z) = r(z)− 1

2
r(z)2 +

1

2
r(z2),(4.1)

110 NICHOLAS PIPPENGER

and from this he was able to deduce the asymptotic behavior,

un ∼ A3/2

(2π)1/2
z−n0

n5/2
,(4.2)

where A = 1.215 . . . and z0 = 0.3383 . . . are as defined in section 3.
If T is an unrooted tree, let vT denote the number of orbits of its vertices under

the action of its automorphism group, let eT denote the number of orbits of edges,
and let sT denote 1 or 0 depending on whether or not T is edge-symmetric, that
is, depending on whether or not there is an automorphism of T that exchanges the
vertices of some edge of T . Otter established the identity

1 = vT − eT + sT .(4.3)

If nT denotes the number of vertices in T , then multiplying (4.3) by znT and summing
over all unrooted trees T yields for the left-hand side the generating function u(z) for
unrooted trees. Since the unrooted tree T can be rooted in vT different ways, the sum
of vT znT yields r(z). Similarly, the sum of eT znT yields the generating function for
trees rooted at an edge rather than a vertex; this is easily seen to be 1

2

(
r(z)2+r(z2)

)
.

Finally, the sum of sT znT is the generating function for edge-symmetric trees; this is
easily seen to be 1

2r(z
2). Combining these results yields Otter’s identity (4.1).

To derive the asymptotic behavior (4.2), we again apply Darboux’s lemma to
the singularity of u(z) that is closest to the origin. This singularity is at z0, and it
arises from the contributions of r(z) and − 1

2r(z)
2. The term 1

2r(z
2) has no singularity

closer to the origin than z
1/2
0 > z0 and thus makes a negligible contribution to the

asymptotic behavior. With an eye to what is to come, we shall define the generating
function h(z) =

∑
n≥1 hn z

n by

(4.3′) h(z) = 2r(z)− r(z)2,

so that u(z) = 1
2h(z) +

1
2r(z

2). We shall show that

(4.3′′) hn ∼ 2A3/2

(2π)1/2
z−n0

n5/2
,

which implies (4.2).
To expand u(z) in the neighborhood of z = z0, we must extend the expansion of

r(z), obtained in section 3, to higher terms. We have

r(z) = a(z) + b(z)(1− z/z0)
1/2,(4.4)

where a(z) =
∑
k≥0 ak (1 − z/z0)

k and b(z) =
∑
k≥0 bk (1 − z/z0)

k are analytic at

z = z0. We have seen that a0 = 1 and b0 = −(2A)1/2. We shall show now that
a1 = 2A/3.

Continuing from (3.2′) we have

∂3

∂w3
Φ(z, w) =

∂

∂w
Φ(z, w) + 1 = Φ(z, w) + w,

so that

∂3

∂w3
Φ(z, w)

∣∣
w=w0,z=z0

= 1.

ENUMERATION OF EQUICOLORABLE TREES 111

Continuing from (3.2′′) we have

∂2

∂w∂z
Φ(z, w) =

(
Φ(z, w) + w

)(
1 + zΨ′(z)

)
/z,

so that

∂2

∂w∂z
Φ(z, w)

∣∣
w=w0,z=z0

=
(
1 + z0Ψ

′(z0)
)
/z0.

Combining these results yields

Φ(z, w) =
1

2
(w − w0)

2 +
1

6
(w − w0)

3 +O
(
(w − w0)

4
)

−A (1− z/z0)−A (w − w0)(1− z/z0)

+O
(
(w − w0)

2(1− z/z0)
)
+O

(
(1− z/z0)

2
)
,

where as before A = 1+z0Ψ
′(z0). Since we have Φ

(
z, r(z)

)
= 0, this expansion implies

(4.4) with a0 = 1, b0 = −(2A)1/2, and a1 = 2A/3. Substituting this expansion into
the right-hand side of (4.3′) yields that

h(z) = f(z) + g(z)(1− z/z0)
1/2,

where f(z) and g(z) =
∑
k≥0 gk (1 − z/z0)

k are analytic at z = z0, g0 = 0, and

g1 = 2(2A)3/2/3. Applying Darboux’s lemma to the singularity of h(z) at z = z0

yields (4.3′′) and thus Otter’s asymptotic formula (4.2).
To enumerate equicolorable unrooted trees, our first task is to find an analogue

of Otter’s identity (4.1). Let T be an unrooted tree. If one bicoloring of T has aT red
and bT blue vertices, then the other bicoloring has bT red and aT blue vertices. Thus
the polynomial 1

2 (x
aT ybT + xbT yaT) depends only on T and not on the particular

bicoloring considered. We define

u(x, y) =
1

2

∑
T

xaT ybT + xbT yaT ,

where the sum is over all unrooted trees. Our goal is to establish the identity

u(x, y) =
1

2
r(x, y) +

1

2
r(y, x)− 1

2
r(x, y) r(y, x) +

1

2
r(xy),(4.5)

analogous to (4.1).
Let S be a bicolored unrooted tree, and let aS and bS denote the numbers of red

and blue vertices, respectively, in S. We define

h(x, y) =
∑
S

xaS ybS ,

where the sum is over all bicolored unrooted trees. An unrooted tree has two distinct
bicolorings unless it is edge-symmetric, in which case it has just one. This yields

u(x, y) =
1

2
h(x, y) +

1

2
r(xy),

112 NICHOLAS PIPPENGER

since r(xy) enumerates bicolored edge-symmetric unrooted trees. Thus to establish
(4.5) it will suffice to show that

h(x, y) = r(x, y) + r(y, x)− r(x, y) r(y, x).(4.6)

Again using the fact that an unrooted tree has one or two bicolorings depending
on whether or not it is edge-symmetric, we have

h(x, y) =
1

2

∑
T

(2− sT)(x
aT ybT + xbT yaT).

From (4.3) we have 2− sT = 2vT − 2eT + sT , so that

h(x, y) =
∑
T

vT (x
aT ybT + xbT yaT)− 1

2

∑
T

(2eT − sT)(x
aT ybT + xbT yaT).(4.7)

Since an unrooted tree T can be rooted in vT different ways, we have∑
T

vT (x
aT ybT + xbT yaT) = r(x, y) + r(y, x).

Let dT denote the number of different ways in which T can be rooted in a directed
edge. Then dT = 2eT − sT . Thus we have∑

T

(2eT − sT)(x
aT ybT + xbT yaT) =

∑
T

dT (x
aT ybT + xbT yaT)

= 2r(x, y) r(y, x),

since each directed-edge-rooted tree can be decomposed in a unique way into a red-
rooted tree whose root is the source of a directed edge whose target is the root of a
blue-rooted tree, or into a blue-rooted tree whose root is the source of a directed edge
whose target is the root of a red-rooted tree. Substituting these results into (4.7)
yields (4.6) and thus (4.5).

At this point we can express the generating functions u∗(z) =
∑
n≥1 u

∗
n z

n and
h∗(z) =

∑
n≥1 h

∗
n z

n for equicolorable and equicolored unrooted trees, respectively, as

u∗(z) =
1

4π

∫ 3π/2

−π/2
rϑ(z) + r−ϑ(z)− rϑ(z) r−ϑ(z) + r(z2) dϑ(4.8)

and

h∗(z) =
1

2π

∫ 3π/2

−π/2
rϑ(z) + r−ϑ(z)− rϑ(z) r−ϑ(z) dϑ.(4.9)

The coefficients of these generating functions, together with those of u(z) =
∑
n≥1 unz

n

for unrooted trees, are tabulated in Table 2.
To determine the asymptotic behavior of the coefficients u∗n and h∗n, we shall

apply Darboux’s lemma to (4.8) and (4.9). It will suffice to deal with (4.9), since
(4.8) differs merely by a factor of 2 and the additional term r(z2), which (having no

singularity closer to the origin than z
1/2
0 > z0) makes an asymptotically negligible

contribution. To deal with (4.9), we define hϑ(z) to be the integrand,

hϑ(z) = rϑ(z) + r−ϑ(z)− rϑ(z) r−ϑ(z),

ENUMERATION OF EQUICOLORABLE TREES 113

Table 2
Coefficients in the series u(z), u∗(z), and h∗(z).

n un u∗n h∗n
1 1 0 0
2 1 1 1
3 1 0 0
4 2 1 1
5 3 0 0
6 6 3 4
7 11 0 0
8 23 9 14
9 47 0 0

10 106 37 65
11 235 0 0
12 551 168 316
13 1301 0 0
14 3159 895 1742
15 7741 0 0

which (using (3.6) and (3.5)) we can rewrite as

hϑ(z) = 2cϑ(z)− z2 exp
(
2cϑ(z) + 2Ψϑ(z)

)
.(4.10)

From (4.10), we see that the singularities of hϑ(z) closest to the origin are, just
as for cϑ(z), at z+

ϑ and z−ϑ . Starting with the singularity at z+
ϑ , we seek to expand

hϑ(z) in a neighborhood of z+
ϑ as

h+
ϑ (z) = f+

ϑ (z) + g+
ϑ (z) (1− z/z+

ϑ)
1/2,

where f+
ϑ (z) and g+

ϑ (z) are analytic at z = z+
ϑ . Let us expand g+

ϑ (z) as g+
ϑ (z) =∑

k≥0 g
+
ϑ,k (1− z/z+

ϑ)
k.

We shall show first that

g+
ϑ,0 = 0,(4.11)

independently of ϑ. For the first term on the right-hand side of (4.10), we have

2c+ϑ (z) = 2a+
ϑ (z) + 2b+ϑ (z)(1− z/z+

ϑ)
1/2(4.12)

in a neighborhood of z+
ϑ . For the second term, we have

z2 exp
(
2cϑ(z) + 2Ψϑ(z)

)
= z2 exp

(
2a+
ϑ (z) + 2b+ϑ (z)(1− z/z+

ϑ)
1/2 + 2Ψϑ(z)

)
.

By (3.10), this expression tends to 1 as z tends to z+
ϑ . Since exp

(
2b+ϑ (z)(1−z/z+

ϑ)
1/2
)

also tends to 1 in this limit, we conclude that exp
(
2a+
ϑ (z) + 2Ψϑ(z)

)
tends to 1 as z

tends to z+
ϑ . Since this last expression is analytic at z+

ϑ , we have

exp
(
2a+
ϑ (z) + 2Ψϑ(z)

)
= 1 +O(1− z/z+

ϑ).

We also have

exp
(
2b+ϑ (z)(1− z/z+

ϑ)
1/2
)
= 1 + 2b+ϑ (z)(1− z/z+

ϑ)
1/2 +O(1− z/z+

ϑ);

114 NICHOLAS PIPPENGER

we conclude that

z2 exp
(
2cϑ(z) + 2Ψϑ(z)

)
= 1 + 2b+ϑ (z)(1− z/z+

ϑ)
1/2 +O(1− z/z+

ϑ).

Combining this with (4.12) in (4.10) yields g+
ϑ (z) = O(1− z/z+

ϑ), which is (4.11).
Since g+

ϑ,1 is an even analytic function of ϑ, we have

g+
ϑ,1 = g+

0,1 +O(ϑ2).

To determine the value of g+
0,1, we observe that g+

0 (z) = g(z), so that g+
0,1 = g1 =

2(2A)3/2/3. Thus we have

g+
ϑ,1 =

2

3
(2A)3/2 +O(ϑ2).

Combining this with (4.11) yields

g+
ϑ (z) =

2

3
(2A)3/2(1− z/z+

ϑ) +O
(
ϑ2(1− z/z+

ϑ)
)
+O

(
(1− z/z+

ϑ)
2
)
.

Similar arguments give, in the neighborhood of z = z−ϑ , an expansion of the form

h−ϑ (z) = f−ϑ (z) + g−ϑ (z) (1− z/z−ϑ)
1/2,

where

g−ϑ (z) =
2

3
(2A)3/2(1− z/z−ϑ) +O

(
ϑ2(1− z/z−ϑ)

)
+O

(
(1− z/z−ϑ)

2
)
.

With these expansions for the singularities of hϑ(z), we can proceed as before to
apply Darboux’s lemma to the integrand for each value of ϑ, then integrate the result
from −π/2 to 3π/2, with the greatest contributions coming when ϑ is near 0 or π.
For even n the results are

h∗n ∼
4A2

π(B2 − 4C)1/2
z−n0

n3

for (4.9) and

u∗n ∼
2A2

π(B2 − 4C)1/2
z−n0

n3

for (4.8). For n odd, of course, h∗n = u∗n = 0. We observe that the limiting value, as
n tends to infinity through even values, of the ratio of u∗n/un (the probability that
a randomly chosen n-vertex unrooted tree is equicolorable) to

(
n
n/2

)
/2n ∼ (2/πn)1/2

(the probability that n vertices, independently assigned colors by unbiased coin flips,
are equicolored) is 2A1/2/(B2 − 4C)1/2 = 1.40499

5. Conclusion. All of our results enumerating equicolorable trees have been ob-
tained by first enumerating equicolored trees, then relying on a relatively simple rela-
tionship between the two enumerations. We conclude by mentioning some problems
where the relationship is more complicated. First we may consider the enumeration
of equicolorable forests (wherein the individual trees need not be equicolorable). It
should be relatively easy to enumerate equicolored forests of rooted or unrooted trees,

ENUMERATION OF EQUICOLORABLE TREES 115

but the number of equicolorings of a given equicolorable forest depends in a rather
complicated way on the structure of the forest. In another direction, we may con-
sider the number of trees that are equitably colorable with three (or more) colors.
Again, it should be relatively easy to enumerate equitable tricolorings of trees; results
for the labelled case are given by Austin [A]. However, whereas a tree has just two
bicolorings, and one is equitable if and only if both are, a tree with n vertices has
3 · 2n−1 tricolorings, and the number of these that are equitable depends in a rather
complicated way on the structure of the tree.

REFERENCES

[A] T. L. Austin, The enumeration of point-labelled chromatic graphs and trees, Canad. J. Math.,
12 (1960), pp. 535–545.

[B] C. W. Borchardt, Über eine der Interpolation entsprechende Darstellung der Eliminations-
Resultante, J. Reine Angew. Math., 57 (1960), pp. 111–121.

[C1] A. Cayley, On the theory of the analytical forms called trees, Phil. Mag., 13 (1857), pp. 172–
176.

[C2] A. Cayley, On the theory of the analytical forms called trees, second part, Phil. Mag., 18
(1859), pp. 374–378.

[C3] A. Cayley, On the analytical forms called trees, with application to the theory of chemical
combinations, Rep. Brit. Assoc. Adv. Sci., (1875), pp. 257–305.

[C4] A. Cayley, On the analytical forms called trees, Amer. J. Math., 4 (1881), pp. 266–268.
[C5] A. Cayley, A theorem on trees, Quart. J. Math., 23 (1889), pp. 376–378.
[C6] A. Cayley, Collected Mathematical Papers, Cambridge University Press, London, 1897.
[D] G. Darboux, Mémoire sur l’approximation des fonctions des très grands nombres, et sur une

classe étendue des développements en série, J. Math. Pures Appl., 4 (1878), pp. 5–56,
377–416.

[G] S. Glicksman, On the representation and enumeration of trees, Proc. Cambridge Philos. Soc.,
59 (1963), pp. 509–517.

[H] M. L. J. Hautus and D. A. Klarner, The diagonal of a double power series, Duke Math.
J., 38 (1971), pp. 229–235.

[K] D. E. Knuth and H. S. Wilf, A short proof of Darboux’s lemma, Appl. Math. Lett., 2 (1989),
pp. 139–140.

[M1] J. W. Moon, Various proofs of Cayley’s formula for counting trees, in A Seminar on Graph
Theory, F. Harary, ed., Holt, Rinehart and Winston, New York, 1967, pp. 70–78.

[M2] J. W. Moon, Counting Labelled Trees, Canadian Mathematical Society, Montreal, Canada,
1970.

[O] R. Otter, The number of trees, Ann. of Math. (2), 49 (1948), pp. 583–599.
[P1] G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische

Verbindungen, Acta Math., 68 (1937), pp. 145–254.
[P2] G. Pólya and R. C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical

Compounds, Springer-Verlag, New York, Berlin, 1987.
[S1] H. I. Scoins, The number of trees with nodes of alternate parity, Proc. Cambridge Philos.

Soc., 58 (1962), pp. 72–76.
[S2] J. J. Sylvester, On the change of systems of independent variables, Quart. J. Pure Appl.

Math., 1 (1957), pp. 42–56.

A NOTE ON A QUESTION OF C. D. SAVAGE∗

MICHAEL NAATZ†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 1, pp. 116–120

Abstract. Given a graph G and an orientation σ of some of its edges, consider the graph AOσ(G)
which is defined as follows: The vertices are the acyclic orientations of G which agree with σ, and
two of these are adjacent if they differ only by the reversal of a single edge. AOσ(G) is easily seen
to be bipartite. The purpose of this note is to show that it need not contain a Hamilton path even
if both partite sets have the same cardinality. This answers a question of C. D. Savage [SIAM Rev.,
39 (1997), pp. 605–629] and sheds new light onto two well-known open questions in the field of
combinatorial Gray codes.

Key words. Hamilton path, Hamilton cycle, acyclic orientation, poset, linear extension, adja-
cent transposition

AMS subject classifications. 05C45, 05C20, 05C30, 06A07

PII. S0895480100369195

1. Introduction. The area of combinatorial Gray codes deals with the following
problem: We are given a class of combinatorial objects and a rule that decides when
two of these objects are considered similar. The task is now to generate all objects in
the class in such a way that successive objects are similar. The most classical example
consists of the 0/1-strings of given length as objects and the rule which says that two
strings are similar when they differ only in one bit. We refer to Savage’s survey [10]
for an overview of this flourishing direction of research.

A simple but important observation is the fact that a combinatorial Gray code can
be seen as a Hamilton path in a certain graph: Just take as vertices the combinatorial
objects to be generated, and let two of them be adjacent if they are similar. This
graph turns out to be bipartite for the classes of objects and the similarity rules we
want to deal with in this paper. In a bipartite graph, a Hamilton path can exist only
when the parity difference is at most one; i.e., the cardinalities of the two partite sets
differ by at most one. For a Hamilton cycle to be possible, the parity difference has
to be zero. The question we want to treat here is whether such necessary conditions
are also sufficient in certain special cases.

Suppose we are given a graph G and an orientation σ of some of its edges. An
orientation of all edges of G is called acyclic if it does not contain any oriented cycles.
Let us define a graph AOσ(G) as follows: The vertices are the acyclic orientations of
G which agree with σ, and two of these are adjacent if they differ only by the reversal
of a single edge. This graph is easily seen to be bipartite by the following argument.
For every vertex v of AOσ(G), count the number of edges of G which have the same
orientation in v and some arbitrary fixed vertex w; two vertices for which this number
has the same parity can obviously not be adjacent. We are now in a position to state
the question posed by Savage.

Question 1.1 (Savage [10]). Does AOσ(G) contain a Hamilton cycle whenever
the parity difference allows?

∗Received by the editors March 8, 2000; accepted for publication (in revised form) November 2,
2000; published electronically January 16, 2001. This research was supported by the graduate school
“Algorithmische Diskrete Mathematik,” Deutsche Forschungsgemeinschaft grant GRK 219/3.

http://www.siam.org/journals/sidma/14-1/36919.html
†Technische Universität Berlin, Fachbereich Mathematik MA 6-1, Straße des 17. Juni 136, D-

10623 Berlin, Germany (naatz@math.tu-berlin.de).

116

A NOTE ON A QUESTION OF C. D. SAVAGE 117

Before we answer this question in the negative by constructing an infinite number
of counterexamples, we give a short review of two related problems motivating the
question.

The first problem deals with combinatorial Gray codes for linear extensions of
posets. Suppose we are given a poset, i.e., a ground set P together with a binary
relation ≤P on P which is reflexive, transitive, and antisymmetric. By x <P y we
denote x ≤P y and x �= y. A linear extension of a poset is a permutation p1p2 . . . pn of
the elements of P such that pi ≤P pj implies i ≤ j. Let us regard two linear extensions
as similar if they differ only by an adjacent transposition; i.e., one can be constructed
from the other by interchanging two successive elements. Now consider the graph
G(P,≤P) which has the linear extensions of a given poset (P,≤P) as vertices and the
pairs of similar extensions as edges. Such graphs are called adjacent transposition
graphs or graphs of linear extensions. They are bipartite because each edge consists
of an even and an odd permutation. Ruskey made the following conjecture in 1988.

Conjecture 1.2 (Ruskey [8]). A graph of linear extensions has a Hamilton path
if the parity difference is at most one.

This conjecture is still unsolved despite considerable efforts to settle it. There
are, however, many partial results [5, 9, 13, 15] showing that the conjecture is true in
many special cases. When we regard ≤P as the prescribed orientation of some edges
of the complete graph on the ground set P , this problem is easily seen to be intimately
related to Question 1.1.

The second problem which is of interest in this context is the construction of a
Gray code for the acyclic orientations of a graph G in such a way that successive
orientations differ only by the reversal of a single edge; i.e., we are dealing with
AOσ(G) in the special case that none of the edges has a prescribed orientation. We
want to denote this graph by AO(G) and call it the acyclic orientation graph of G.
Edelman (cf. [10]) asked the following question.

Question 1.3 (Edelman). Does an acyclic orientation graph contain a Hamilton
cycle whenever the parity difference is zero?

This problem has not been as thoroughly studied as the linear extensions above,
but in some special cases the answer to the question is “yes,” as demonstrated by
Savage, Squire, and West in [11]. In the course of that research it also turned out that
even seemingly simple cases, such as the acyclic orientations of the complete bipartite
graph Km,n with mn odd, pose great difficulties.

2. The example. We will now construct an infinite family of pairs (G, σ) such
that the two partite sets of AOσ(G) have the same size, but the graph does not contain
a Hamilton path. The basic structure that makes the examples work is the so-called
standard example from order theory (see Trotter’s monograph [14] for details on the
use of this family of posets). The standard example is also the main ingredient in the
construction by Pruesse and Ruskey [7] demonstrating that the Cartesian product of
a K2 with a graph of the form AOσ(G) need not contain a Hamilton cycle. However,
the connection to order theory is not mentioned in that paper.

A remark on notation and figures is in order: It is easy to see that adding transitive
arcs to σ or deleting such arcs does not change AOσ(G), viewed as an abstract graph.
This enables us to regard σ as a poset and treat the unoriented edges of G separately.
This is not only helpful when utilizing order theoretic constructions but also provides
clear figures in which the oriented edges are represented by a Hasse diagram (no
transitive arcs, all orientations upward), and the unoriented ones are depicted as
dotted lines.

118 MICHAEL NAATZ

(0,0)

(0,1)

(0,2)

(0,3)

(1,2)

(1,1)

(1,0)

(2,1)

(2,2)

(2,0)

Fig. 2.1. Hasse diagram of (P2,≤2) (solid lines) and unoriented edges of G2 (dotted lines).

Example 2.1. For n ≥ 2, construct a poset on the ground set Pn := ({0, . . . , n}×
{0, 1, 2}) ∪ {(0, 3)} by setting (i1, i2) <n (j1, j2) if and only if

(i1 �= j1 and 0 = i2 < j2) or (i1 = j1 and 0 < i2 < j2).

The subposet induced by {0, . . . , n}× {0, 1} is the standard example Sn+1. Construct
a graph Gn by adding to the comparability graph of (Pn,≤n) the edges that join (i, 0)
with (i, j) for j > 0. Figure 2.1 shows the result of the construction for n = 2.

...............

...
..

(0,2,0,...,0)

(0,0,2,0,...,0)

(0,...,0,2,0)

(0,...,0,2)

(0,0,...,
0)

(3,0,...,
0)

(1,0,...,
0)

(2,0,...,
0)

Fig. 2.2. AO≤n (Gn) with some vertices labeled by in-degree vectors; dots stand for omitted
vertices; vertex colors indicate bipartition.

Now consider the graph AO≤n(Gn). In an acyclic orientation which contains an
arc from (i, j) to (i, 0), the edges that join (i, 0) with (i, j′) for j′ < j must be directed
from (i, j′) to (i, 0) because otherwise (i, 0) is contained in a directed cycle. A directed
cycle is also created if two distinct vertices of the form (i, 0) have positive in-degree.
Hence, we have two necessary conditions for an orientation of Gn that respects ≤n

to be acyclic. A moment of thought shows that these conditions are also sufficient.
This implies that each vertex of AO≤n

(Gn) is uniquely determined by the vector
(d0, d1, . . . , dn), where di is the in-degree of vertex (i, 0). It is easy to see that two
vertices are adjacent if and only if the in-degree vector of one vertex can be obtained
from the other by increasing one component by one. We conclude that the graph in
Figure 2.2 is isomorphic to AO≤n(Gn). Obviously both partite sets have the same
size. The graph cannot contain a Hamilton path because the central vertex (with
all-zero in-degree label) has at least three incident edges each of which disconnects
the graph when removed.

Note that this family of examples can be easily modified by replacing the maximal
elements of (Pn,≤n) with more complicated structures and adding the necessary un-
oriented edges. In this way one can. for example, obtain constructions as in Figure 2.3

A NOTE ON A QUESTION OF C. D. SAVAGE 119

demonstrating that a Hamilton path cannot be forced by additionally forbidding ver-
tices of degree one in AO�(G).

(a) G and �, to be read in the same
way as in Figure 2.1.

v

(b) AO�(G); vertex colors indicate
bipartition; v is a cut vertex.

Fig. 2.3. A modified version of Example 2.1.

3. Conclusion. In view of the above examples, one could suspect that either
Conjecture 1.2 is wrong, or the answer to Question 1.3 is “no”—or both. Recent
results, however, suggest to be cautious here. Properties shared by all graphs of
linear extensions and also all acyclic orientation graphs need not carry over to graphs
of the form AOσ(G). It has already been mentioned that the Cartesian product of a
K2 and a graph of the form AOσ(G) need not contain a Hamilton cycle, in contrast
to the situation for acyclic orientation graphs [7] and graphs of linear extensions [6].
Also, it has been shown in [4] that for every poset (P,≤P), the vertex connectivity
of the linear extension graph G(P,≤P) equals the minimal degree. This statement
also holds for acyclic orientation graphs. There are (at least) two different proofs:
The first possibility is to use the result by Savage and Zhang [12] that AO(G) is
(n − c)-connected, where n is the number of vertices of G, and c is the number of
connected components. This can be combined with the observation of Fisher et al.
[2] that a depth-first search tree for each connected component, oriented away from
the root, yields an orientation of G whose degree in AO(G) is exactly n − c. The
second proof derives the connectivity of AO(G) as a corollary from a general theorem
on tope graphs of oriented matroids; see [1] and [3] for details. However, Figure 2.3
shows an example for a graph of the form AOσ(G) which has minimal degree two but
contains several cut vertices, e.g., the vertex v.

Acknowledgment. The author thanks the referees for detailed comments which
improved the presentation of this paper.

REFERENCES

[1] R. Cordovil and K. Fukuda, Oriented matroids and combinatorial manifolds, European J.
Combin., 14 (1993), pp. 9–15.

[2] D. C. Fisher, K. Fraughnaugh, L. Langley, and D. B. West, The number of dependent
arcs in an acyclic orientation, J. Combin. Theory Ser. B, 71 (1997), pp. 73–78.

[3] K. Fukuda, Notes on acyclic orientations and the shelling lemma, Theoret. Comput. Sci., to
appear.

120 MICHAEL NAATZ

[4] M. Naatz, The graph of linear extensions revisited, SIAM J. Discrete Math., 13 (2000), pp. 354–
369.

[5] G. Pruesse and F. Ruskey, Generating the linear extensions of certain posets by transposi-
tions, SIAM J. Discrete Math., 4 (1991), pp. 413–422.

[6] G. Pruesse and F. Ruskey, Generating linear extensions fast, SIAM J. Comput., 23 (1994),
pp. 373–386.

[7] G. Pruesse and F. Ruskey, The prism of the acyclic orientation graph is Hamiltonian, Elec-
tron. J. Combin., 2 (1995).

[8] F. Ruskey, Research problem 91, Discrete Math., 70 (1988), p. 112.
[9] F. Ruskey and C. D. Savage, Hamilton cycles that extend transposition matchings in Cayley

graphs of Sn, SIAM J. Discrete Math., 6 (1993), pp. 152–166.
[10] C. D. Savage, A survey of combinatorial Gray codes, SIAM Rev., 39 (1997), pp. 605–629.
[11] C. D. Savage, M. B. Squire, and D. B. West, Gray code results for acyclic orientations,

Congr. Numer., 96 (1993), pp. 185–204.
[12] C. D. Savage and C.-Q. Zhang, A note on the connectivity of acyclic orientation graphs,

Discrete Math., 184 (1998), pp. 281–287.
[13] G. Stachowiak, Hamilton paths in graphs of linear extensions for unions of posets, SIAM J.

Discrete Math., 5 (1992), pp. 199–206.
[14] W. T. Trotter, Combinatorics and Partially Ordered Sets: Dimension Theory, Johns Hop-

kins Ser. Math. Sci., The Johns Hopkins University Press, Baltimore, MD, 1992.
[15] D. B. West, Generating linear extensions by adjacent transpositions, J. Combin. Theory Ser.

B, 58 (1993), pp. 58–64.

CYCLIC CHROMATIC NUMBER OF 3-CONNECTED PLANE
GRAPHS∗

HIKOE ENOMOTO† , MIRKO HORŇÁK‡ , AND STANISLAV JENDROL’‡

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 1, pp. 121–137

Abstract. Let G be a 3-connected plane graph. Plummer and Toft [J. Graph Theory, 11 (1987),
pp. 507–515] conjectured that χc(G) ≤ ∆∗(G) + 2, where χc(G) is the cyclic chromatic number of
G and ∆∗(G) the maximum face size of G. Horňák and Jendrol’ [J. Graph Theory, 30 (1999), pp.
177–189] and Borodin and Woodall [SIAM J. Discrete Math., submitted] independently proved this
conjecture when ∆∗(G) is large enough. Moreover, Borodin and Woodall proved a stronger statement
that χc(G) ≤ ∆∗(G) + 1 holds if ∆∗(G) ≥ 122. In this paper, we prove that χc(G) ≤ ∆∗(G) + 1
holds if ∆∗(G) ≥ 60.

Key words. cyclic coloring, cyclic chromatic number

AMS subject classification. 05C15

PII. S0895480198346150

1. Introduction. In this paper, we consider only 3-connected plane graphs. For
a vertex v, deg(v) denotes the degree of v. For a face f , deg(f) denotes the face size
of f . Two vertices u and v of a 3-connected plane graph G are cyclically adjacent
if they are incident with a common face of G. A vertex coloring of G is called a
cyclic coloring if it assigns different colors to any pair of cyclically adjacent vertices.
The minimum number of colors necessary for a cyclic coloring of G is called the
cyclic chromatic number of G and is denoted by χc(G). The notion of the cyclic
chromatic number was introduced by Ore and Plummer [6], and Plummer and Toft
[7] conjectured χc(G) ≤ ∆∗(G) + 2, where ∆∗(G) is the maximum face size of G (see
also [5, Problem 2.5]). Recently, Horňák and Jendrol’ [4] and Borodin and Woodall [2]
proved that this conjecture is true when ∆∗(G) is large enough. Moreover, Borodin
and Woodall proved a stronger inequality that χc(G) ≤ ∆∗(G) + 1 if ∆∗(G) ≥ 122.

In this paper, we prove the same inequality with a better bound on ∆∗(G).
Theorem 1. Let G be a 3-connected plane graph. Then χc(G) ≤ ∆∗(G) + 1 if

∆∗(G) ≥ 60.

The proof technique is standard in some sense; that is, we use discharging and
reducible configurations. However, the discharging rules and the reducible configura-
tions used in this paper are quite different from those used in [2].

2. Preliminaries. It is easily seen that the following theorem implies Theorem
1.

Theorem 2. Let M be a constant ≥ 60, and suppose G is a 3-connected plane
graph satisfying ∆∗(G) ≤M . Then χc(G) ≤M + 1.

∗Received by the editors October 19, 1998; accepted for publication (in revised form) November
2, 2000; published electronically January 31, 2001.

http://www.siam.org/journals/sidma/14-1/34615.html
†Department of Mathematics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522,

Japan (enomoto@math.keio.ac.jp). The work of this author has been partly supported by the Min-
istry of Education, Science, Sports and Culture of Japan, Grant-in-Aid for Scientific Research (B),
10440032.

‡Department of Geometry and Algebra, P.J.Šafárik University, Jesenná 5, 041 54 Košice, Slo-
vakia (hornak@duro.science.upjs.sk, jendrol@kosice.upjs.sk). The work of these authors has been
supported by Slovak VEGA grant 1/4377/97.

121

122 HIKOE ENOMOTO, MIRKO HORŇÁK, AND STANISLAV JENDROL’

By way of contradiction, let G be a minimum counterexample to Theorem 2. That
is, we assume that χc(H) ≤M +1 holds if H is a 3-connected plane graph satisfying
∆∗(H) ≤M , and either |V (H)| < |V (G)| or |V (H)| = |V (G)| and |E(H)| < |E(G)|.

For an edge xy of G, the graph obtained from G by contracting xy is denoted
by G/xy, and xy is called contractible if G/xy is 3-connected. If xy is contractible,
χc(G/xy) ≤ M + 1 by the minimality of G. (Note that |V (G/xy)| = |V (G)| − 1
and ∆∗(G/xy) ≤ ∆∗(G).) Therefore G/xy has a cyclic coloring using at most M + 1
colors. This induces a coloring of V (G)−{x} using at most M +1 colors that assigns
different colors to any pair of vertices u, v ∈ V (G)− {x} that are cyclically adjacent
in G. Such a coloring is called a partial cyclic coloring of G except at x.

In the rest of this paper, a cyclic coloring or a partial cyclic coloring always means
a coloring using at most M + 1 colors.

Lemma 3. If deg(x) = 3, G has a partial cyclic coloring except at x.

Proof. By [3], x is incident with a contractible edge. Hence there is a partial
cyclic coloring of G except at x by the above remark.

The set of vertices adjacent with x is called the neighborhood of x and is denoted
by N(x). The set of vertices cyclically adjacent with x is called the cyclic neighborhood
of x. The number of cyclically adjacent vertices with x is called the cyclic degree of x
and is denoted by cd(x). Note that if deg(x) = n and d1, . . . , dn are the sizes of the
faces incident with x, then cd(x) =

∑n
i=1(di − 2). If ϕ is a partial cyclic coloring of

G except at x, and if cd(x) ≤ M , then ϕ can be extended to a cyclic coloring of G.
This fact is frequently used without explicitly mentioning it.

The following lemma was proved by Borodin and Woodall [2], but for the sake of
readability, we include the proof.

Lemma 4. For any x ∈ V (G), cd(x) ≥M + 1.

Proof. If deg(x) = 3, G has a partial cyclic coloring except at x. This can be
extended to a cyclic coloring of G if cd(x) ≤ M . This contradicts the assumption
that G is a minimum counterexample. Therefore we may assume that cd(x) ≥M +1
for any vertex x of degree 3.

Next suppose deg(x) ≥ 4 and let y1, . . . , yn be the neighbors of x in this order.
Let G′ be the graph obtained from G by adding the edges yiyi+1(1 ≤ i ≤ n) if they
are not adjacent in G (taking yn+1 = y1). If xyi is a contractible edge of G′ for some
i, G′ has a partial cyclic coloring except at x. This is also a partial cyclic coloring
of G and can be extended to a cyclic coloring of G if cd(x) ≤ M . Suppose xyi is
noncontractible for all i, 1 ≤ i ≤ n. Then degG′(yi) = 3 for some i by [1, Corollary
4]. This implies that degG(yi) = 3 and yi is incident with two triangles in G. Then
cd(yi) ≤ ∆∗(G) ≤M , a contradiction.

Lemma 5. Suppose xy1y2 is a triangle of G, deg(x) = 3, and deg(yi) ≥ 4(i =
1, 2). Let f be the face incident with y1 and y2 but not with x. Then deg(f) = M .

Proof. Suppose deg(f) < M . Then ∆∗(G−y1y2) ≤M . If G−y1y2 is 3-connected,
G − y1y2 has a cyclic coloring, which is also a cyclic coloring of G. Hence we may
assume that G − y1y2 is not 3-connected. Let S be a 2-cut of G − y1y2. Then y1

and y2 should belong to different components of G− y1y2 − S. Therefore x ∈ S. Let
NG(x) = {y1, y2, z}. If {x, z} is a cut of G−y1y2, then {y1, z} is a cut of G. Therefore
z �∈ S. By symmetry, we may assume that z and y1 belong to different components
of G− y1y2 − S. Then (S − {x}) ∪ {y1} is a 2-cut of G.

Lemma 6. None of the configurations in Figure 1 is contained in G.

Proof. In case (a’), x1, y1, and z1 are incident with a common face. In cases (c)
through (f), let f1 be the face incident with x1y1 of face size > 4. In cases (b) through

CYCLIC CHROMATIC NUMBER 123

Fig. 1. Reducible configurations.

(d), let f2 be the face incident with x2y2 other than the quadrangle x1y1y2x2. For a
partial coloring ϕ, let C(fi) be the set of colors appearing on the boundary of fi.

(a) (a’) (a”) G has a partial coloring ϕ except at x1. Suppose ϕ cannot be
extended to a cyclic coloring of G. Note that cd(x1) = cd(x2) = M + 1 by Lemma 4.
Hence all the colors appear exactly once in the cyclic neighborhood of x1. If we can
color x2 with a color different from ϕ(x2), it is extendable to a cyclic coloring of G.
Also, all the colors except ϕ(x2) appear exactly once in the cyclic neighborhood of
x2. The same arguments apply to z1. Therefore if we uncolor y1, we can color both
x2 and z1 with ϕ(y1). Then we can color y1 and x1 in this order.

124 HIKOE ENOMOTO, MIRKO HORŇÁK, AND STANISLAV JENDROL’

(b) G has a partial cyclic coloring ϕ except at x2. If ϕ(zi) /∈ C(f2) for i = 1 or
i = 2, we can color x2 with ϕ(zi). Therefore we may assume {ϕ(z1), ϕ(z2)} ⊆ C(f2).
Uncolor z4 and color x2 and z4 in this order.

(c) We may assume that ϕ is a partial cyclic coloring of G except at x2, and
{ϕ(z1), ϕ(z2)} ⊆ C(f2). If ϕ(z3) ∈ C(f2), uncolor z5 and color x2 and z5 in this order.
Therefore we may assume that ϕ(z3) /∈ C(f2). If we uncolor x1, we can color x2 with
ϕ(x1). By the same arguments as above, we may assume that ϕ(z3) �∈ C(f1)−{ϕ(x1)}
for any partial cyclic coloring ϕ of G except at x2. If ϕ(z3) �= ϕ(x1), we can color y1

with ϕ(z3). Therefore we may assume that ϕ(z3) = ϕ(x1). Then we can exchange
the colors of x1 and y1, since ϕ(x1) = ϕ(z3) �= ϕ(z5). Then y1 and z3 have the same
color.

(d) Since x2y2 is contractible, G has a partial cyclic coloring ϕ except at x2. If
ϕ(zi) /∈ C(f2) for i = 1 or i = 2, we can color x2 with ϕ(zi). Therefore we may
assume that {ϕ(z1), ϕ(z2)} ⊆ C(f2). If ϕ(y2) appears more than once in the cyclic
neighborhood of x2, uncolor z4 and color x2 and z4. If ϕ(y2) appears exactly once in
the cyclic neighborhood of x2, uncolor y2 and z4, color x2 with ϕ(y2), and then color
y2 and z4.

(e) G has a partial cyclic coloring ϕ except at x1. If ϕ(z4) /∈ C(f1), we can color
x1 with ϕ(z4). Therefore we may assume that ϕ(z4) ∈ C(f1). If ϕ(z3) ∈ C(f1),
uncolor z1, then color x1 and z1. Therefore we may assume that ϕ(z3) /∈ C(f1) for
any partial cyclic coloring ϕ of G except at x1. If ϕ(x2) �= ϕ(z3), we can color x1 with
ϕ(z3). Therefore we may assume that ϕ(x2) = ϕ(z3). Uncolor x2 and y1. Then color
y1 with ϕ(z3) and color x2. In this partial cyclic coloring except at x1, ϕ(z3) appears
in the boundary of f1, a contradiction.

(f) G has a partial cyclic coloring ϕ except at x1. If ϕ(z) /∈ C(f1), we can color
x1 with ϕ(z). If ϕ(z) ∈ C(f1), uncolor y1, then color x1 and y1.

(g) If G−x2y is 3-connected, G−x2y has a cyclic coloring ϕ by the minimality of
G. Then ϕ is also a cyclic coloring of G. Hence we may assume that G−x2y is not 3-
connected. The only possibility of a 2-cut in G−x2y is {x1, x3}. Since x2 and y belong
to different components in G− x2y−{x1, x3}, x2 and x4 are not adjacent. Similarly,
we may assume that {x2, x4} is the 2-cut in G− x3y. Since deg(x2) > 3, there exists
a vertex z ∈ N(x2)−{x1, y, x3} and let D be the component of G−{x1, x2, x3} that
contains z. Since G − {x1, x2} is connected, V (D) ∩ N(x3) �= ∅. Similarly, since
G − {x2, x3} is connected, V (D) ∩ N(x1) �= ∅. This is a contradiction, since x1 and
x3 should belong to different components of G− yx3 − {x2, x4}.

3. Proof of Theorem 2. Let G be a minimum counterexample to Theorem 2.
Then we can apply all the results in section 2.

For v ∈ V (G), define

Φ(v) = 1− deg(v)

2
+
∑
f

1

deg(f)
,

where f runs through the faces incident with v. It is easily seen that∑
v∈V (G)

Φ(v) = 2

by Euler’s formula (see [6]). We regard Φ(v) as the initial charge at v. Define

γ(d1, . . . , dn) = 1−
n∑
i=1

(
1

2
− 1

di

)
= 1− n

2
+

n∑
i=1

1

di
.

CYCLIC CHROMATIC NUMBER 125

That is,

Φ(v) = γ(d1, . . . , dn)

if f1, . . . , fn are the faces incident with v, and deg(fi) = di (1 ≤ i ≤ n).
It is obvious that Φ(v) ≤ 0 if deg(v) ≥ 6. Note that the number of triangles inci-

dent with v is at most 2 deg(v)/3 by Lemma 6(g). Hence Φ(v) = γ(d1, d2, d3, d4, d5) ≤
γ(3, 3, 4, 3, 4) = 0 if deg(v) = 5. If deg(v) = 4, by Lemma 4, either Φ(v) ≤
γ(3, 5, 5, 5) = −1/15 or Φ(v) ≤ γ(3, 4, d3,M + 2 − d3) ≤ γ(3, 4, 4,M − 2) = −1/6 +
1/(M − 2) < 0 or Φ(v) ≤ γ(3, 3, d3,M + 3 − d3) ≤ γ(3, 3, 4,M − 1) = −1/12 +
1/(M − 1) < 0.

Lemma 7. Suppose Φ(v) > 0, deg(v) = 3, f1, f2, f3 are the faces incident with v,
and k = deg(f1) ≤ l = deg(f2) ≤ m = deg(f3). Then either

(1) k = 3 and 4 ≤ l ≤ 6, or
(2) k = l = 4.
Proof. Note that cd(v) = k + l + m − 6 ≥ M + 1 by Lemma 4, and γ(k, l,m) <

γ(k, l − 1,m + 1) when k < l ≤ m < M . It is easily seen that the lemma follows
from the fact that γ(3, 7,M − 3) = −1/42 + 1/(M − 3) ≤ 0 and γ(4, 5,M − 2) =
−1/20 + 1/(M − 2) ≤ 0.

Let εi = 1/(M − i). Note that

γ(3, 4,M) =
1

12
+ ε0,

γ(3, 5,M − 1) =
1

30
+ ε1,

γ(3, 6,M − 2) = ε2,

and

γ(4, 4,M − 1) = ε1.

Let

V3 = {v ∈ V (G) |deg(v) = 3},

and

V + = {v ∈ V (G) |Φ(v) > 0}.

Define an equivalence relation ∼ on V3 as follows:
(o) u ∼ u.
(i) u ∼ v if u and v are incident with a common triangle.
(ii) u ∼ v if u and v are adjacent and both faces incident with the edge uv are

quadrangles.
(iii) If all the vertices on the boundary cycle of a quadrangle have degree 3, the

vertices on the quadrangle are equivalent to each other.
(iv) u ∼ v only if this is derived by repeated applications of (o)–(iii).
Lemma 8. Let W be an equivalence class of V3 that contains a vertex of V +.

Then W comes from one of the configurations in Figure 2.

126 HIKOE ENOMOTO, MIRKO HORŇÁK, AND STANISLAV JENDROL’

Fig. 2. Equivalence classes.

Proof. This is easily checked by Lemma 7 and Lemma 6(b), (d).

Next we define discharging rules as in Figure 3. (Rule (b) (resp., (d), (j), (k)) is
applied when (a) (resp., (c), (h), (i)) is not applied.)

Let t(u, v) be the amount of the discharge from u to v. Then the new charge at

CYCLIC CHROMATIC NUMBER 127

(a)

1
2 4

− ε 0

1
2 4

+ 2ε 0

(b)

v
m a x

0 ,
Φ (v)

2

(c)

1
1 2

− ε 0

(d)

v1

v2

m a x

0 ,
Φ (v1) + Φ (v 2)

2

(e)

ε 1

(f)

4ε 0

(g)

2ε 0

(h)

6ε 0

(i)

3ε 0

(j)

2ε 1

(k)

ε 1

deno tes a ver tex of degree 3 .

deno tes a ver tex of degree ≥ 4 .

Fig. 3. Discharging rules.

v is

Φ′(v) = Φ(v)−
∑

w∈N(v)

t(v, w) if deg(v) = 3

128 HIKOE ENOMOTO, MIRKO HORŇÁK, AND STANISLAV JENDROL’

and

Φ′(v) = Φ(v) +
∑

u∈N(v)

t(u, v) if deg(v) ≥ 4.

Since M ≥ 60,

1

12
+ ε0 ≥ 6ε0 > 2ε1,

and

1

12
+ ε0 >

1

24
+ 2ε0.

Therefore t(u, v) ≤ 1/12 + ε0. Moreover, if uv is not incident with a triangle, then
t(u, v) ≤ 6ε0.

Claim 1. Let W be an equivalence class of V3 under the relation ∼. Then∑
v∈W Φ′(v) ≤ 0.
Proof. For v ∈ V3, define t(v) =

∑
w∈N(v) t(v, w). We may assume that W comes

from one of the configurations in Figure 2.
(a) t(v) = t(v, u1) + t(v, u2) ≥ Φ(v) by rules (a) and (b).
(b) Let f be the face incident with v1v2 other than the triangle uv1v2. If deg(f) ≥

5,

t(v1, u) + t(v2, u) ≥ Φ(v1) + Φ(v2)

by rule (d). Suppose f is a quadrangle v1v2w2w1. Then {w1, w2} �⊂ V3 by the
definition of ∼. Then

t(v1, w1) + t(v2, w2) = 4ε0 =

2∑
i=1

(Φ(vi)− t(vi, u))

by rules (c), (f), and (g).
(c) Let f1, f2, f3 be the faces adjacent to the triangle v0v1v2. We may assume that

k = deg(f1) ≤ l = deg(f2) ≤ m = deg(f3). We may also assume that {v0, v1, v2} ∩
V + �= ∅. Therefore 4 ≤ k ≤ 6. Note that k + m ≥ k + l ≥ M + 4 by Lemma 4. If
k ≥ 5,

2∑
i=0

Φ(vi) = −1
2
+
2

k
+
2

l
+

2

m
≤ −1

2
+
2

5
+ 4ε1 ≤ 0.

Suppose k = 4. We may assume that v1v2 is incident with a quadrangle. Then

t(v1) + t(v2) = 4ε0 =

2∑
i=0

Φ(vi).

(d) Note that

2∑
i=1

(Φ(vi)− t(vi)) = 4ε0

CYCLIC CHROMATIC NUMBER 129

by rule (c). Let f be the face incident with v3v4 other than v1v2v4v3. If deg(f) ≥ 5,

4∑
i=1

Φ(vi)−
2∑
i=1

t(vi) ≤ 4ε0 + 2γ(4, 5,M)

= 6ε0 − 1

10
≤ 0.

Suppose f is a quadrangle. Then

4∑
i=1

Φ(vi)−
2∑
i=1

t(vi) = 6ε0 =

4∑
i=3

t(vi)

by rules (h) and (i).

(e) Similar to case (d), since
∑2
i=0 Φ(vi) = 4ε0.

(f) Let f be the face incident with v5v6 other than v3v4v6v5. By Lemma 6(b) and
(c), deg(f) ≥ 6. Therefore

6∑
i=1

Φ(vi)−
2∑
i=1

t(vi) ≤ 6ε0 + 2γ(4, 6,M) = 8ε0 − 1

6
< 0.

(g) Similar to case (f).
(h) Φ(v1) ≤ ε1 = t(v1, v2).

(i) Φ(v1) + Φ(v2) ≤ 2ε1 < 4ε1 =
∑2
i=1(t(vi, ui) + t(vi, wi)) by rules (j) and (k).

(j) Let f be the face incident with w1w2 other than v1v2w2w1. If deg(f) ≥ 5,

2∑
i=1

(Φ(vi) + Φ(wi)) ≤ 2ε1 + 2γ(4, 5,M − 1)

< 2ε1 =

2∑
i=1

t(vi).

Suppose f is a quadrangle. Then

2∑
i=1

(Φ(vi) + Φ(wi)) ≤ 4ε1 =

2∑
i=1

(t(vi) + t(wi)).

(k) Let f1 be the face incident with u1u2 other than u1u2v2v1 and f2 the face
incident with w1w2 other than v1v2w2w1. We may assume that deg(f1) ≤ deg(f2). If
deg(f1) ≥ 5,

2∑
i=1

(Φ(ui) + Φ(vi) + Φ(wi)) ≤ 2ε1 + 4γ(4, 5,M − 1)

= 6ε1 − 1

5
< 0.

Suppose deg(f1) = 4. Then deg(f2) ≥ 5 by Lemma 6(d). Therefore

2∑
i=1

(Φ(ui) + Φ(vi) + Φ(wi)− t(ui))

≤ 4ε1 + 2γ(4, 5,M − 1)− 2ε1

= 4ε1 − 1

10
< 0.

130 HIKOE ENOMOTO, MIRKO HORŇÁK, AND STANISLAV JENDROL’

(l) By Lemma 6(d), u1u2 and x1x2 are incident with a face of size ≥ 5. Therefore

2∑
i=1

(Φ(ui) + Φ(vi) + Φ(wi) + Φ(xi))

≤ 4ε1 + 4γ(4, 5,M − 1)

= 8ε1 − 1

5
< 0.

This completes the proof of Claim 1.
In the rest of the proof, suppose deg(v) = n ≥ 4, N(v) = {v1, . . . , vn}, the edge

vvi is incident with fi−1 and fi (taking suffices mod n), di = deg(fi), and ti = t(vi, v).
Claim 2. Φ′(v) ≤ 0 when n = 4.
Proof. Note that at most two triangles are incident with v by Lemma 6(g).
Case 1. d1 = d2 = 3.
By Lemma 4, deg(v2) ≥ 4. Then by Lemma 5, deg(v1) ≥ 4 and deg(v3) ≥ 4.

Therefore

Φ′(v) = Φ(v) + t4 ≤ γ(3, 3, 4,M − 1) + 3ε0

< 4ε1 − 1

12
< 0.

Case 2. d1 = d3 = 3.
By symmetry, it is enough to show that Φ(v)/2 + t1 + t2 ≤ 0. Since

Φ(v) ≤ γ(3, 3, 4,M − 1) = ε1 − 1

12
< 0,

we may assume that t1 > 0. In particular, deg(v1) = 3. If deg(v2) ≥ 4, d2 = M by
Lemma 5. It is easily seen that t1 > 1/24 − ε1/2 only if rule (a) is applied. Since
d4 = M in this case,

Φ(v) = γ(3, 3,M,M) = 2ε0 − 1

3
,

and

1

2
Φ(v) + t1 ≤ 3ε0 − 1

8
< 0.

Suppose deg(v2) = 3 and let f be the face incident with v1v2 other than vv1v2. Let
d′ = deg(f). Since t1 > 0, either 4 ≤ d′ ≤ 6 or 4 ≤ d4 ≤ 6. If 4 ≤ d′ ≤ 6,

di ≥M + 4− d′

for i = 2, 4. Then

Φ(v) ≤ γ(3, 3,M − 2,M − 2) = 2ε2 − 1

3
,

and therefore

t1 + t2 ≤ 2

(
1

12
− ε0

)
< −1

2
Φ(v).

CYCLIC CHROMATIC NUMBER 131

If 4 ≤ d4 ≤ 6,

Φ(v1) + Φ(v2) ≤ γ(3, 4,M) + γ(3,M − 2,M − 3)

≤ 3ε3 − 1

12
< 0.

Case 3. d1 = 3, di ≥ 4 (2 ≤ i ≤ 4)
Note that t3 + t4 ≤ 6ε0 + ε1. In fact, suppose t3 + t4 > 6ε0 + ε1. We may

assume that t4 > 3ε0. Then {d3, d4} = {4,M}. If d3 = 4, it is easily seen that
t3 ≤ ε1. Suppose d3 = M and d4 = 4. By Lemma 6(a), t4 �= 6ε0. Therefore the only
possibility is t4 = 4ε0. On the other hand, t3 �= 6ε0 by Lemma 6(a), and t3 �= 4ε0 by
Lemma 6(a”).

Since

Φ(v) ≤ γ(3, 4, 4,M − 2) = ε2 − 1

6
< −(6ε0 + ε1),

we may assume that deg(v1) = 3. First, suppose deg(v2) ≥ 4. Then d2 = M by
Lemma 5. The only possibility that t1 > 1/6−8ε2 is t1 = 1/24+2ε0. This is possible
only if d4 = M . Therefore

Φ(v) ≤ γ(3, 4,M,M) = 2ε2 − 5

12

< −
(
6ε0 + ε1 +

1

24
+ 2ε0

)
.

Finally, suppose deg(v2) = 3. Let f be the face incident with v1v2 other than vv1v2,
and d′ = deg(f). We may assume that 4 ≤ d′ ≤ 6 or 4 ≤ d4 ≤ 6. If 4 ≤ d′ ≤ 6,

t1 + t2 ≤ 2

(
1

12
− ε0

)
,

since 1/12− ε0 > 1/30 + ε1. Therefore

Φ(v) +

4∑
i=1

ti ≤ γ(3, 4,M − 2,M − 2) + 2

(
1

12
− ε0

)
+ (6ε0 + ε1)

< 7ε2 − 1

4
< 0.

Suppose 5 ≤ d4 ≤ 6 and d4 ≤ d2. Then

t1 + t2 ≤ 2

(
1

30
+ ε1

)
,

and

Φ(v) ≤ γ(3, 4, 5,M − 3) = ε3 − 13

60
.

Note that t4 = 0. Suppose

t3 > −Φ(v)− t1 − t2 >
3

20
− 3ε3 > 4ε1.

132 HIKOE ENOMOTO, MIRKO HORŇÁK, AND STANISLAV JENDROL’

The only possibility is t3 = 6ε0. In particular, d2 = M . Then

Φ(v1) + Φ(v2) ≤ γ(3, 5,M − 1) + γ(3,M − 2,M)

= − 2

15
+ ε2 + ε1 + ε0 < 0,

and

Φ(v) + t3 ≤ γ(3, 4, 5,M) + 6ε0 = 7ε0 − 13

60
< 0.

Suppose d4 = 4. By Lemma 6(f), d2 ≥ 5. If d2 ≥ 6,

t1 + t2 ≤ 1

12
+ ε0 + ε2,

and

Φ(v) ≤ γ(3, 4, 6,M − 4) = ε4 − 1

4
.

If t3 = 0 or t4 = 0,

Φ(v) +

4∑
i=1

ti ≤ 9ε4 − 1

6
< 0.

If t3 > 0 and t4 > 0, then d3 = 4 and d2 ≥M − 1. In this case,

Φ(v1) + Φ(v2) ≤ γ(3, 4,M) + γ(3,M − 1,M)

< 3ε1 − 1

12
< 0.

Therefore t1 = t2 = 0, and

Φ(v) +

4∑
i=1

ti ≤ γ(3, 4, 4,M − 1) + 6ε0 + ε1

< 8ε1 − 1

6
< 0.

Hence we may assume that d2 = 5. Then t3 = 0. Suppose

t4 > −Φ(v)− t1 − t2

≥ 13

60
− ε3 −

(
1

12
+ ε0

)
−
(
1

30
+ ε1

)

>
1

10
− 3ε3 > 2ε1.

The only possibility is d3 = M and t4 ≥ 4ε0. However, t4 �= 6ε0 by Lemma 6(a), and
t4 �= 4ε0 by Lemma 6(e).

Case 4. di ≥ 4 (1 ≤ i ≤ 4).
Since Φ(v) ≤ γ(4, 4, 4,M − 3) = ε3 − 1/4 < 0, we may assume that t1 >

1/4 (1/4− ε3) > 3ε0. Hence we may assume that d1 = 4, d4 = M , and deg(v2) = 3.
Note that t4 < 3ε0 if t1 = 6ε0, and t4 ≤ 4ε0 if t1 = 4ε0 by Lemma 6(a’). Hence t1+t4 <

CYCLIC CHROMATIC NUMBER 133

9ε0. Moreover, t2 ≤ ε1. If t3 ≤ 3ε0, Φ(v) +
∑4
i=1 ti < ε3 − 1/4 + 9ε0 + ε1 + 3ε0 < 0.

Suppose t3 > 3ε0. Then d2 = M or d3 = M . In either case,

Φ(v) +

4∑
i=1

ti ≤ γ(4, 4,M,M) + 9ε0 + ε1 + 6ε0

< 18ε1 − 1

2
< 0.

This completes the proof of Claim 2.
In the rest of the proof, we assume that n ≥ 5 and show that Φ′(v) ≤ 0. Let

σi = −1
2
+

1

2di−1
+

1

2di
+

1

n
,

and τi = σi + ti. It is easily seen that

n∑
i=1

σi = Φ(v),

and
n∑
i=1

τi = Φ′(v).

Suppose, on the contrary, that Φ′(v) > 0. Then τi > 0 for some i.
Claim 3. Suppose τi > 0, and di−1 ≥ di. Suppose furthermore that di−1 ≤ di+1

if deg(vi) = deg(vi+1) = 3. Then one of the following holds:
(a) n = 5, di−1 = di = 3, and τi = 1/30.
(b) n = 5, deg(vi) = 3, deg(vi+1) ≥ 4, di = 3, di−1 = 4, and τi = 1/30− ε0.
(c) n = 5, deg(vi) = deg(vi+1) = 3, di = 3, di−1 = 5, and τi ≤ ε1.
(d) 5 ≤ n ≤ 9, deg(vi) = deg(vi+1) = 3, di = 3, di−1 = 4, and τi ≤ −13/120 +

1/n.
Proof. First, suppose ti = 0. If di−1 ≥ 4,

τi = σi ≤ −1
2
+

1

2 · 3 +
1

2 · 4 +
1

n
≤ − 1

120
.

If di−1 = di = 3,

τi = −1
2
+
1

6
+
1

6
+

1

n
= −1

6
+

1

n
.

In this case, τi > 0 only if n = 5.
Next suppose ti > 0. Then deg(vi) = 3 and di ≤ 4. Suppose di = 4. Then

di−1 = 4 or di−1 ≥M − 1. If di−1 = 4,

τi ≤ −1
2
+
1

8
+
1

8
+

1

n
+ ε1

≤ − 1

20
+ ε1 < 0.

If di−1 ≥M − 1,

τi ≤ −1
2
+
1

8
+

1

2(M − 1)
+

1

n
+ 6ε0

≤ − 7

40
+ 7ε0 < 0.

134 HIKOE ENOMOTO, MIRKO HORŇÁK, AND STANISLAV JENDROL’

In the rest of the proof of Claim 3, we assume di = 3 and let d′ be the size of the face
incident with the edge vivi+1 other than vvivi+1. If 4 ≤ d′ ≤ 6, then di−1 ≥ M − 2
and ti ≤ max{1/12− ε0, 1/24 + 2ε0}. (Note that 1/12− ε0 > 1/30 + ε1.) Hence

τi ≤ −1
2
+
1

6
+

1

2(M − 2)
+

1

n
+max

{
1

12
− ε0,

1

24
+ 2ε0

}
< − 1

24
.

Suppose d′ ≥ 7. Then 4 ≤ di−1 ≤ 6. If deg(vi+1) > 3,

τi < −1
2
+
1

6
+
1

8
+

1

n
+max

{
1

24
− ε0,

1

2

(
1

30
+ ε1

)}

≤ −1
6
+

1

n
.

Therefore τi > 0 only if n = 5. Moreover,

τi < 0 if di−1 ≥ 5,

and

τi =
1

30
− ε0 if di−1 = 4.

Finally, suppose deg(vi+1) = 3. If di−1 = 6,

τi ≤ −1
2
+
1

6
+

1

12
+

1

n
+ ε2

≤ − 1

20
+ ε2 < 0.

If di−1 = 5,

τi ≤ −1
2
+
1

6
+

1

10
+

1

n
+

1

30
+ ε1

= −1
5
+

1

n
+ ε1.

Therefore τi > 0 only if n = 5. If di−1 = 4,

τi ≤ −1
2
+
1

6
+
1

8
+

1

n
+

1

12
+ ε0

≤ − 13

120
+

1

n
.

Therefore τi > 0 only if n ≤ 9.
By Claim 3, we may assume that n ≤ 9. We may also assume that τ1 > 0 (by

renumbering the vertices in N(v) if necessary). Note that d1 + dn ≤ 8 in all cases of
Claim 3. Let T+ =

∑
τi>0 τi and T− =

∑
τi<0 τi. Then Φ′(v) = T+ + T−.

By Lemma 4,

cd(v) =

n∑
i=1

di − 2n ≥M + 1.

Hence

n−1∑
i=2

di ≥ 2n+ 53.

CYCLIC CHROMATIC NUMBER 135

This implies that dp ≥ � 2n+53
n−2 � for some p, 2 ≤ p ≤ n− 1.

Claim 4. Suppose dp ≥ � 2n+53
n−2 �. Then τp < 0. More precisely, the following

holds:
(a) If tp = 0, τp ≤ −23/210 when n = 5 and τp ≤ −7/51 when n ≥ 6.
(b) If dp−1 = 4, min{τp , τp−1 + τp} ≤ −3/10 + 1/n.
(c) If dp−1 = 3 and deg(vp−1) = deg(vp) = 3, min{τp, τp−1 + τp} ≤ −31/60 + 2/n.
(d) If dp−1 = 3, deg(vp−1) ≥ 4 and deg(vp) = 3, τp ≤ −1/4 + 1/n.

Proof. Suppose tp = 0. Then

τp = σp ≤ −1
2
+
1

6
+

1

2dp
+

1

n
≤

− 23

210
, n = 5,

− 7

51
, n ≥ 6.

This proves (a).
Suppose tp > 0. Then deg(vp) = 3 and dp−1 ≤ 4. Suppose dp−1 = 4. If tp = 6ε0,

dp−2 �= 3 by Lemma 6(a). Then

τp = −1
2
+
1

8
+

1

2M
+

1

n
+ 6ε0 ≤ − 4

15
+

1

n
,

and

τp−1 ≤ −1
2
+
1

8
+
1

8
+

1

n
+ ε0 ≤ − 7

30
+

1

n
,

since tp−1 ≤ ε0. Hence

τp−1 + τp ≤ −1
2
+

2

n
≤ − 3

10
+

1

n
.

If tp ≤ 4ε0,

τp ≤ −1
2
+
1

8
+

1

2M
+

1

n
+ 4ε0 ≤ − 3

10
+

1

n
.

This proves (b).
Suppose dp−1 = 3 and let d′ be the size of the face incident with vp−1vp other

than vvp−1vp. If tp > 0, 4 ≤ d′ ≤ 6. Suppose deg(vp−1) = 3. Then

τp ≤ −1
2
+
1

6
+

1

2M
+

1

n
+

1

12
− ε0 ≤ − 31

120
+

1

n
,

τp−1 + τp ≤ 2

(
− 31

120
+

1

n

)
= −31

60
+

2

n
.

Suppose deg(vp−1) ≥ 4. Then

τp ≤ −1
2
+
1

6
+

1

2M
+

1

n
+

1

24
+ 2ε0 ≤ −1

4
+

1

n
.

This completes the proof of Claim 4.
Note that the same claim holds for min{τp+1, τp+1 + τp+2}.

136 HIKOE ENOMOTO, MIRKO HORŇÁK, AND STANISLAV JENDROL’

Suppose n ≥ 6. Since τp < 0 and τp+1 < 0,

T+ ≤
(
− 13

120
+

1

n

)
× (n− 2) ≤ 7

30
.

Note that min{τp, τp−1 + τp} ≤ −2/15 in cases (a), (b), and (c) of Claim 4. If
deg(vp−1) = deg(vp+2) = 3, T− ≤ −2/15 × 2. Then T+ + T− ≤ −1/30. Suppose
deg(vp−1) ≥ 4 and deg(vp+2) ≥ 4. Then

T+ ≤
(
− 13

120
+

1

n

)
× (n− 4) ≤ 7

60
,

and

T− ≤ − 1

12
× 2 = −1

6
.

Hence T+ + T− ≤ −1/20. In the remaining case, case (d) of Claim 4 applies for
exactly one of (p− 1, p) and (p+ 1, p+ 2). Therefore

T+ ≤
(
− 13

120
+

1

n

)
× (n− 3) ≤ 7

40
,

and

T− ≤ − 1

12
− 2

15
= −13

60
.

Hence T+ + T− ≤ −1/24. This completes the proof of Theorem 2 when n ≥ 6.
Finally, suppose n = 5 and, without loss of generality, p = 5. If the situation of

Claim 3(d) is not possible, then

T+ + T− ≤ 3 · 1
30
− 2 · 1

20
= 0.

Thus in what follows we suppose without loss of generality that deg(v2) = deg(v3) =
3, d2 = 3 and min{d1, d3} = 4.

Suppose first d1 + d3 ≥ 9. Then

τ2 + τ3 ≤ −1
2
+
1

6
+
1

8
+
1

5
− 1

2
+
1

6
+

1

10
+
1

5
= − 1

24
,

Φ(v2) + Φ(v3) ≤ γ(3, 4,M) + γ(3, 5,M) =
7

60
+ 2ε0,

and therefore

τ2 + τ3 ≤ 13

120
.

If deg(v4) ≥ 4, then

T+ + T− ≤ 13

120
+

1

30
− 1

10
− 1

20
= − 1

120
,

and if deg(v4) = 3, then

T+ + T− ≤ 13

120
+

11

120
− 2 · 1

10
= 0.

CYCLIC CHROMATIC NUMBER 137

Finally, suppose d1 = d3 = 4. If the situation of Claim 4(d) applies, then
deg(v4) ≥ 4, deg(v5) = 3 and d4 = 3. This contradicts Lemma 5. Now we sup-
pose that min{τ1, τ1 + τ2} = τ1 ≤ −1/10 and min{τ5, τ5 + τ4} ≤ −1/10. If τ4 ≤ 0,
then

T+ + T− ≤ 2 · 11
120
− 2 · 1

10
= − 1

60
.

On the other hand, τ4 > 0 only if deg(v4) = 3 and d4 = 3. If deg(v5) ≥ 4,

τ5 = σ5 ≤ −1
2
+
1

6
+

1

2(M − 3)
+
1

5
< − 7

60
,

and therefore

T+ + T− < 2 · 11
120

+
1

30
− ε0 − 7

60
− 1

10
= −ε0.

If deg(v5) = 3,

Φ(v5) + Φ(v4) ≤ γ(3,M − 3,M) + γ(3, 4,M)

= − 1

12
+ 2ε0 + ε3 < 0,

and so t4 = 0 and τ4 < 0.
This completes the proof of Theorem 2.

REFERENCES

[1] K. Ando, H. Enomoto, and A. Saito, Contractible edges in 3-connected graphs, J. Combin.
Theory Ser. B, 42 (1987), pp. 87–93.

[2] O.V. Borodin and D.R. Woodall, Cyclic coloring of 3-polytopes with large maximum face
size, SIAM J. Discrete Math., submitted.

[3] R. Halin, Untersuchungen über minimale n-fach zusammenhängende Graphen, Math. Ann.,
182 (1969), pp. 175–188.

[4] M. Horňák and S. Jendrol’, On a conjecture by Plummer and Toft, J. Graph Theory, 30
(1999), pp. 177–189.

[5] T. Jensen and B. Toft, Graph Coloring Problems, John Wiley, New York, 1995.
[6] O. Ore and M.D. Plummer, Cyclic coloration of plane graphs, in Recent Progress in Combi-

natorics, W.T. Tutte, ed., Academic Press, New York, 1969, pp. 287–293.
[7] M.D. Plummer and B. Toft, Cyclic coloration of 3-polytopes, J. Graph Theory, 11 (1987),

pp. 507–515.

APPROXIMATE EDGE SPLITTING∗

MICHEL X. GOEMANS†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 1, pp. 138–141

Abstract. We show that, in any undirected graph, splitting-off can be performed while pre-
serving all cuts of value at most 4/3 times the minimum value, and this is the best possible. This
generalizes a classical splitting-off result of Lovász.

Key words. graph connectivity, edge splitting

AMS subject classification. 05C40

PII. S0895480199358023

1. Introduction. In an undirected graph, splitting off two edges incident to
a vertex s, say (s, u) and (s, v), means deleting them and adding the edge (u, v).
Classical splitting-off theorems, such as those of Lovász [5] (exercise 6.53) and Mader
[6], show that splitting off can be performed while preserving certain connectivity
properties of the graph. Edge splitting is an important operation for connectivity
problems. For example, suppose we would like to make a graph G = (V,E) k-edge-
connected by adding the minimum number of edges. A beautiful result of Frank [2]
shows that it is sufficient to add a vertex s to the graph, add the minimum even
number of edges between s and V to make it k-edge-connected (and this is an easy
task), and finally perform splitting off while preserving k-edge-connectivity between
the vertices in V (using Lovász’s splitting-off result). For extensions of this result,
see [2] and the survey [3]. As another (less algorithmic) illustration of the use of
edge splitting, Nagamochi, Nishimura, and Ibaraki [7] have shown inductively using
edge splitting that there are at most

(
n
2

)
cuts of value strictly less than 4/3 times the

minimum cut value in any undirected graph on n vertices. (See [4] for a sketch of a
more direct proof.)

To describe the result, we need the following notation. Let G = (V,E) be an
undirected graph, possibly with multiple edges. For any set S ⊂ V , let δ(S) be the
set of edges with exactly one endpoint in S, and let d(S) = |δ(S)| be the value of the
corresponding cut. For simplicity, we write d(s) for d({s}) for any vertex s. Also, we
let d(s,A) denote |{(s, u) ∈ E : u ∈ A}| (with repetitions counted if there are multiple
edges).

When splitting off two edges (s, u) and (s, v), observe that the value of any cut
δ(S) does not increase, and decreases precisely if u, v ∈ S and s /∈ S (or similarly
with S replaced by its complement S̄). Let λ′ denote the minimum edge-connectivity
between any two vertices distinct from s, i.e., λ′ = min∅�=S⊂V ′ d(S), where V ′ = V −s,
and let N be the neighbor set of s, i.e., N = {u ∈ V ′ : (s, u) ∈ E}.

The classical splitting-off result of Lovász [5] (exercise 6.53) shows that if λ′ ≥ 2
and d(s) is even, then for any u ∈ N , there exists an edge (s, v) such that splitting
off (s, u) and (s, v) does not reduce λ′. Since splitting off changes the value of cuts

∗Received by the editors June 24, 1999; accepted for publication (in revised form) September 5,
2000; published electronically January 31, 2001.

http://www.siam.org/journals/sidma/14-1/35802.html
†Department of Mathematics, MIT, Cambridge, MA 02139 (goemans@math.mit.edu). This work

was done at the University of Waterloo and at CORE, Université catholique de Louvain, and was
supported in part by DONET European Community contract ERB FMRX-CT98-0202 and NSF
contract 9623859-CCR.

138

APPROXIMATE EDGE SPLITTING 139

by an even number, Lovász’s result can be interpreted as saying that the cuts of
minimum value and minimum value plus one can all be preserved while performing
splitting off. By repeated applications of Lovász’s result, one can isolate any vertex
while maintaining the connectivity between the other vertices.

Recently, Benczúr [1] introduced the notion of approximate splitting off in which
the goal is to preserve all cuts of value less than α times the minimum, for some
value of α. Since the values of the cuts δ(S) and δ(V ′−S) become identical once s is
completely isolated in the graph, we should not always be able to preserve both d(S)
and d(V ′ − S). As a result, we say that (s, u) and (s, v) are admissible for k-splitting
off if min(d(S), d(V ′ − S)) (for ∅ 	= S 	= V ′) is preserved whenever this quantity is
less than k. Using the polygon representation of cuts of value less than 6

5λ
′, Benczúr

has shown the existence of an admissible pair of edges for 6
5λ
′-splitting off when d(s)

is even.
In this short note, we show that if s is even, then for any edge (s, u), there exists

an edge (s, v) such that this pair of edges is admissible for 4λ′+2
3 -splitting off. By

repeated applications of this result, one can isolate s while maintaining all cuts of
value less than 4λ′+2

3 . Observe that for λ′ ≥ 2, the values of cuts of value λ′ and
λ′ + 1 are maintained by (4λ′ + 2)/3-splitting off since λ′ + 1 < 4λ′+2

3 . Thus, our
result generalizes Lovász’s result.

Theorem 1.1. For any vertex s with d(s) even and for any edge (s, u), there
exists an edge (s, v) such that the pair (s, u) and (s, v) is admissible for (4λ′ + 2)/3-
splitting off.

Observe that, for λ′ = 0, the statement is vacuous. Similarly, for λ′ = 1, the only
cuts we need to preserve are of value 1 and this is done by any choice of v (since the
cut values do not change or decrease by 2). Thus the only interesting cases are when
λ′ ≥ 2.

This approximate splitting-off theorem is the best possible. Consider indeed K5

in which the edges nonadjacent to a specific vertex s are duplicated M times. Then
λ′ = 3M + 1, but if we split off (s, u) and (s, v), then d({u, v}) decreases while

d({u, v}) = 4M + 2 = 4λ′+2
3 . This shows that there is no admissible pair of edges.

By repeatedly using Theorem 1.1, we derive that vertex s can be isolated in the
graph, as follows.

Corollary 1.2. If vertex s has even degree, then the edges incident to s can be
partitioned into d(s)/2 admissible pairs for (4λ′ + 2)/3-splitting off.

2. The proof. In order to prove Theorem 1.1, we first need the following simple
lemma [1].

Lemma 2.1. Let d(s) > 0 be even. Then (s, u) and (s, v) is not an admissible
pair for k-splitting off if and only if there exists a set S ⊂ V ′ with u, v ∈ S such that
(i) d(S) < k and (ii) d(s, S) ≤ 1

2d(s).
Proof. After splitting off, only sets containing both u and v see their d(.) value

change (by 2 units). Thus, for min(d(S), d(V ′−S)) not to be preserved, we need either
u, v ∈ S or u, v ∈ V − S′. By complementing S (in V ′) if needed, we can restrict our
attention to sets S with u, v ∈ S. As a result, min(d(S), d(V ′ − S)) will decrease if
and only if d(S) − 2 < d(V ′ − S). Since d(S) − d(s, S) = d(V ′ − S) − d(s, V ′ − S)
and d(s, S) + d(s, V ′ − S) = d(s), the condition d(S) − 2 < d(V ′ − S) is equivalent
to 2d(s, S)− 2 < d(s). Since d(s) is even, this is equivalent to d(s, S) ≤ d(s)/2. This
can also be written as d(S) ≤ d(V ′ − S), and the condition min(d(S), d(V ′ − S)) < k
is therefore equivalent to d(S) < k. This proves the lemma.

Theorem 1.1 follows from Lemma 2.1 and the following result.

140 MICHEL X. GOEMANS

Lemma 2.2. Let d(s) > 0 be even and let u ∈ N . There exists v ∈ N such that

there is no set S ⊂ V ′ with (i) u, v ∈ S, (ii) d(s, S) ≤ 1
2d(s), and (iii) d(S) < 4λ′+2

3 .

For the proof of this lemma, we need 3-set submodularity (see [5, exercise 6.48(c)]).

Lemma 2.3 (3-set submodularity; see [5, ex. 6.48(c)]). For any 3 sets A, B, C,
we have

d(A) + d(B) + d(C) ≥ d(A−B − C) + d(B − C −A) + d(C −A−B)

+d(A ∩B ∩ C) + 2d(V −A−B − C,A ∩B ∩ C).

3-set submodularity simply follows from evaluating the contribution of any edge
to both the left-hand side and the right-hand side.

Proof of Lemma 2.2. We can assume that λ′ ≥ 2 and d(s) ≥ 4 since otherwise
the statement is trivial (just take for v the endpoint of an edge (s, v) distinct from
(s, u)).

Assume that for every v ∈ N , there exists Sv such that (i) u, v ∈ Sv, (ii) d(s, Sv) ≤
1
2d(s), and (iii) d(Sv) <

4λ′+2
3 . For a given v ∈ N , we can furthermore assume that

Sv is chosen to maximize d(s, Sv) among the sets satisfying (i)–(iii).

First choose i, j ∈ N such that d(s, Si∪Sj) is maximum. Because of (ii), we have
that

d(s, Si ∪ Sj) = d(s, Si) + d(s, Sj)− d(s, Si ∩ Sj) ≤ 1

2
d(s) +

1

2
d(s)− d(s, Si ∩ Sj).

Since u ∈ Si ∩ Sj , we have that d(s, Si ∩ Sj) > 0, implying that d(s, Si ∪ Sj) < d(s).
Thus, there exists k ∈ N − (Si ∪ Sj).

Since k was not chosen instead of i or j, we have that (Si−Sj −Sk)∩N 	= ∅ and
(Sj − Si − Sk) ∩N 	= ∅.

By 3-set submodularity, we have that

4λ′ + 2 > d(Si) + d(Sj) + d(Sk)

≥ d(Si − Sj − Sk) + d(Sj − Si − Sk) + d(Sk − Si − Sj)
+d(Si ∩ Sj ∩ Sk) + 2,

where we have used the fact that the edge (s, u) contributes 1 unit to d(V −Si−Sj −
Sk, Si ∩ Sj ∩ Sk). Hence,

d(Si − Sj − Sk) + d(Sj − Si − Sk) + d(Sk − Si − Sj) + d(Si ∩ Sj ∩ Sk) < 4λ′,

which is a contradiction since all these sets contain an element of N (k ∈ Sk−Si−Sj
and u ∈ Si ∩ Sj ∩ Sk) .

Although the proof of Theorem 1.1 is essentially existential, one can find pairs
of edges incident to v which are admissible for kλ′-splitting in polynomial time (for
k fixed). Indeed, using [7], one can enumerate all cuts of value less than kλ′ in time
O(nm2 + n2km), where n is the number of vertices and m is the number of edges,
and then check which pairs are admissible. For k = 4/3, Nagamochi, Nishimura,
and Ibaraki [7] show that all these cuts can in fact be enumerated in time O(m2n+
mn2 log n).

APPROXIMATE EDGE SPLITTING 141

REFERENCES

[1] A. A. Benczúr, Cut Structures and Randomized Algorithms in Edge-Connectivity Problems,
Ph.D. dissertation, MIT, Cambridge, MA, 1997.

[2] A. Frank, Augmenting graphs to meet edge-connectivity requirements, SIAM J. Discrete Math.,
5 (1992), pp. 22–53.

[3] A. Frank, Connectivity augmentation problems in network design, in Mathematical Program-
ming: State of the Art 1994, J. R. Birge and K. G. Murty, eds., The University of Michigan,
Ann Arbor, MI, 1994, pp. 34–63.

[4] M. X. Goemans and V. S. Ramakrishnan, Minimizing submodular functions over families of
sets, Combinatorica, 15 (1995), pp. 499–513.

[5] L. Lovász, Combinatorial Problems and Exercises, North-Holland, Amsterdam, New York,
1979 (2nd ed., 1993).

[6] W. Mader, A reduction method for edge connectivity in graphs, Ann. Discrete Math., 3 (1978),
pp. 145–164.

[7] H. Nagamochi, K. Nishimura, and T. Ibaraki, Computing all small cuts in an undirected
network, SIAM J. Discrete Math., 10 (1997), pp. 469–481.

EXTREMAL PROPERTIES FOR DISSECTIONS OF
CONVEX 3-POLYTOPES∗

JESÚS A. DE LOERA† , FRANCISCO SANTOS‡ , AND FUMIHIKO TAKEUCHI§

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 2, pp. 143–161

Abstract. A dissection of a convex d-polytope is a partition of the polytope into d-simplices
whose vertices are among the vertices of the polytope. Triangulations are dissections that have the
additional property that the set of all its simplices forms a simplicial complex. The size of a dissection
is the number of d-simplices it contains. This paper compares triangulations of maximal size with
dissections of maximal size. We also exhibit lower and upper bounds for the size of dissections of
a 3-polytope and analyze extremal size triangulations for specific nonsimplicial polytopes: prisms,
antiprisms, Archimedean solids, and combinatorial d-cubes.

Key words. dissection, triangulation, mismatched region, lattice polytope, combinatorial d-
cube, prism, antiprism, Archimedean solid

AMS subject classifications. 52B45, 52B05, 52B70, 52B55

PII. S0895480199366238

1. Introduction. Let A be a point configuration in Rd with its convex hull
conv(A) having dimension d. A set of d-simplices with vertices in A is a dissection
of A if no pair of simplices has an interior point in common and their union equals
conv(A). A dissection is a triangulation of A if in addition any pair of simplices
intersects at a common face (possibly empty). The size of a dissection is the number
of d-simplices it contains. We say that a dissection is mismatching when it is not a
triangulation (i.e., it is not a simplicial complex). In this paper we study mismatching
dissections of maximal possible size for a convex polytope and compare them with
maximal triangulations. This investigation is related to the study of Hilbert bases and
the hierarchy of covering properties for polyhedral cones which is relevant in algebraic
geometry and integer programming (see [5, 10, 24]). Maximal dissections are relevant
also in the enumeration of interior lattice points and its applications (see [2, 15] and
references therein).
It was first shown by Lagarias and Ziegler that dissections of maximal size turn

out to be, in general, larger than maximal triangulations, but their example uses
interior points [16]. Similar investigations were undertaken for mismatching minimal
dissections and minimal triangulations of convex polytopes [4]. In this paper we
augment previous results by showing that it is possible to have simultaneously, in
the same 3-polytope, that the size of a mismatching minimal (maximal) dissection
is smaller (larger) than any minimal (maximal) triangulation. In addition, we show
that the gap between the size of a mismatching maximal dissection and a maximal
triangulation can grow linearly on the number of vertices and that this occurs already
for a family of simplicial convex 3-polytopes. A natural question is how different

∗Received by the editors December 22, 1999; accepted for publication (in revised form) December
12, 2000; published electronically February 23, 2001.

http://www.siam.org/journals/sidma/14-2/36623.html
†Department of Mathematics, University of California, Davis, CA 95616 (deloera@math.

ucdavis.edu). The research of this author was partially supported by NSF grant DMS-0073815.
‡Departmento de Matemáticas, Estadistica y Comput., Universidat de Cantabria, E-39005 San-

tander, Cantabria, Spain (santos@matesco.unican.es). The research of this author was partially sup-
ported by grant PB97-0358 of the Spanish Dirección General de Investigación Cient́ıfica y Técnica.

§Department of Information Science, University of Tokyo, Tokyo, 113-0033, Japan (fumi@is.s.
u-tokyo.ac.jp).

143

144 J. A. DE LOERA, F. SANTOS, AND F. TAKEUCHI

are the upper and lower bounds for the size of mismatching dissections versus those
bounds known for triangulations (see [21]). We prove lower and upper bounds on their
size with respect to the number of vertices for dimension three and exhibit examples
showing that our technique of proof fails already in dimension four. Here is the first
summary of results.

Theorem 1.1.

(1) There exists an infinite family of convex simplicial 3-polytopes with increasing
number of vertices whose mismatching maximal dissections are larger than
their maximal triangulations. This gap is linear in the number of vertices
(Corollary 2.2).

(2) (a) There exists a lattice 3-polytope with eight vertices containing no other
lattice point other than its vertices whose maximal dissection is larger
than its maximal triangulations.

(b) There exists a 3-polytope with eight vertices for which, simultaneously, its
minimal dissection is smaller than minimal triangulations and maximal
dissection is larger than maximal triangulations (Proposition 2.3).

(3) If D is a mismatching dissection of a 3-polytope with n vertices, then the size
of D is at least n − 2. In addition, the size of D is bounded above by

(
n−2

2

)
(Proposition 3.2).

A consequence of our third point is that the result of [4], stating a linear gap
between the size of minimal dissections and minimal triangulations, is best possible.
The results are discussed in sections 2 and 3.

The last section presents a study of maximal and minimal triangulations for
combinatorial d-cubes, three-dimensional prisms and antiprisms, as well as other
Archimedean polytopes. The following theorem and table summarize the main re-
sults.

Theorem 1.2.

(1) There is a constant c > 1 such that for every d ≥ 3 the maximal triangulation
among all possible combinatorial d-cubes has size at least cdd! (Proposition
4.1).

(2) For a three-dimensional m-prism, in any of its possible coordinatizations, the
size of a minimal triangulation is 2m−5+ �m2 �. For an m-antiprism, in any
of its possible coordinatizations, the size of a minimal triangulation is 3m− 5
(Proposition 4.3). The size of a maximal triangulation of an m-prism depends
on the coordinatization, and in certain natural cases it is (m2 + m − 6)/2
(Proposition 4.4).

(3) Table 1 specifies sizes of the minimal and maximal triangulations for some
Platonic and Archimidean solids. These results were obtained via integer pro-
gramming calculations using the approach described in [8]. All computations
used the canonical symmetric coordinatizations for these polytopes [6]. The
number of vertices is indicated in parenthesis (Remark 4.5).

2. Maximal dissections of 3-polytopes. We introduce some important defi-
nitions and conventions: We denote by Qm a convex m-gon with m an even positive
integer. Let v1v2 and u1u2 be two edges parallel to Qm, orthogonal to each other,
on opposite sides of the plane containing Qm, and such that the four segments viuj
intersect the interior of Qm. We suppose that v1v2 and u1u2 are not parallel to any
diagonal or edge of Qm. The convex hull Pm of these points has m + 4 vertices and
it is a simplicial polytope. We will call the north (respectively, south) vertex of Qm
the one which maximizes (respectively, minimizes) the scalar product with the vector

EXTREMAL DISSECTIONS OF POLYTOPES 145

Table 1
Sizes of extremal triangulations of Platonic and Archimidean solids.

P |Tmin (P)| |Tmax (P)|
Icosahedron (12) 15 20
Dodecahedron (20) 23 36
Cuboctahedron (12) 13 17

Icosidodecahedron (30) 45 ?
Truncated Tetrahedron (12) 10 13
Truncated Octahedron (24) 27 ?

Truncated Cube (24) 25 48
Small Rhombicuboctahedron (24) 35 ?

Pentakis Dodecahedron (32) 54 ?
Rhombododecahedron (14) 12 21

e

w

N

E

S

W

v

v 2

u

1

1u 2

s

n

Fig. 1. North, south, east, and west vertices.

v2−v1. Similarly, we will call east (west) the vertex which maximizes (minimizes) the
scalar product with u2−u1. We denote these four vertices n, s, e and w, respectively.
See Figure 1.

We say that a directed path of edges inside Qm is monotone in the direction
v1v2 (respectively, u1u2) when the vertices of the path appear in the path following
the same order given by the scalar product with v2 − v1 (respectively, u2 − u1). An
equivalent formulation is that any line orthogonal to v1v2 cuts the path in at most one
point. We remark that by our choice of v1v2 and u1u2 all vertices of Qm are ordered
by the values of their scalar products with v2 − v1 and also with respect to u2 − u1.
In the same way, a sequence of vertices of Qm is ordered in the direction of v1v2
(respectively, u1u2) if the order is the same as the one provided by using the values
of the scalar products of the points with the vector v2 − v1 (respectively, u2 − u1).
Consider the two orderings induced by the directions of v1v2 and u1u2 on the set of
vertices of Qm. Let us call horizontal (respectively, vertical) any edge joining two
consecutive vertices in the direction of v1v2 (respectively, of u1u2). As an example, if
Qm is regular, then the vertical edges in Qm form a zig-zag path as shown in Figure
2.

Our examples in this section will be based on the following observation and are
inspired by a similar analysis of maximal dissections of dilated empty lattice tetra-
hedra in R3 by Lagarias and Ziegler [16]: Let Rm be the convex hull of the m + 2
vertices consisting of the m-gon Qm and v1, v2. Rm is exactly one half of the polytope
Pm. Consider a triangulation T0 of Qm and a path Γ of edges of T0 monotone with

146 J. A. DE LOERA, F. SANTOS, AND F. TAKEUCHI

e
w

v
2

v
1

u
1

u
2 e

w

Fig. 2. The minimal monotone path (middle) and the maximal monotone path made by the
vertical edges (right) in the direction u1u2.

respect to the direction u1u2. Observe that Γ divides T0 in two regions, which we will
call the “north” and the “south.” Then, the following three families of tetrahedra
form a triangulation T of Rm: the edges of Γ joined to the edge v1v2, the southern
triangles of T0 joined to v1, and the northern triangles of T0 joined to v2 (see Figure
3). Moreover, all the triangulations of Rm are obtained in this way: Any triangulation
T of Rm induces a triangulation T0 of Qm. The link of v1v2 in T is a monotone path
of edges contained in T0 and it divides T0 in two regions joined, respectively, to v1
and v2.

v
1

v
2

n

s

e

w

v
1

v
2

n

s

e

w

v
1

v
2

n

s

e

w

Fig. 3. Three types of tetrahedra in Rm.

Using the Cayley trick, one can also think of the triangulations of Rm as the fine
mixed subdivisions of the Minkowski sum Qm+v1v2 (see [13] and references therein).

The size of a triangulation of Rm equals m− 2 + |Γ|, where |Γ| is the number of
edges in the path Γ. There is a unique minimal path in Qm of length one (Figure
2, middle) and a unique maximal path of length m − 1 (Figure 2, right). Hence the
minimal and maximal triangulations of Rm have, respectively, m − 1 and 2m − 3
tetrahedra. The maximal triangulation is unique, but the minimal one is not: after
choosing the diagonal in Γ the rest of the polygon Qm can be triangulated in many
ways. From the above discussion regarding Rm we see that we could independently
triangulate each of the two halves of Pm with any number of tetrahedra from m− 1
to 2m − 3. Hence Pm has dissections of sizes going from 2m − 2 to 4m − 6. Among
the triangulations of Pm, we will call halving triangulations those that triangulate the
two halves of Pm. Equivalently, the halving triangulations are those which do not
contain any of the four edges viuj .

Proposition 2.1. Let Pm be as described above with Qm being a regular m-gon.
No triangulation of Pm has more than 7m

2 + 1 tetrahedra. On the other hand, there
are mismatching dissections of Pm with 4m− 6 tetrahedra.

Proof. Let T be a triangulation of Pm. It is an easy application of Euler’s formulas
for the 3-ball and 2-sphere that the number of tetrahedra in a triangulation of any

EXTREMAL DISSECTIONS OF POLYTOPES 147

3-ball without interior vertices equals the number of vertices plus interior edges minus
three (such a formula appears for instance in [9]). Hence our task is to prove that T
has at most 5m

2 interior edges. For this, we classify the interior edges according to
how many vertices of Qm they are incident to. There are only four edges not incident
to any vertex of Qm (the edges viuj , i, j ∈ {1, 2}). Moreover, T contains at most
m−3 edges incident to two vertices of Qm (i.e., diagonals of Qm), since in any family
of more than m−3 such edges there are pairs which cross each other. Thus, it suffices
to prove that T contains at most 3m

2 − 1 edges incident to just one vertex of Qm, i.e.,
of the form vip or uip with p ∈ Qm.
Let p be any vertex of Qm. If p equals w or e, then the edges pv1 and pv2 are both

in the boundary of Pm; for any other p, exactly one of pv1 and pv2 is on the boundary
and the other one is interior. Moreover, we claim that if pvi is an interior edge in a
triangulation T , then the triangle pv1v2 appears in T . This is so because there is a
plane containing pvi and having v3−i as the unique vertex on one side. At the same
time the link of pvi is a cycle going around the edge. Hence v3−i must appear in the
link of pvi. It follows from the above claim that the number of interior edges of the
form pvi in T equals the number of vertices of Qm other than w and e in the link of
v1v2. In a similar way, the number of interior edges of the form pui in T equals the
number of vertices of Qm other than n and s in the link of u1u2. In other words, if
we call Γu = linkT (v1v2) ∩ Qm and Γv = linkT (u1u2) ∩ Qm (the u, v in the index
and of the vertices are reversed because in this way Γu is monotone with respect to
u1u2, and Γv with respect to v1v2), then the number of interior edges in T incident
to exactly one vertex of Qm equals |vertices(Γv)|+ |vertices(Γu)| − 4. Our goal is to
bound this number. As an example, Figure 4 shows the intersection of Qm with a
certain triangulation of Pm (m = 12). The link of v1v2 in this triangulation is the
chain of vertices and edges wabu1nu2ce (the star of v1v2 is marked in thick and grey
in the figure). Γu consists of the chains wab and ce and the isolated vertex n. In turn,
the link of u1u2 is the chain nv1s and Γv consists of the isolated vertices n and s.

s

w

n

e

a

b

c

Fig. 4. Illustration of the proof of Proposition 2.1.

Observe that Γv has at most three connected components because it is obtained
by removing from linkT (u1u2) (a path) the parts of it incident to v1 and v2, if any.
Each component is monotone in the direction of v1v2 and the projections of any two
components to a line parallel to v1v2 do not overlap. The sequence of vertices of Qm
ordered in the direction of v1v2 can have a pair of consecutive vertices contained in
Γv only where there is a horizontal edge in Γv or in the (at most) two discontinuities
of Γv. This is true because Qm is a regular m-gon.
We denote nhor the number of horizontal edges in Γv and n

′
hor this number plus

the number of discontinuities in Γv (hence n
′
hor ≤ nhor + 2). Every nonhorizontal

148 J. A. DE LOERA, F. SANTOS, AND F. TAKEUCHI

edge of Γv produces a jump of at least two in the v1v2-ordering of the vertices of Pm;
hence we have

|vertices(Γv)| − 1− n′hor ≤
m− 1− n′hor

2
.

Analogously, and with the obvious similar meaning for nvert and n
′
vert,

|vertices(Γu)| − 1− n′vert ≤
m− 1− n′vert

2
.

Since Γu∪Γv can be completed to a triangulation of Qm, and exactly four noninte-
rior edges of Qm are horizontal or vertical, we have nhor+nvert ≤ (m−3)+4 = m+1,
i.e., n′hor + n

′
vert ≤ m+ 5. Hence

|vertices(Γv)|+ |vertices(Γu)| ≤
⌊
2m+ 2 + n′hor + n

′
vert

2

⌋
≤
⌊
3m+ 7

2

⌋
=
3m

2
+ 3.

Thus, there are at most 3m
2 − 1 interior edges in T of the form pvi or pui and at

most 5m
2 interior edges in total, as desired.

Corollary 2.2. The polytope Pm described above has the following properties:
• It is a simplicial 3-polytope with m+ 4 vertices.
• Its maximal dissection has at least 4m− 6 tetrahedra.
• Its maximal triangulation has at most 7m

2 + 1 tetrahedra.
In particular, the gap between sizes of the maximal dissection and maximal triangu-
lation is linear on the number of vertices.
Three remarks are in order: First, the size of the maximal triangulation for Pm

may depend on the coordinates or, more specifically, on which diagonals of Qm inter-
sect the tetrahedron v1v2u1u2. Second, concerning the size of the minimal triangula-
tion of Pm, we can easily describe a triangulation of Pm with only m+ 5 tetrahedra:
let the vertices n, s, e, and w be as defined above (see Figure 1) and let us call
northeast, northwest, southeast, and southwest the edges in the arcs ne, nw, se, and
sw in the boundary of Qm. Then, the triangulation consists of the five tetrahedra
v1v2u1u2, v1v2u1w, v1v2u2e, v1u1u2s, and v2u1u2n (shown in the left part of Figure
5) together with the edges v2u2, v2u1, v1u2, and v1u1 joined, respectively, to the
northeast, northwest, southeast, and southwest edges of Qm. The right part of Figure
5 shows the result of slicing through the triangulation by the plane containing the
polygon Qm.
Finally, although the corollary above states a difference between maximal dissec-

tions and maximal triangulations only for Pm with m > 14, experimentally we have
observed there is a gap already for m = 8. Now we discuss two other interesting
examples. The following proposition constitutes the proof of Theorem 1.1 (2).

Proposition 2.3.
(1) Consider the following eight points in R3:

• The vertices s = (0, 0, 0), e = (1, 0, 0), w = (0, 1, 0), and n = (1, 1, 0) of
a square in the plane z = 0.

• The vertices v1 = (−1, 0, 1) and v2 = (1, 1, 1) of a horizontal edge above
the square, and
• the vertices u1 = (0, 1,−1) and u2 = (2, 0,−1) of a horizontal edge below
the square.

These eight points are the vertices of a polytope P whose only integer points
are precisely its eight vertices and with the following properties:

EXTREMAL DISSECTIONS OF POLYTOPES 149

v
1

v
2

u
2

u
1

v
1

v
2

w

u
1

v
1

v
2

e

u
2

v
1

s

u
2

u
1

v
2

n

u
2

u
1

e

w

n

s v
1
u

1
u

2
s

v
2
u

1
u

2
n

Fig. 5. For the triangulation of Pm with m + 5 tetrahedra, its five central tetrahedra (left)
and the intersection of the triangulation with the polygon Qm (right) are shown. The four interior
vertices are the intersection points of the edges v1u1, v1u2, v2u1, and v2u2 with the plane containing
Qm.

(a) Its (unique) maximal dissection has 12 tetrahedra. All of them are uni-
modular, i.e., they have volume 1/6.

(b) Its (several) maximal triangulations have 11 tetrahedra.
(2) For the 3-polytope with vertices u1 = (1, 0, 0), w = (1, 0, 1), v1 = (−1, 0, 0),

s = (−1, 0,−1), v2 = (0, 1, 1), n = (1, 1, 1), u2 = (0, 1,−1), e = (−1, 1,−1),
the sizes of its (unique) minimal dissection and (several) minimal triangula-
tions are 6 and 7, respectively, and the sizes of its (several) maximal trian-
gulations and (unique) maximal dissection are 9 and 10, respectively.

Proof. The polytopes constructed are quite similar to P4 constructed earlier
except that Q4 is nonregular (in part (2)) and the segments u1u2 and v1v2 are longer
and are not orthogonal, thus ending with different polytopes. The polytopes are
shown in Figure 6. Figure 7 describes a maximal dissection of each of them in five
parallel slices. Observe that both polytopes have four vertices in the plane y = 0 and
another four in the plane y = 1. Hence the first and last slices in parts (a) and (b) of
Figure 7 completely describe the polytope.

v1 u1

u2

v2 n

e

w

sv1

es

u1

u2

n

v2

w

Fig. 6. The two polytopes in Proposition 2.3.

(1) The vertices in the planes y = 0 and y = 1 form convex quadrangles whose
only integer points are the four vertices. This proves that the eight points are in
convex position and that the polytope P contains no integer point other than its
vertices. Let us now prove the assertions on maximal dissections and triangulations

150 J. A. DE LOERA, F. SANTOS, AND F. TAKEUCHI

y = 1y = .75y = .5y = .25y = 0

s e

v

u

1

2

w n

v

u

2

1

u

w

s

n2

v
1

1

v

e u
2

= 0 = .25 = .5 = .75 = 1

(a)

(b)

y y y y y

Fig. 7. Five 2-dimensional slices of the maximal dissections of the polytopes in Proposition 2.3.
The first and last slices are two facets of the polytopes containing all the vertices.

of P :

(a) Consider the paths of length three Γv = {esnw} and Γu = {sewn}, which are
monotone, respectively, in the directions orthogonal to v1v2 and u1u2. Using them,
we can construct two triangulations of size five of the polytopes conv(nsewv1v2) and
conv(nsewu1u2), respectively. However, they do not fill P completely. There is space
left for the tetrahedra swv1u1 and env2u2. This gives a dissection of P with 12
tetrahedra. All the tetrahedra are unimodular, so no bigger dissection is possible.

(b) A triangulation of size 11 can be obtained using the same idea as above, but
with paths Γv and Γu of lengths three and two, respectively, which can be taken from
the same triangulation of the square nswe.

To prove that no triangulation has bigger size, it suffices to show that P does not
have any unimodular triangulation. This means all tetrahedra have volume 1/6. We
start by recalling a well-known fact (see Corollary 4.5 in [25]). A lattice tetrahedron
has volume 1/6 if and only if each of its vertices v lies in a consecutive lattice plane
parallel to the supporting plane of the opposite facet to v. Two parallel planes are
said to be consecutive if their equations are ax+ by+ cz = d and ax+ by+ cz = d−1.
Suppose that T is a unimodular triangulation of P . We will first prove that

the triangle u1u2e is in T . The triangular facet u1u2s of P , lying in the hyperplane
x+ 2y + 2z = 0, has to be joined to a vertex in the plane x+ 2y + 2z = 1. The two
possibilities are e and v1. With the same argument, if the tetrahedron u1u2sv1 is in
T , its facet u1u2v1, which lies in the hyperplane 2x+ 4y + 3z = 1, will be joined to a
vertex in 2x+ 4y + 3z = 2, and the only one is e. This finishes the proof that u1u2e
is a triangle in T . Now u1u2e is in the plane x+ 2y + z = 1 and must be joined to a
vertex in x+2y+z = 2, i.e., to w. Hence u1u2ew is in T and, in particular, T uses the
edge ew. P is symmetric under the rotation of order two on the axis {z = 0, x = 1

2}.
Applying this symmetry to the previous arguments we conclude that T uses the edge
ns too. However, this is impossible since the edges ns and ew cross each other.

(2) This polytope almost fits the description of P4, except for the fact that the
edges v1u1, v2u2 intersect the boundary and not the interior of the planar quadrangle

EXTREMAL DISSECTIONS OF POLYTOPES 151

nsew. With the general techniques we have described, it is easy to construct halving
dissections of this polytope with sizes from 6 to 10. Combinatorially, the polytope
is a 4-antiprism. Hence, Proposition 4.3 shows that its minimal triangulation has
seven tetrahedra. The rest of the assertions in the statement were proved using
the integer programming approach proposed in [8], which we describe in Remark
4.5. We have also verified them by enumerating all triangulations [19, 29]. It is
interesting to observe that if we perturb the coordinates a little so that the planar
quadrilateral u1v1u2e becomes a tetrahedron with the right orientation and without
changing the face lattice of the polytope, then the following becomes a triangulation
with 10 tetrahedra: {u1u2se, u1u2ev1, u1u2v1w, u1u2wn, v1v2en, v1v2nw, u1v1se,
v1u2ew, u2wne, v1wne}.

3. Bounds for the size of a dissection. Let D be a dissection of a d-polytope
P . Say two (d − 1)-simplices S1 and S2 of D intersect improperly in a (d − 1)-
hyperplane H if both lie in H, are not identical, and they intersect with a nonempty
relative interior. Consider the following auxiliary graph: take as nodes the (d − 1)-
simplices of a dissection, and say that two (d−1)-simplices are adjacent if they intersect
improperly in a certain hyperplane. A mismatched region is the subset of Rd that is
the union of (d− 1)-simplices over a connected component of size larger than one in
such a graph. Later, in Proposition 3.4, we will show some of the complications that
can occur in higher dimensions.

Define the simplicial complex of a dissection as all the simplices of the dissection
together with their faces, where only faces that are identical (in Rd) are identified.
This construction corresponds intuitively to an inflation of the dissection, where for
each mismatched region we move the two groups of (d − 1)-simplices slightly apart
leaving the relative boundary of the mismatched region joined. Clearly, the simplicial
complex of a dissection may be not homeomorphic to a ball.

The deformed d-simplices intersect properly, and the mismatched regions become
holes. The numbers of vertices and d-simplices do not change.

Lemma 3.1. All mismatched regions for a dissection of a convex 3-polytope P
are convex polygons with all vertices among the vertices of P . Distinct mismatched
regions have disjoint relative interiors.

Proof. Let Q be a mismatched region and H the plane containing it. Since a
mismatched region is a union of overlapping triangles, it is a polygon in H with a
connected interior. If two triangles forming the mismatched region have interior points
in common, they should be facets of tetrahedra in different sides of H. Otherwise the
two tetrahedra would have interior points in common, contradicting the definition of
dissection. Triangles which are facets of tetrahedra in one side ofH cover Q. Triangles
coming from the other side of H also cover Q.

Now take triangles coming from one side. As mentioned above, they have no
interior points in common. Their vertices are among the vertices of the tetrahedra in
the dissection, thus among the vertices of the polytope P . Hence the vertices of the
triangles are in convex position, thus the triangles are forming a triangulation of a
convex polygon in H whose vertices are among the vertices of P .

For the second claim, suppose there were distinct mismatched regions having an
interior point in common. Then their intersection should be an interior segment for
each. Let Q be one of the mismatched regions. It is triangulated in two different
ways each coming from the tetrahedra in one side of the hyperplane. The triangles in
either triangulation cannot intersect improperly with the interior segment. Thus the
two triangulations of Q have an interior diagonal edge in common. This means the

152 J. A. DE LOERA, F. SANTOS, AND F. TAKEUCHI

triangles in Q consist of more than one connected component of the auxiliary graph,
contradicting the definition of mismatched region.

Proposition 3.2.
(1) The size of a mismatching dissection D of a convex 3-polytope with n vertices

is at least n− 2.
(2) The size of a dissection of a 3-polytope with n vertices is bounded from above

by
(
n−2

2

)
.

Proof. (1) Do an inflation of each mismatched region. This produces as many holes
as mismatched regions, say, m of them. Each hole is bounded by two triangulations
of a polygon. This is guaranteed by the previous lemma. Denote by ki the number
of vertices of the polygon associated with the ith mismatched region. In each of the
holes introduce an auxiliary interior point. The point can be used to triangulate the
interior of the holes by filling in the holes with the coning of the vertex with the
triangles it sees. We now have a triangulated ball.
Denote by |D| the size of the original dissection. The triangulated ball has then

|D|+∑m
i=1 2(ki−2) tetrahedra in total. The number of interior edges of this triangu-

lation is the number of interior edges in the dissection, denoted by ei(D), plus the new
additions; for each hole of length ki we added ki interior edges. In a triangulation T
of a 3-ball with n boundary vertices and n′ interior vertices, the number of tetrahedra
|T | is related to the number of interior edges ei of T by the formula |T | = n+ei−n′−3.
The proof is a simple application of Euler’s formula for triangulated 2-spheres and
3-balls and we omit the easy details.
Thus, we have the following equation:

|D|+
m∑
i=1

2(ki − 2) = n+ ei(D) +
m∑
i=1

ki −m− 3.

This can be rewritten as |D| = n + ei(D) −
∑m
i=1 ki + 3m − 3. Taking into account

that ei(D) ≥
∑m
i=1 2(ki− 3) (because diagonals in a polygon are interior edges of the

dissection), we get an inequality

|D| ≥ n+
m∑
i=1

ki − 3m− 3.

Finally, note that in a mismatching dissection we have m ≥ 1 and ki ≥ 4. This
gives the desired lower bound.
(2) Now we look at the proof of the upper bound on dissections. Given a 3-

dissection, we add tetrahedra of volume zero to complete a triangulation with flat
simplices that has the same number of vertices. One can also think we are filling in
the holes created by an inflation with (deformed) tetrahedra.
Lemma 3.1 states that mismatched regions were of the shape of convex polygons.

The 2-simplices forming a mismatched region were divided into two groups (those
becoming apart by an inflation). The two groups formed different triangulations of a
convex polygon, and they had no interior edges in common. In this situation, we can
make a sequence of flips (see [17]) between the two triangulations with the property
that any edge once disappeared does not appear again (see Figure 8). We add one
abstract, volume zero tetrahedron for each flip and obtain an abstract triangulation
of a 3-ball.
The triangulation with flat simplices we created is a triangulated 3-ball with n

vertices. By adding a new point in a fourth dimension, and coning from the boundary

EXTREMAL DISSECTIONS OF POLYTOPES 153

Fig. 8. Filling in holes with tetrahedra according to flips.

2-simplices to the point, we obtain a triangulated 3-sphere containing the original 3-
ball in its boundary. From the upper bound theorem for spheres (for an introduction
to this topic, see [30]) its size is bounded from above by the number of facets of a cyclic
4-polytope minus 2n− 4, the number of 2-simplices in the boundary of D. The four-
dimensional cyclic polytope with n+1 vertices is well known to have (n+1)(n−2)/2
facets (see [11, p. 63]), which completes the proof after a trivial algebraic calcula-
tion.

Open Problem 3.3. What is the correct upper bound theorem for dissections of
d-dimensional polytopes with d ≥ 4?
In our proof of Proposition 3.2 we built a triangulated PL-ball from a three-

dimensional dissection using the flip connectivity of triangulations of a convex n-
gon. Unfortunately the same cannot be applied in higher dimensions, as the flip
connectivity of triangulations of d-polytopes is known to be false for convex polytopes
in general [22]. Even worse, however, the easy property we used from Lemma 3.1 that
mismatched regions are convex polyhedra fails in dimension d ≥ 4.

Proposition 3.4. The mismatched regions of a dissection of a convex 4-polytope
can be nonconvex polyhedra.

Proof. The key idea is as follows. Suppose we have a 3-dimensional convex poly-
tope P and two triangulations T1 and T2 of it with the following properties: removing
from P the tetrahedra that T1 and T2 have in common, the rest is a nonconvex poly-
hedron P ′ such that the triangulations T ′1 and T

′
2 of it obtained from T1 and T2 do

not have any interior 2-simplex in common (actually, something weaker would suffice:
that their common interior triangles, if any, do not divide the interior of the polytope).
In these conditions, we can construct the dissection we want as a bipyramid over

P , coning T1 to one of the apices and T2 to the other one. The bipyramid over the
nonconvex polyhedron P ′ will be a mismatched region of the dissection.
For a concrete example, start with Schönhardt’s polyhedron whose vertices are

labeled 1, 2, 3 in the lower face and 4, 5, 6 in the top face. This is a nonconvex polyhe-
dron made, for example, by twisting the three vertices on the top of a triangular prism.
Add two antipodal points 7 and 8 close to the “top” triangular facets (those not break-
ing the quadrilaterals); see Figure 9. For example, take as coordinates for the points
1 = (10, 0, 0), 2 = (−6, 8, 0), 3 = (−6,−8, 0), 4 = (10,−0.1, 10), 5 = (−6.1, 8, 10),
6 = (−5.9,−8.1, 10), 7 = (0, 0, 10.1), 8 = (0, 0,−0.1).
Let P ′ be this nonconvex polyhedron and let T ′1 = {1278, 1378, 2378, 1247, 2457,

2357, 3567, 1367, 1467} and T ′2 = {4578, 4678, 5678, 1248, 2458, 2358, 3568, 1368,
1468}. T ′1 cones vertex 7 to the rest of the boundary of P ′, and T ′2 cones vertex 8.
Any common interior triangle of T ′1 and T

′
2 would use the edge 78. But the link of 78

in T ′1 contains only the points 1, 2, and 3, and the link in T
′
2 contains only 4, 5, and

6.
Let P be the convex hull of the eight points, and let T1 and T2 be obtained from

154 J. A. DE LOERA, F. SANTOS, AND F. TAKEUCHI

7

64

5

3

2

1

8

Fig. 9. The mismatched region of a four-dimensional dissection.

T ′1 and T
′
2 by adding the three tetrahedra 1245, 2356, and 1346.

4. Optimal dissections for specific polytopes. The regular cube has been
widely studied for its smallest dissections [12, 14, 18]. This receives the name of
simplexity of the cube. In contrast, because of the type of simplices inside a regular d-
cube, a simple volume argument shows that the maximal size of a dissection is d!, the
same as for triangulations. On the other hand, we know that the size of the maximal
triangulation of a combinatorial cube can be larger than that: For example, the
combinatorial 3-cube obtained as the prism over a trapezoid (vertices on a parabola
for instance) has triangulations of size 7. Figure 10 shows a triangulation with seven
simplices for those coordinatizations, where the edges AB and GH are not coplanar.
The tetrahedron ABGH splits the polytope into two nonconvex parts, each of which
can be triangulated with three simplices. To see this, suppose that our polytope is
a very small perturbation of a regular 3-cube. In the regular cube, ABGH becomes
a diagonal plane which divides the cube into two triangular prisms, ABCDGH and
ABEFGH. In the nonregular cube, the diagonals AH and BG, respectively, become
nonconvex. Any pair of triangulations of the two prisms, each using the corresponding
diagonal, together with tetrahedron ABGH give a triangulation of the perturbed cube
with seven tetrahedra. The boundary triangulation is shown in the flat diagram. It is
worth noticing that for the regular cube the boundary triangulation we showed does
not extend to a triangulation of the interior.

One can then ask, “What is the general growth for the size of a maximal dissection
of a combinatorial cube?” To answer this question, at least partially, we use the above
construction and we adapt an idea of Haiman, originally devised to produce small
triangulations of regular cubes [12]. The idea is that from triangulations of a d1-
cube and a d2-cube of sizes s1 and s2, respectively, we can get triangulations of the
(d1 + d2)-cube by first subdividing it into s1×s2 copies of the product of two simplices
of dimensions d1 and d2 and then triangulating each such piece. We recall that any
triangulation of the Cartesian product of a d1-simplex and a d2-simplex has

(
d1+d2
d1

)
maximal simplices. Hence in total we have a triangulation of the (d1 + d2)-cube into
s1× s2×

(
d1+d2
d1

)
maximal simplices. Recursively, if one starts with a triangulation of

size s of the d-cube, one obtains triangulations for the rd-cube of size (rd)!(sd!)
r. In

Haiman’s context one wants s to be small, but here we want it to be big.

More precisely, denote by f(d) the function maxC: d-cube(maxT of C |T |) and call

EXTREMAL DISSECTIONS OF POLYTOPES 155

A

B

C

D

E

F

G

H

A

B

C

D

E

F

G

H

Fig. 10. A triangulation of a combinatorial 3-cube into seven tetrahedra.

g(d) = (f(d)/d!)
1/d
. Haiman’s argument shows that if f(d1) ≥ c1d1d1! and f(d2) ≥

c2
d2d2! for certain constants c1 and c2, then f(d1 + d2) ≥ c1

d1c2
d2(d1 + d2)! (put

differently, that g(d1 + d2) ≥
(
g(d1)

d1g(d2)
d2
)1/(d1+d2)

). The value on the right-hand
side is the weighted geometric mean of g(d1) and g(d2). In particular, if both g(d1)
and g(d2) are ≥ 1 and one of them is > 1, then g(d1 + d2) is > 1 as well.
We have constructed above a triangulation of size 7 for the Klee–Minty 3-cube,

which proves g(3) ≥ 3
√
7/6 = 1.053. With Haiman’s idea we can now construct

“large” triangulations of certain 4-cubes and 5-cubes, which prove, respectively, that
g(4) ≥ 4

√
7/6 = 1.039 and g(5) ≥ 5

√
7/6 = 1.031 (take d1 = 3 and d2 equal to one and

two, respectively). Finally, since any d > 5 can be expressed as a sum of 3’s and 4’s,
we have g(d) ≥ min{g(3), g(4)} ≥ 1.039 for any d > 5. Hence we have the following
proposition.

Proposition 4.1. For the family of combinatorial d-cubes with d > 2 the func-
tion f(d) = maxC: d-cube(maxT of C |T |) admits the lower bound f(d) ≥ cdd! where
c ≥ 1.031.
Exactly as in Haiman’s paper, the constant c can be improved (asymptotically)

if one starts with larger triangulations for the smaller-dimensional cubes. Using com-
puter calculations (see Remark 4.5), we obtained a maximal triangulation for the
Klee–Minty 4-cube with 38 maximal simplices, which shows that g(d) ≥ 4

√
38/24 =

1.122 for every d divisible by 4 (see [1] for a complete study of this family of cubes).
We omit listing the triangulation here, but it is available from the authors by request.

Open Problem 4.2. Is the sequence g(d) bounded? In other words, is there an
upper bound of type cdd! for the function f(d)? Observe that the same question for
minimal triangulations of the regular d-cube (whether there is a lower bound of type
cdd! for some c > 0) is open as well. See [26] for the best lower bound known.
We continue our discussion with the study of optimal triangulations for three-

dimensional prisms and antiprisms. We will call an m-prism any 3-polytope with
the combinatorial type of the product of a convex m-gon with a line segment. An m-
antiprism will be any 3-polytope whose faces are two convexm-gons and 2m triangles,
each m-gon being adjacent to half of the triangles. Vertices of the two m-gons are
connected with a band of alternately up and down pointing triangles.
Each such polyhedron has a regular coordinatization in which all the faces are

regular polygons and a realization space which is the set of all possible coordinatiza-
tions that yield the same combinatorial information [20]. Our first result is valid in

156 J. A. DE LOERA, F. SANTOS, AND F. TAKEUCHI

the whole realization space.
Proposition 4.3. For any three-dimensional m-prism, in any of its possible

coordinatizations, the number of tetrahedra in a minimal triangulation is 2m−5+�m2 �.
For any three-dimensional m-antiprism, in any of its possible coordinatizations,

the number of tetrahedra in a minimal triangulation is 3m− 5.
Proof. In what follows we use the word cap to refer to the m-gon facets appearing

in a prism or antiprism. We begin our discussion proving that any triangulation of
the prism or antiprism has at least the size we state, and then we will construct
triangulations with exactly that size.
We first prove that every triangulation of the m-prism requires at least 2m− 5+

�m2 � tetrahedra. We call a tetrahedron of the m-prism mixed if it has two vertices on
the top cap and two vertices on the bottom cap of the prism; otherwise we say that
the tetrahedron is top-supported when it has three vertices on the top (respectively,
bottom-supported). For example, Figure 11 shows a triangulation of the regular 12-
prism in three slices. Parts (a) and (c) represent, respectively, the bottom and top
caps. Part (b) is the intersection of the prism with the parallel plane at equal distance
to both caps. In this intermediate slice, bottom or top supported tetrahedra appear
as triangles, while mixed tetrahedra appear as quadrilaterals.

(b)(a) (c)

Fig. 11. A minimal triangulation of the regular 12-prism.

Because all triangulations of an m-gon have m − 2 triangles there are always
exactly 2m − 4 tetrahedra that are bottom- or top-supported. In the rest, we show
there are at least �m2 � − 1 mixed tetrahedra. Each mixed tetrahedra marks an edge
of the top, namely, the edge it uses from the top cap. Of course, several mixed
tetrahedra could mark the same top edge. Group together top-supported tetrahedra
that have the same bottom vertex. This grouping breaks the triangulated top m-gon
into polygonal regions. Note that every edge between two of these regions must be
marked. For example, in part (c) of Figure 11 the top cap is divided into six regions
by five marked edges (the thick edges in the figure). Let r equal the number of regions
under the equivalence relation we set. There are r − 1 interior edges separating the
r regions, and all of them are marked. Some boundary edges of the top cap may be
marked too (none of them is marked in the example of Figure 11).
We can estimate the marked edges in another way: There are m edges on the

boundary of the top, which appear partitioned among some of the regions (it could
be the case some region does not contain any boundary edge of the m-gon). We claim
that no more than two boundary edges per region will be unmarked (∗). This follows
because a boundary edge is not marked only when the top-supported tetrahedron that
contains it has the point in the bottom cap that is directly under one of the vertices
of the edge. In a region, at most two boundary edges can satisfy this. Hence we get

EXTREMAL DISSECTIONS OF POLYTOPES 157

at least m− 2r marked edges on the boundary of the top and at least (r− 1) + (m−
2r) = m − r − 1 marked edges in total. Thus the number of mixed tetrahedra is at
least the maximum of r − 1 and m − r − 1. In conclusion, we get that, indeed, the
number of mixed tetrahedra is bounded below by �m2 � − 1. Note that we use only
the combinatorics and convexity of the prism in our arguments. We will show that
minimal triangulations achieve this lower bound but then observe that if m is even, in
a minimal triangulation we must have r = m/2 and no boundary edge can be marked,
as is the case in Figure 11. If m is odd, then we must have r ∈ {(m−1)/2, (m+1)/2}
and at most one boundary edge can be marked.

The proof that any triangulation of an m-antiprism includes at least 3m−5 tetra-
hedra is similar. There are 2m − 4 top-supported and bottom-supported tetrahedra
in any triangulation and there are r − 1 marked edges between the regions in the
top. The only difference is that, instead of claim (∗), one has at most one unmarked
boundary edge per region. Thus there are at leastm−r marked edges in the boundary
of the top and in total at least (r − 1) + (m − r) = m − 1 marked edges in the top.
Hence there exist at least (2m−4)+(m−1) = 3m−5 tetrahedra in any triangulation.
For an m-antiprism we can easily create a triangulation of size 3m−5 by choosing

any triangulation of the bottom m-gon and then coning a chosen vertex v of the top
m-gon to the m−2 triangles in that triangulation and to the 2m−3 triangular facets
of the m-antiprism which do not contain v. This construction is exhibited in Figure
12. Parts (a) and (c) show the bottom and top caps triangulated (each with its five
marked edges) and part (b) shows an intermediate slice with the five mixed tetrahedra
appearing as quadrilaterals.

(c)(b)(a)

v

Fig. 12. A minimal triangulation of the regular 6-antiprism.

For an m-prism, let ui and vi, i = 1, . . . ,m denote the top and bottom vertices,
respectively, so that the vertices of each cap are labeled consecutively and uivi is
always an edge of the prism.

If m is even we can chop off the vertices ui for odd i and vj for even j, so that
the prism is decomposed into m tetrahedra and an (m2)-antiprism. The antiprism can
be triangulated into 3m

2 − 5 tetrahedra, which gives a triangulation of the prism into
5m
2 −5 tetrahedra, as desired. Actually, this is how the triangulation of Figure 11 can
be obtained from that of Figure 12.

If m is odd we do the same, except that we chop off only the vertices u1, . . . , um−2

and v2, . . . , vm−1 (no vertex is chopped in the edge umvm). This produces m −
1 tetrahedra and an (m+1

2)-antiprism. We triangulate the antiprism into
3m+3

2 −
5 tetrahedra and this gives a triangulation of the m-prism into 5m+1

2 − 5 tetrahe-
dra.

158 J. A. DE LOERA, F. SANTOS, AND F. TAKEUCHI

We have seen that the coordinates are not important when calculating minimal
triangulations of the three-dimensional prisms and antiprisms. On the other hand,
the difference in size of the maximal triangulation can be quite dramatic. Below we

prove that in certain coordinatizations it is roughly m2

2 and show experimental data

indicating that for the regular prism it is close to m2

4 .

Proposition 4.4. Let Am be a prism of order m with all its side edges parallel.

(1) The size of a maximal triangulation of Am is bounded as

⌈
m2 + 6m− 16

4

⌉
≤ maxT of Am |T | ≤

m2 +m− 6
2

.

(2) The upper bound is achieved if the two caps (m-gon facets) are parallel and
there is a direction in which the whole prism projects onto one of its side
quadrangular facets. (For a concrete example, let one of the m-gon facets
have vertices on a parabola and let Am be the product of it with a segment.)

Proof. Let the vertices of the prism be labeled u1, . . . , um and v1, . . . , vm so that
the ui’s and the vj ’s form the two caps, vertices in each cap are labeled consecutively,
and uivi is always a side edge.

For the upper bound in part (1), we have to prove that a triangulation of Am has

at most m
2+m−6

2 − 2m + 3 = m(m−3)
2 interior diagonals. The possible diagonals are

the edges uivj , where i − j is not in {−1, 0, 1} modulo m. This gives exactly twice
the number we want. However, for any i and j the diagonals uivj and ujvi intersect,
so only one of them can appear in each triangulation.

We now prove that the upper bound is achieved if Am is in the conditions of part
(2). In fact, the condition on Am that we will need is that for any 1 ≤ i < j ≤ k < l ≤
m, the point vj sees the triangle viukul from the same side as vk and vl (i.e., “from
above” if we call top cap the one containing the vi’s). With this we can construct a

triangulation with m2+m−6
2 =

(
m−1

2

)
+ 2m− 4 tetrahedra as follows.

First cone the vertex v1 to any triangulation of the bottom cap (this gives m− 2
tetrahedra). The m − 2 upper boundary facets of this cone are visible from v2, and
we cone them to it (again m− 2 tetrahedra). The new m− 2 upper facets are visible
from v3 and we cone them to it (m − 2 tetrahedra more). Now one of the upper
facets of the triangulation is v1v2v3, part of the upper cap, but the other m − 3 are
visible from v4, so we cone them and introduce m − 4 tetrahedra. Continuing the
process, we will introduce m− 4, m− 5, . . . , 2, 1 tetrahedra when coning the vertices
v5, v6, . . . , vm−1, vm, which gives a total of

(
m−1

2

)
+ 2m− 4 tetrahedra, as desired.

The triangulation we have constructed is the placing triangulation [17] associated
with any ordering of the vertices finishing with v1, . . . , vm. A different description of
the same triangulation is that it cones the bottom cap to v1, the top cap to um, and
its mixed tetrahedra are all the possible vivi+1ujuj+1 for 1 ≤ i < j ≤ m − 1. This
gives

(
m−1

2

)
mixed tetrahedra and

(
m−1

2

)
+ 2m− 4 tetrahedra in total.

We finally prove the lower bound stated in part (1). Without loss of general-
ity, we can assume that our prism has its two caps parallel (if not, do a projective
transformation keeping the side edges parallel). Then, Am can be divided into two
prisms in the conditions of part (2) of sizes k and l with k + l = m + 2: take any
two side edges of Am which possess parallel supporting planes and cut Am along the
plane containing both edges. By part (2), we can triangulate the two subprisms with(
k+1
2

)−3 and (l+1
2

)−3 tetrahedra, respectively, taking care that the two triangulations
use the same diagonal in the dividing plane. This gives a triangulation of Am with

EXTREMAL DISSECTIONS OF POLYTOPES 159

(
k+1
2

)
+
(
l+1
2

) − 6 = k2+l2+m−10
2 tetrahedra. This expression achieves its minimum

when k and l are as similar as possible, i.e., k = �m2 �+ 1 and l = �m2 �+ 1. Plugging
these values in the expression gives a triangulation of size �m2+6m−16

4 �.
Based on an integer programming approach we can compute maximal triangula-

tions of specific polytopes (see Remark 4.5). Our computations with regular prisms up
to m = 12 show that the size of their maximal triangulations achieve the lower bound
stated in part (1) of Proposition 4.4 (see Table 2). In other words, they show that the
procedure of dividing them into two prisms of sizes �m2 �+ 1 and �m2 �+ 1 in the con-
ditions of part (2) of Proposition 4.4 and triangulating the subprisms independently
yields maximal triangulations.

We have also computed maximal sizes of triangulations for the regularm-antiprisms

up to m = 12, which turn out to follow the formula �m2+8m−16
4 �. A construction of

a triangulation of this size for every m can be made as follows: Let the vertices of
the regular m-antiprism be labeled u1, . . . , um and v1, . . . , vm so they are forming
the vertices of the two caps consecutively in this order and viui and uivi+1 are side
edges. We let vm+1 = v1. The triangulation is made by placing the vertices in any
ordering finishing with v1, v2, vm, v3, vm−1, . . . , v�m2 �+1. The tetrahedra used are the
bottom-supported tetrahedra with apex v1, top-supported tetrahedra with apex u�m2 �,
and the mixed tetrahedra vivi+1ujuj+1 for 1 ≤ i ≤ j ≤ �m2 � and uiui+1vjvj+1 for
�m2 �+ 1 ≤ i < j ≤ m.
We conjecture that these formulas for regular base prisms and antiprisms actually

give the sizes of their maximal triangulations for every m, but we do not have a proof.

Table 2
Sizes of maximal triangulations of prisms and antiprisms.

m 3 4 5 6 7 8 9 10 11 12

Prism (regular base) 3 6 10 14 19 24 30 36 43 50

Antiprism (regular base) 4 8 12 17 22 28 34 41 48 56

Remark 4.5. How can one find minimal and maximal triangulations in specific
instances? The approach we followed for computing Tables 1 and 2 and some of
the results in Proposition 2.3 is the one proposed in [8], based on the solution of
an integer programming problem. We think of the triangulations of a polytope as
the vertices of the following high-dimensional polytope: Let A be a d-dimensional
polytope with n vertices. Let N be the number of d-simplices in A. We define PA
as the convex hull in RN of the set of incidence vectors of all triangulations of A.
For a triangulation T the incidence vector vT has coordinates (vT)σ = 1 if σ ∈ T
and (vT)σ = 0 if σ �∈ T . The polytope PA is the universal polytope defined in
general by Billera, Filliman, and Sturmfels [3], although it appeared in the case of
polygons in [7]. In [8], it was shown that the vertices of PA are precisely the integral
points inside a polyhedron that has a simple description in terms of the oriented
matroid of A (see [8] for information on oriented matroids). The concrete integer
programming problems were solved using C-plex Linear SolverTM . The program to
generate the linear constraints is a small C++ program written by Samuel Peterson
and the first author. Source code, brief instructions, and data files are available
via ftp at http://www.math.ucdavis.edu/˜deloera. An alternative implementation by
Tajima is also available [27, 28]. He used his program to corroborate some of these
results.

It should be mentioned that a simple variation of the ideas in [8] provides enough

160 J. A. DE LOERA, F. SANTOS, AND F. TAKEUCHI

equations for an integer program whose feasible vertices are precisely the 0/1-vectors
of dissections. The incidence vectors of dissections of conv(A), for a point set A,
are just the 0/1 solutions to the system of equations 〈x, vT 〉 = 1, where vT ’s are the
incidence vectors for every regular triangulation T of the Gale transform A∗ (regular
triangulations in the Gale transform are the same as chambers in A). Generating all
these equations is as hard as enumerating all the chambers of A. Nevertheless, it is
enough to use those equations coming from placing triangulations (see [23, section
32]), which gives a total of about nd+1 equations if A has n points and dimension d.

Acknowledgments. We are grateful to Alexander Below and Jürgen Richter-
Gebert for their help and ideas in the proofs of Propositions 3.2 and 3.4. Alexander
Below made Figure 9 using the package Cinderella. The authors thank Akira Tajima
and Jörg Rambau for corroborating many of the computational results. We thank
Samuel Peterson for his help with our calculations. Finally, we thank Hiroshi Imai,
Bernd Sturmfels, and Akira Tajima for their support of this project.

REFERENCES

[1] N. Amenta and G.M. Ziegler, Deformed products and maximal shadows of polytopes, in
Advances in Discrete and Computational Geometry, B. Chazelle, J.E. Goodman, and R.
Pollack, eds., Contemp. Math. 223, AMS, Providence, RI, 1999, pp. 57–90.

[2] A. Barvinok and J. Pommersheim, An algorithmic theory of lattice points in polyhedra, in
New Perspectives in Algebraic Combinatorics, Math. Sci. Res. Inst. Publ. 38, Cambridge
University Press, Cambridge, UK, 1999.

[3] L. Billera, P. Filliman, and B. Sturmfels, Constructions and complexity of secondary
polytopes, Adv. Math., 83 (1990), pp. 155–179.

[4] A. Below, U. Brehm, J.A. De Loera, and J. Richter-Gebert, Minimal simplicial dissec-
tions and triangulations of convex 3-polytopes, Discrete Comput. Geom., 24 (2000), pp.
35–48.

[5] W. Bruns, J. Gubeladse, and N.V. Trung, Normal polytopes, triangulations and Koszul
algebras J. Reine Angew. Math., 485 (1997), pp. 123–160.

[6] H.S.M. Coxeter, Regular Polytopes, Dover, New York, 1973.
[7] G.B. Dantzig, A.J. Hoffman, and T.C. Hu, Triangulations (tilings) and certain block trian-

gular matrices, Math. Programming, 31 (1985), pp. 1–14.
[8] J.A. De Loera, S. Hoşten, F. Santos, and B. Sturmfels, The polytope of all triangulations

of a point configuration, Doc. Math., 1 (1996), pp. 103–119.
[9] H. Edelsbrunner, F.P. Preparata, and D.B. West, Tetrahedrizing point sets in three di-

mensions, J. Symbolic Comput., 10 (1990), pp. 335–347.
[10] R.T. Firla and G.M. Ziegler, Hilbert bases, unimodular triangulations, and binary covers

of rational polyhedral cones, Discrete Comput. Geom., 21 (1999), pp. 205–216.
[11] B. Grünbaum, Convex Polytopes, Interscience, London, 1967.
[12] M. Haiman, A simple and relatively efficient triangulation of the n-cube, Discrete Comput.

Geom., 6 (1991), pp. 287–289.
[13] B. Huber, J. Rambau, and F. Santos, The Cayley trick, lifting subdivisions and the Bohne-

Dress theorem on zonotopal tilings, J. Eur. Math. Soc. (JEMS), 2 (2000), pp. 179–198.
[14] R.B. Hughes and M.R. Anderson, Simplexity of the cube, Discrete Math., 158 (1996), pp.

99–150.
[15] J.-M. Kantor, Triangulations of integral polytopes and Ehrhart polynomials, Beiträge Algebra

Geom., 39 (1998), pp. 205–218.
[16] J. Lagarias and G.M. Ziegler, Unimodular Triangulations, manuscript, 1999.
[17] C.W. Lee, Subdivisions and triangulations of polytopes, in Handbook of Discrete and Com-

putational Geometry, J.E. Goodman and J. O’Rourke, eds., CRC Press, Boca Raton, FL,
1997, pp. 271–290.

[18] P.S. Mara, Triangulations for the cube, J. Combin. Theory Ser. A, 20 (1976), pp. 170–177.
[19] J. Rambau, TOPCOM: A Program for Computing All Triangulations of a Point Set, ZIB-

Berlin, 1999; also available online from http://www.zib.de/rambau/TOPCOM.html.
[20] J. Richter-Gebert, Realization Spaces of Polytopes, Lecture Notes in Math. 1643, Springer-

Verlag, Berlin, 1996.

EXTREMAL DISSECTIONS OF POLYTOPES 161

[21] G.L. Rothschild and E.G. Straus, On triangulations of the convex hull of n points, Combi-
natorica, 5 (1985), pp. 167–179.

[22] F. Santos, A point configuration whose space of triangulations is disconnected, J. Amer. Math.
Soc., 13 (2000), pp. 611–637.

[23] F. Santos, Triangulations of oriented matroids, Mem. Amer. Math. Soc., to appear; also
available online from http://www.matesco.unican.es/˜santos/Articulos/index.html.

[24] A. Sebö, Hilbert bases, Carathéodory’s theorem and combinatorial optimization, in Integer Pro-
gramming and Combinatorial Optimization, R. Kannan and W. Pulleyblank, eds., Math.
Programming Society, University of Waterloo Press, Waterloo, Ontario, Canada, 1990, pp.
431–456.

[25] A. Sebö, An Introduction to Empty Lattice Simplices, manuscript; also available online from
http://cosmos.imag.fr/DMD/OPTICOMB/Membres/sebo/sebo.html.

[26] W.D. Smith, A lower bound for the simplexity of the n-cube via hyperbolic volumes, European
J. Combin., 21 (2000), pp. 131–137.

[27] A. Tajima, Optimality and integer programming formulations of triangulations in general di-
mension, in Proceedings of 9th Annual International Symposium on Algorithms and Com-
putation (ISAAC ’98), K.-Y. Chwa and O.H. Ibarra, eds., Lecture Notes in Comput. Sci.
1533, Springer-Verlag, Berlin, pp. 377–386.

[28] A. Tajima, Optimizing Geometric Triangulations by Using Integer Programming, Ph.D. thesis,
University of Tokyo, Tokyo, Japan 2000; also available online from http://www-imai.is.s.u-
tokyo.ac.jp/˜akira/papers/dissertation.pdf.

[29] F. Takeuchi and H. Imai, Enumerating triangulations for products of two simplices and for
arbitrary configurations of points, in Proceedings of 3rd Annual International Conference
on Computing and Combinatorics (COCOON ’97), T. Jiang and D. T. Lee, eds., Lecture
Notes in Comput. Sci. 1276, Springer-Verlag, Berlin, pp. 470–481.

[30] G.M. Ziegler, Lectures on Polytopes, Springer-Verlag, New York, 1995.

ON THE DISTRIBUTION OF DIFFIE–HELLMAN TRIPLES WITH
SPARSE EXPONENTS∗

JOHN B. FRIEDLANDER† AND IGOR E. SHPARLINSKI‡

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 2, pp. 162–169

Abstract. Let g be a primitive root modulo a (n+ 1)-bit prime p. In this paper we prove the
uniformity of distribution of the Diffie–Hellman triples (gx, gy , gxy) as the exponents x and y run
through the set of n-bit integers with precisely k nonzero bits in their bit representation provided that
k ≥ 0.35n. Such “sparse” exponents are of interest because for these the computation of gx, gy , gxy
is faster than for arbitrary x and y. In the latter case, that is, for arbitrary exponents, similar (albeit
stronger) uniformity of distribution results have recently been obtained by R. Canetti, M. Larsen,
D. Lieman, S. Konyagin [Israel J. Math, 120 (2000), pp. 23–46], and the authors.

Key words. Diffie–Hellman cryptosystem, sparse exponents, exponential sums

AMS subject classifications. 11T23, 11T71, 94A60

PII. S0895480199361740

1. Introduction and auxiliary results. Let p be a prime and let Fp be a finite
field of p elements which we identify with the set {0, . . . , p− 1}.

We fix a primitive root g ∈ Fp and consider Diffie–Hellman triples (gx, gy, gxy);
see [13, 16]. It has been shown in [2] and then improved in [1] that such triples
are uniformly distributed when x, y = 0, . . . , p − 2. Such results, although they do
not have any immediate security implications, are nevertheless very desirable. For
example, the opposite statement would make possible a simple statistics-based attack
on the Diffie–Hellman cryptosystems. On the other hand, studying the distribution
of these triples is a very natural and attractive number theoretic question.

Here we consider the situation when the exponents x and y have a prescribed
number k of nonzero bits in their bit representation. If k is small, then for such
sparse exponents the computation of gx, gy, gxy takes less time than for arbitrary x
and y, and thus this choice has been considered in the literature. It is useful to recall
that standard repeated squaring computation of ue, with an integer exponent e ≥ 2
over any ring, takes about log e+ν(e) arithmetic operations where ν(e) is the number
of nonzero bits in the bit representation of e and log z denotes, throughout, the binary
logarithm of z; see section 1.3 of [3], section 4.3 of [4], or section 2.1 of [5]. It follows
that the use of the aforementioned sparse x and y with ν(x) ∼ ν(y) ∼ 0.35 log p
provides a 10% speed-up on average and a speed-up of more than 30% in the worst
case.

Our results are based on some new bounds of exponential sums which in turn rely
on bounds from [1].

We define the integer n by the inequalities

2n ≤ p− 1 ≤ 2n+1 − 1

∗Received by the editors September 24, 1999; accepted for publication (in revised form) December
12, 2000; published electronically February 23, 2001.

http://www.siam.org/journals/sidma/14-2/36174.html
†Department of Mathematics, University of Toronto, Toronto, Ontario M5S 3G3, Canada

(frdlndr@math.toronto.edu). This author’s work was supported in part by NSERC grant A5123
and by NEC Research Inc.

‡Department of Computing, Macquarie University, NSW 2109, Australia (igor@comp.mq.edu.au).
This author’s work was supported in part by ARC grant A69700294.

162

DIFFIE–HELLMAN TRIPLES WITH SPARSE EXPONENTS 163

and denote by Wk the set of n-bit integers which have precisely k nonzero bits in
their bit representation.

Finally we put e(z) = exp(2πiz/p) and define the exponential sums

Sk(a, b, c) =
∑

x∈Wk

∑
y∈Wk

e (agx + bgy + cgxy) .

We estimate these sums and then, using some standard arguments, derive the uni-
formity of distribution result for the triples (gx, gy, gxy), x, y ∈ Wk, provided that
k ≥ 0.35n.

Throughout the paper the implied constants in the symbols “O,” “	,” and “
”
are absolute (we recall that A 	 B and B
 A are equivalent to A = O(B)). We
recall the well-known fact (see Problem 11.c in Chapter 2 of [17]) that the number
τ(m) of integer divisors of m ≥ 1 satisfies

τ(m) ≤ mo(1).(1)

The following statement has been proved in [1]; see the proof of Theorem 8 of
that paper.

Lemma 1.1. Let λ ∈ Fp be of multiplicative order T . For any a, b ∈ F
∗
p, the

bound

∑
u∈ZT

∣∣∣∣∣
∑
v∈ZT

e (aλv + bλuv)

∣∣∣∣∣
4

	 pT 11/3

holds.
The following statement is well known and can be found in [9, 10, 14].
Lemma 1.2. Let λ ∈ Fp be of multiplicative order T . For any a ∈ F

∗
p and any

integer H ≤ T the bound ∣∣∣∣∣
H∑
u=1

e (aλu)

∣∣∣∣∣	 p1/2 log p

holds.
Several other related estimates are given in [8].

2. Exponential sums with sparse integers. We prove two bounds for the
sums Sk(a, b, c). The first one applies when c ∈ F

∗
p, the other, obtained by a different

method, applies in the case c = 0.
For technical reasons we shall assume throughout the condition k ≤ n/2. Of

course, since we are interested in choosing k as small as possible, this is the case of
practical interest. Moreover, the case when k ≥ n/2 is completely symmetric to the
case k ≤ n/2 and can be dealt with along the same lines.

Let H(γ) denote the binary entropy function

H(γ) =

{ −γ log γ − (1− γ) log(1− γ) if 0 < γ < 1,
0 otherwise.

We define

G(γ) =

{
H (γ) if γ < 1/2,
1 if γ ≥ 1/2,

164 JOHN B. FRIEDLANDER AND IGOR E. SHPARLINSKI

and

F (α, γ) = 12H(α)− 14/3− 7(1− γ)G (α/(1− γ))− γ/3.

Finally, we put

E(α) = inf
0≤γ<1

F (α, γ).

Let β = α/(1− γ); thus the condition 0 ≤ γ < 1 is equivalent to α ≤ β and

7(1− γ)G (α/(1− γ)) + γ/3 = α
(
7β−1G (β)− β−1/3

)
+ 1/3.

If β ≥ 1/2, then

7β−1G (β)− β−1/3 = 20β−1/3

and therefore is decreasing there. For α ≤ β ≤ 1/2 we compute the derivative

d

dβ

(
7β−1G (β)− β−1/3

)
=

d

dβ

(
7β−1H (β)− β−1/3

)
=

1

3β2
(21 log(1− β) + 1) .

Thus if α > 1− 2−1/21 this derivative is negative and we see that

sup
β≥α

(
7β−1G (β)− β−1/3

)
= sup

β∈[α,1/2]

(
7β−1G (β)− β−1/3

)
= 7α−1H (α)− α−1/3.

If α ≤ 1− 2−1/21, then

sup
β≥α

(
7β−1G (β)− β−1/3

)
= sup

β∈[α,1/2]

(
7β−1G (β)− β−1/3

)
= ϑ0,

where

ϑ0 = 7
(

1− 2−1/21
)−1

H
(

1− 2−1/21
)
−
(

1− 2−1/21
)−1

/3.

Therefore

E(α) =

{
5H(α)− 14/3 if 1/2 ≥ α > 1− 2−1/21,
12H(α)− 5− ϑ0α if 1− 2−1/21 ≥ α > 0.

Now one easily verifies that E(α) is continuous and strictly increasing for 0 < α ≤ 1/2.
Therefore we can define α0 = 0.349 . . . as the unique root of the equation E(α) = 0,
0 ≤ α ≤ 1/2.

Theorem 2.1. For any fixed α > α0 there exists δ > 0 such that for n/2 ≥ k ≥
αn the bound

max
a,b∈Fp; c∈F∗

p

|Sk(a, b, c)| 	 |Wk|2−δ

holds.

DIFFIE–HELLMAN TRIPLES WITH SPARSE EXPONENTS 165

Proof. For a divisor d|p − 1 we denote by Wk(d) the subset of y ∈ Wk with
gcd(y, p− 1) = d. Then

|Sk(a, b, c)| ≤
∑
d|p−1

|σd|,

where

σd =
∑

x∈Wk

∑
y∈Wk(d)

e (agx + bgy + cgxy) .

Using the Cauchy inequality, we derive

|σd|2 ≤ |Wk|
∑

x∈Wk

∣∣∣∣∣∣
∑

y∈Wk(d)

e (bgy + cgxy)

∣∣∣∣∣∣
2

≤ |Wk|
p−2∑
x=0

∣∣∣∣∣∣
∑

y∈Wk(d)

e (bgy + cgxy)

∣∣∣∣∣∣
2

= |Wk|
∑

y,z∈Wk(d)

e (bgy − bgz)

p−2∑
x=0

e (c (gxy − gxz)) .

By the Hölder inequality we have

|σd|8 ≤ |Wk|4|Wk(d)|6
∑

y,z∈Wk(d)

∣∣∣∣∣
p−2∑
x=0

e (c (gxy − gxz))

∣∣∣∣∣
4

≤ |Wk|4|Wk(d)|6
∑

y∈Wk(d)

(p−1)/d−1∑
u=0

∣∣∣∣∣
p−2∑
x=0

e
(
c
(
gxy − gxud))

∣∣∣∣∣
4

.

Because each element y ∈ Wk(d) can be represented in the form y = dv with
gcd(v, (p− 1)/d) = 1 and gd = gd is of multiplicative order (p− 1)/d, we see that the
double sum over u and x does not depend on y. Therefore,

|σd|8 ≤ |Wk|4|Wk(d)|7
(p−1)/d−1∑

u=0

∣∣∣∣∣
p−2∑
x=0

e (c (gxd − gxud))

∣∣∣∣∣
4

= |Wk|4|Wk(d)|7d4

(p−1)/d−1∑
u=0

∣∣∣∣∣∣
(p−1)/d−1∑

v=0

e (c (gvd − gvud))

∣∣∣∣∣∣
4

.

By Lemma 1.1 we obtain

|σd|8 	 |Wk|4|Wk(d)|7p14/3d1/3.(2)

To estimate |Wk(d)| we remark that if d is a divisor of p − 1 in the range 2l ≤ d ≤
2l+1−1 and if y ∈ Wk(d), then those bits of y in the l rightmost positions are uniquely
determined by the bits at the other (at most) n− l positions. Therefore

|Wk(d)| ≤
k∑

j=0

(
n− l
j

)
.

166 JOHN B. FRIEDLANDER AND IGOR E. SHPARLINSKI

We recall the estimate (
q

s

)
≤

s∑
i=0

(
q

i

)
≤ 2qH(s/q),(3)

which holds for any s ≤ q/2. Indeed, for s < q/2 it is Corollary 9 of section 10.11
of [11] while for s = q/2 we have H(s/q) = H(1/2) = 1 and the bound is obvious.
Therefore,

|Wk| ≤ 2nH(k/n)

and also

|Wk(d)| ≤ 2(n−l)G(k/(n−l)).

Substituting the above bound in (2), we obtain

|σd|8 ≤ |Wk|4212nH(k/n)−nF (k/n,l/n) = |Wk|162−nF (k/n,l/n)

≤ |Wk|162−nE(k/n)+o(n) ≤ |Wk|162−nE(α)+o(n).

Hence

|Sk(a, b, c)| ≤ |Wk|22−nE(α)/8+o(n)τ(p− 1).

Applying the bound (1), we derive the result.

To estimate sums Sk(a, b, c) with c = 0 we remark that

Sk(a, b, 0) = Tk(a)Tk(b),(4)

where

Tk(a) =
∑

x∈Wk

e(agx).

Let us define the function

R(β, ρ) = sup
0≤λ≤1−ρ

{
ρH

(
β − λ
ρ

)
+ 2(1− ρ)H

(
λ

1− ρ
)}

.

We also put

Q(β) = sup
0<ρ<1

min {2H(β)− 1/2−R(β, ρ), H(β)− ρ} .

Using the same routine arguments as for the function E(α), one verifies that Q(β) is a
monotonically increasing function in the interval [0, 1/2] and we define β0 = 0.202 . . .
as the unique root of the equation Q(β) = 0, 0 ≤ β ≤ 1/2.

Theorem 2.2. For any fixed β > β0 there exists δ > 0 such that for n/2 ≥ k ≥ βn
we have the bound

max
a∈F∗

p

|Tk(a)| 	 |Wk|1−δ.

DIFFIE–HELLMAN TRIPLES WITH SPARSE EXPONENTS 167

Proof. Select some r ≤ n and denote by Ul the set of r-bit integers with k − l
nonzero bits in their bit representation and by Vl the set of (n− r)-bit integers with
l nonzero bits in their bit representation. Obviously,

n−r∑
l=0

| Ul|| Vl| = |Wk|.

We also have

Tk(a) =

n−r∑
l=0

∑
u∈Ul

∑
v∈Vl

e
(
agu+2rv

)
.

Using the Cauchy inequality twice, we derive

|Tk(a)|2 ≤ (n− r + 1)

n−r∑
l=0

| Ul|
∑
u∈Ul

∣∣∣∣∣
∑
v∈Vl

e
(
agu+2rv

)∣∣∣∣∣
2

≤ n

n−r∑
l=0

| Ul|
2r∑
u=0

∣∣∣∣∣
∑
v∈Vl

e
(
agu+2rv

)∣∣∣∣∣
2

= n

n−r∑
l=0

| Ul|
∑

v1,v2∈Vl

2r∑
u=0

e
(
agu

(
g2rv1 − g2rv2

))
.

If v1 �= v2, then, obviously, Lemma 1.2 applies to the inner sum. Otherwise we
use the trivial bound, getting

|Tk(a)|2 	 n

n−r∑
l=0

| Ul|
(
| Vl|22n/2n+ | Vl|2r

)

= n22n/2
n−r∑
l=0

| Ul|| Vl|2 + n|Wk|2r.

From (3) and the definition of R(β, γ) we see that for l = 0, . . . , r

| Ul|| Vl|2 ≤ 2n/2+R(k/n,r/n).

Therefore we derive

|Tk(a)|2 ≤ n32n/2+R(k/n,r/n) + n|Wk|2r.
Because this holds for every r, then

|Tk(a)|2 ≤ |Wk|22−nQ(k/n)+o(n) ≤ |Wk|22−nQ(β)+o(n),

provided that k ≥ βn for some β > β0.
Because β0 < α0 from Theorems 2.1 and 2.2 we deduce the following theorem.
Theorem 2.3. For any fixed α > α0 there exists δ > 0 such that for n/2 ≥ k ≥

αn we have the bound

max
gcd(a,b,c,p)=1

|Sk(a, b, c)| 	 |Wk|2−δ.

168 JOHN B. FRIEDLANDER AND IGOR E. SHPARLINSKI

3. Distribution of the Diffie–Hellman triples with sparse exponents.
Given a sequence of s-dimensional vectors s1, . . . , sM ∈ F

s
p, we define its discrepancy

D as

D = sup
B⊆[0,1]s

∣∣∣∣N(B)

M
− |B|

∣∣∣∣ ,
where N(B) is the number of fractions sν/p, ν = 1, . . . ,M , which hit the box B =
[α1, β1]× · · · × [αs, βs] ⊆ [0, 1]s of size

| B| =
s∏

j=1

(βj − αj).

In this paper we use this notion only with s = 3.
We denote by ∆k the discrepancy of the triples (gx, gy, gxy), x, y ∈ Wk. Our

bound of exponential sums leads to a similar upper bound for ∆k. More precisely,
Corollary 3.11 of [15] implies that

∆k 	 |Wk|−2 max
gcd(a,b,c,p)=1

|Sk(a, b, c)| log3 p.

Combining this bound with Theorem 2.3, we derive the following result.
Theorem 3.1. For any fixed α > α0 there exists δ > 0 such that for n/2 ≥ k ≥

αn the bound

∆k 	 |Wk|−δ

holds.
This bound implies that a positive proportion, say, 0.3δ, of the most significant

bits of (gx, gy, gxy) are independently and uniformly distributed when x and y run
through the set Wk. For arbitrary x, y = 0, . . . , p−2 a similar result has been obtained
in [2] and then improved in [1].

As has been done in [1, 2] in the case of arbitrary x and y, one can also derive
the same result for the least significant bits.

4. Remarks. We note that for small values of d much more precise results are
known about the sets Wk(d) (see [6, 12]), but unfortunately they cannot be used for
our applications.

One can obtain a less accurate but simpler bound for the sums Tk(a) by using
the inequality | Vk,l| ≤ 2n−r which implies

n−r∑
l=0

| Uk,l|| Vk,l|2 ≤ |Wk|2n−r.

Thus taking r = 3n/4 one immediately obtains Theorem 2.2 with β0 = 0.214 . . .
defined by the equation H(β0) = 3/4. This is quite enough for our purposes, but the
sums Tk(a) are of independent interest so we present the more complicated but more
precise estimate. The method used in studying these sums can be used to bound
many other character sums over the elements of Wk. For example one can study
sums

Tk(f, h;χ) =
∑

x∈Wk

χ(f(x))e(h(x))

DIFFIE–HELLMAN TRIPLES WITH SPARSE EXPONENTS 169

with rational functions f(X), h(X) ∈ Fp(X), where χ is a multiplicative character of
F
∗
p. Of course, for this sum the Weil bound is to be used. In particular, one can show

that under the conditions of Theorem 2.2 there are asymptotically 0.5|Wk| quadratic
nonresidues x ∈ Wk.

Studying arithmetic properties of integers with given properties of their digits is
a classical topic in number theory; see [6, 7, 12] and references therein. Nevertheless,
results of this kind do not seem to be known.

It is a very interesting problem to obtain similar results for smaller values of k,
say, for k = o(n). We believe that it is quite unrealistic to hope to get such results
if the primitive root g is fixed. On the other hand, we believe it could be possible
to prove that such a result (for quite small values of k) holds for almost all primitive
roots g.

Finally we remark that the same results hold for the set of integers with at most
k nonzero bits.

REFERENCES

[1] R. Canetti, J. B. Friedlander, S. Konyagin, M. Larsen, D. Lieman, and I. E. Shpar-
linski, On the statistical properties of Diffie–Hellman distributions, Israel J. Math., 120
(2000), pp. 23–46.

[2] R. Canetti, J. B. Friedlander, and I. E. Shparlinski, On certain exponential sums
and the distribution of Diffie–Hellman triples, J. London Math. Soc. (2), 59 (1999),
pp. 799–812.

[3] H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, Berlin,
1997.

[4] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge University
Press, Cambridge, UK, 1999.

[5] D. M. Gordon, A survey of fast exponentiation methods, J. Algorithms, 27 (1998), pp. 129–
146.

[6] S. Konyagin, Arithmetic properties of integers with missing digits: Distribution in residue
classes, Period. Math. Hungar., to appear.

[7] S. Konyagin, Ch. Mauduit, and A. Sárközy, On the number of prime factors of integers
characterized by digit properties, Period. Math. Hungar., 40 (2000), pp. 37–52.

[8] S. Konyagin and I. E. Shparlinski, Character Sums with Exponential Functions and Their
Applications, Cambridge University Press, Cambridge, UK, 1999.

[9] N. M. Korobov, On the distribution of digits in periodic fractions, Mat. Sb., 89 (1972),
pp. 654–670 (in Russian).

[10] N. M. Korobov, Exponential Sums and their Applications, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1992.

[11] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-
Holland, Amsterdam, 1977.

[12] Ch. Mauduit and A. Sárközy, On the arithmetic structure of the integers whose sum of
digits is fixed, Acta Arith., 81 (1997), pp. 145–173.

[13] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptog-
raphy, CRC Press, Boca Raton, FL, 1996.

[14] H. Niederreiter, Quasi-Monte Carlo methods and pseudorandom numbers, Bull. Amer.
Math. Soc., 84 (1978), pp. 957–1041.

[15] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-
NSF Regional Conf. Ser. in Appl. Math. 63, SIAM, Philadelphia, 1992.

[16] D. R. Stinson, Cryptography: Theory and Practice, CRC Press, Boca Raton, FL, 1995.
[17] I. M. Vinogradov, Elements of Number Theory, Dover, New York, 1954.

IMPROVING ON THE 1.5-APPROXIMATION OF
A SMALLEST 2-EDGE CONNECTED SPANNING SUBGRAPH∗

J. CHERIYAN† , A. SEBŐ‡ , AND Z. SZIGETI§

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 2, pp. 170–180

Abstract. We give a 17
12
-approximation algorithm for the following NP-hard problem:

Given a simple undirected graph, find a 2-edge connected spanning subgraph that
has the minimum number of edges.

The best previous approximation guarantee was 3
2
. If the well-known 4

3
conjecture for the metric

traveling salesman problem holds, then the optimal value (minimum number of edges) is at most 4
3

times the optimal value of a linear programming relaxation. Thus our main result gets halfway to
this target.

Key words. approximation algorithms, edge connectivity, ear decomposition, graphs, joins,
metric traveling salesman problem and 4/3 conjecture, NP-complete problems

AMS subject classifications. 05C40, 05C85, 68W25, 90C27, 90C59

PII. S0895480199362071

1. Introduction. Given a simple undirected graph, consider the problem of find-
ing a 2-edge connected spanning subgraph that has the minimum number of edges.
The problem is NP-hard, via a reduction from the Hamiltonian cycle problem. A
number of recent papers have focused on approximation algorithms for this and other
related problems [3]. An α-approximation algorithm for a combinatorial optimization
problem runs in polynomial time and delivers a solution whose value is always within
the factor α of the optimum value. The quantity α is called the approximation guar-
antee of the algorithm. We use the abbreviation 2-ECSS to mean 2-edge connected
spanning subgraph.

Here is an easy 2-approximation algorithm for the problem:

Take an ear decomposition of the given graph (see section 2 for defi-
nitions), and discard all 1-ears (ears that consist of one edge). Then
the resulting graph is 2-edge connected and has at most 2n−3 edges,
while the optimal subgraph has ≥ n edges, where n is the number of
nodes.

Khuller and Vishkin [11] were the first to improve on the approximation guarantee of 2.
They gave a simple and elegant algorithm based on depth-first search that achieves an
approximation guarantee of 1.5. We improve Khuller and Vishkin’s 18

12 -approximation
guarantee to 17

12 . If the well-known 4
3 conjecture for the metric traveling salesman

∗Received by the editors September 25, 1999; accepted for publication (in revised form) November
2, 2000; published electronically February 23, 2001. A preliminary version of this paper appeared
as An improved approximation algorithm for minimum size 2-edge connected spanning subgraphs
in Proceedings of the Sixth International Integer Programming and Combinatorial Optimization
Conference, Houston, TX, 1998, Lecture Notes in Comput. Sci. 1412, R.E. Bixby, E.A. Boyd, and
R. Z. Rios-Mercado, eds., Springer-Verlag, Berlin, 1998, pp. 126–136.

http://www.siam.org/journals/sidma/14-2/36207.html
†Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario,

Canada N2L 3G1 (jcheriyan@math.uwaterloo.ca).
‡Departement de Mathematiques Discretes, CNRS, Laboratoire LEIBNIZ (CNRS, INPG,

UJF)-IMAG, 46 Avenue Felix Viallet, 38031 Grenoble Cedex 1, France (Andras.Sebo@imag.fr).
§Equipe Combinatoire, Université Pierre et Marie Curie, 4 place Jussieu, Couloir 45-46 3e, 75252

Paris Cedex 5, France (Zoltan.Szigeti@ecp6.jussieu.fr).

170

APPROXIMATING A MINIMUM 2-EDGE CONNECTED SUBGRAPH 171

problem (TSP) holds, then the optimal value (minimum number of edges) is at most
4
3 times the optimal value of a linear programming relaxation; see Theorem 5.1. Thus
our main result gets halfway to this target.

Let G = (V,E) be the given simple undirected graph, and let n and m denote |V |
and |E|. Assume that G is 2-edge connected.

Our method is based on a matching-theory result of András Frank, namely, that
there is a good characterization for the minimum number of even-length ears over all
possible ear decompositions of a graph, and moreover, an ear decomposition achiev-
ing this minimum can be computed efficiently [5]. Recall that the 2-approximation
heuristic starts with an arbitrary ear decomposition of G. Instead, if we start with
an ear decomposition that maximizes the number of 1-ears, and if we discard all the
1-ears, then we will obtain the optimal solution. In fact, we start with an ear de-
composition that maximizes the number of odd-length ears. Now, discarding all the
1-ears gives an approximation guarantee of 1.5 (see Proposition 3.4 below). To do
better, we repeatedly apply “ear splicing” steps to the starting ear decomposition to
obtain a final ear decomposition such that the number of odd-length ears is the same,
and moreover, the internal nodes of distinct 3-ears are nonadjacent. We employ two
lower bounds to show that discarding all the 1-ears from the final ear decomposition
gives an approximation guarantee of 17

12 . The first lower bound is the “component
lower bound” due to Garg, Santosh, and Singla [8, Lemma 4.1]; see Proposition 2.4
below. The second lower bound comes from the minimum number of even-length ears
in an ear decomposition of G; see Proposition 3.3 below.

A preliminary version of this paper has appeared in [2]. Since this paper was
submitted for journal publication, an improved approximation guarantee for the
minimum-size 2-ECSS problem has been reported by Vempala and Vetta [15].

After developing some preliminaries in sections 2 and 3, we present our heuristic
in section 4. Section 5.1 shows the relation of the well-known 4

3 conjecture for the
metric TSP to the problem of finding a 4

3 -approximation algorithm for a minimum-size
2-ECSS; see Theorem 5.1. Section 5.2 has two examples showing that our analysis
of the heuristic is tight. Section 5.2 also compares the two lower bounds with the
optimal value.

A useful assumption. For our heuristic to work, it is essential that the given
graph be 2-node connected. Hence, in section 4 of the paper where our heuristic is
presented, we will assume that the given graph G is 2-node connected. Otherwise, if G
is not 2-node connected, we compute the blocks (i.e., the maximal 2-node connected
subgraphs) of G, and apply the algorithm separately to each block. We compute a
2-ECSS for each block and output the union of the edge sets as the edge set of a
2-ECSS of G. The resulting graph has no cut edges since the subgraph found for each
block has no cut edge. Moreover, if an approximation guarantee of α holds for each
block, then it holds for G, because the optimal value for G equals the sum of the
optimal values for the blocks.

2. Preliminaries. Except in section 5.1, all graphs are simple, that is, there are
no loops or multiedges. A closed path means a cycle, and an open path means that
all the nodes are distinct.

An ear decomposition of the graph G is a partition of the edge set into open or
closed paths, P0+P1+· · ·+Pk, such that P0 is the trivial path with one node, and each
Pi (1 ≤ i ≤ k) is a path that has both end nodes in Vi−1 = V (P0)∪V (P1)∪· · ·∪V (Pi−1)
but has no internal nodes in Vi−1. A (closed or open) ear means one of the (closed
or open) paths P1, . . . , Pk in the ear decomposition; note that P0 is not regarded as

172 J. CHERIYAN, A. SEBŐ, AND Z. SZIGETI

an ear. By induction on the number of ears k, it is easily seen that for the number of
edges in G,

|E| = |V |+ k − 1.(2.1)

For a nonnegative integer �, an �-ear means an ear that has � edges. An �-ear is
called even if � is an even number, otherwise, the �-ear is called odd. An open ear
decomposition P0 + P1 + · · · + Pk is one such that all the ears P2, . . . , Pk are open.
(The ear P1 is always closed.)

Proposition 2.1 (see Whitney [16]).
(i) A graph is 2-edge connected iff it has an ear decomposition.
(ii) A graph is 2-node connected iff it has an open ear decomposition.
An odd ear decomposition is one such that every ear has an odd number of edges.

The graph G is called factor-critical if for every node v ∈ V (G) there is a perfect
matching in G − v. The next result gives another characterization of factor-critical
graphs.

Theorem 2.2 (see Lovász [12] and Lovász and Plummer [13, Theorem 5.5.1]).
A graph is factor-critical iff it has an odd ear decomposition.

It follows that a factor-critical graph is necessarily 2-edge connected. An open
odd ear decomposition P0 + P1 + · · · + Pk is an odd ear decomposition such that all
the ears P2, . . . , Pk are open.

Theorem 2.3 (see Lovász and Plummer [13, Theorem 5.5.2]). A 2-node con-
nected factor-critical graph has an open odd ear decomposition. Given such a graph
G = (V,E), an open odd ear decomposition can be constructed in time O(|V | · |E|).

Let ε(G) denote the minimum number of edges in a 2-ECSS of G. For a graph
H, let c(H) denote the number of (connected) components of H. Garg, Santosh, and
Singla [8, Lemma 4.1] use the following lower bound on ε(G).

Proposition 2.4. Let G = (V,E) be a 2-edge connected graph, and let S be a
nonempty set of nodes such that the deletion of S results in a graph with c = c(G−S)
components. Then ε(G) ≥ |V |+ c− |S|.

Proof. Focus on an arbitrary component D of G−S and note that it contributes
≥ |V (D)|+ 1 edges to an optimal 2-ECSS, because every node in D contributes ≥ 2
edges, and at least two of these edges have exactly one end node in D. Summing over
all components of G− S gives the result.

For the graph G = (V,E), let L�c(G) denote max{|V |+ c(G−S)− |S| : ∅
= S ⊆
V }; by Proposition 2.4, ε(G) ≥ L�c(G).

For a set of nodes S ⊆ V of a graph G = (V,E), δ(S) denotes the set of edges
that have one end node in S and one end node in V − S. For the singleton node set
{v}, we use the notation δ(v). For a vector x : E→R and an edge set F ⊆ E, x(F)
denotes

∑
e∈F xe.

3. Frank’s theorem and a new lower bound for ε . For a 2-edge connected
graph G = (V,E), let ϕ(G) (or ϕ) denote the minimum number of even ears over all
possible ear decompositions. For example, ϕ(G) = 0 if G is a factor-critical graph
(e.g., G is an odd clique K2�+1 or an odd cycle C2�+1), ϕ(G) = 1 if G is an even clique
K2� or an even cycle C2�, and ϕ(G) = �− 1 if G is the complete bipartite graph K2,�

(� ≥ 2). Let Lϕ(G) denote |V |+ ϕ(G)− 1.
A join of a graph G is an edge set J ⊆ E(G) such that for (the edge set of) every

cycle Q ⊆ E(G) we have |J ∩ Q| ≤ |Q|/2. For example, any matching is a join. Let
µ(G) denote the maximum size of a join of the graph G.

The proof of the next result appears in [5]; see Theorem 4.5 and section 2 of [5].

APPROXIMATING A MINIMUM 2-EDGE CONNECTED SUBGRAPH 173

Theorem 3.1 (see Frank [5]). Let G = (V,E) be a 2-edge connected graph. An
ear decomposition P0 +P1 + · · ·+Pk of G having ϕ(G) even ears can be computed in
time O(|V | · |E|). Moreover, Lϕ(G) = 2µ(G).

Proposition 3.2. For every 2-node connected graph G, there exists an open ear
decomposition P0 +P1 + · · ·+Pk that has ϕ(G) even ears. Such an ear decomposition
can be computed in time O(|V | · |E|).

Proof. Apply Theorem 3.1 to construct an ear decomposition having ϕ(G) even
ears (the ears may be open or closed). Subdivide one edge in each even ear by adding
one new node and one new edge. The resulting ear decomposition is odd. Hence,
the resulting graph G′ is factor-critical, and also, G′ is 2-node connected since G is
2-node connected. Apply Theorem 2.3 to construct an open odd ear decomposition
of G′. Finally, in the resulting ear decomposition, “undo” the ϕ(G) edge subdivisions
to obtain the desired ear decomposition P0 + P1 + · · ·+ Pk of G.

The running time for constructing P0 + P1 + · · · + Pk is O(|V | · |E|). Note that
there are constructive proofs for both Theorems 3.1 and 2.3, and each construction
can be implemented in time O(|V | · |E|).

Frank’s theorem gives the following lower bound on the minimum number of edges
in a 2-ECSS.

Proposition 3.3. Let G = (V,E) be a 2-edge connected graph. Then ε(G) ≥
Lϕ(G) = 2µ(G).

Proof. Consider an arbitrary 2-ECSS G′ = (V,E′) of G. Note that G′ contains all
nodes of G but there may be several edges in E −E′. If G′ has an ear decomposition
with fewer than ϕ(G) even ears, then we can obtain an ear decomposition of G with
fewer than ϕ(G) even ears as follows: we start with the ear decomposition of G′,
and for each edge vw ∈ E − E′, we add the 1-ear v, w. This contradiction to the
definition of ϕ(G) shows that every ear decomposition of G′ has ≥ ϕ(G) even ears.
Let P0 + P1 + · · ·+ Pk be an ear decomposition of the 2-ECSS G′, where k ≥ ϕ(G).
By (2.1), |E′| = |V |+ k − 1 ≥ |V |+ ϕ(G)− 1. The result follows.

The next result is not useful for our main result, but we include it for completeness.
Proposition 3.4. Let G = (V,E) be a 2-edge connected graph. Let P0 + P1 +

· · ·+Pk be an ear decomposition of G that has ϕ(G) even ears, and let G′ = (V,E′) be
obtained by discarding all the 1-ears from P0 +P1 + · · ·+Pk. Then |E′|/ε(G) ≤ 1.5.

Proof. Let t be the number of internal nodes in the odd ears of P0+P1+ · · ·+Pk.
(Note that the node in P0 is not counted by t.) Then, the number of edges contributed
to E′ by the odd ears is ≤ 3t/2, and the number of edges contributed to E′ by the
even ears is ≤ ϕ+ |V | − t− 1 = Lϕ(G)− t. By applying Proposition 3.3 (and the fact
that ε(G) ≥ |V |) we get

|E′|/ε(G) ≤ (t/2 + Lϕ(G))/max(|V |, Lϕ(G))

≤ (t/2|V |) + Lϕ(G)/Lϕ(G)

≤ 1.5.

4. Approximating ε via Frank’s theorem. For a graph H and an ear decom-
position P0+P1+ · · ·+Pk of H, we call an ear Pi of length ≥ 2 pendant if none of the
internal nodes of Pi is an end node of another ear Pj of length ≥ 2. In other words, if
we discard all the 1-ears from the ear decomposition, then one of the remaining ears
is called pendant if all its internal nodes have degree 2 in the resulting graph.

Let G = (V,E) be the given graph, and let ϕ = ϕ(G). Recall the assumption
from section 1 that G is 2-node connected. By an evenmin ear decomposition of G,
we mean an ear decomposition that has ϕ(G) even ears. Our method starts with

174 J. CHERIYAN, A. SEBŐ, AND Z. SZIGETI

an open evenmin ear decomposition P0 + P1 + · · · + Pk of G (see Proposition 3.2),
i.e., for 2 ≤ i ≤ k, every ear Pi has distinct end nodes, and the number of even ears
is minimum possible. The method performs a sequence of “ear splicings” to obtain
another (evenmin) ear decomposition Q0 +Q1 + · · ·+Qk (the ears Qi may be either
open or closed) such that the following holds.

Property (α).

(0) The number of even ears is the same in P0 +P1 + · · ·+Pk and in Q0 +Q1 +
· · ·+Qk,

(1) every 3-ear Qi is a pendant ear,
(2) for every pair of 3-ears Qi and Qj , there is no edge between an internal node

of Qi and an internal node of Qj , and
(3) every 3-ear Qi is open, where Qi
= Q1.

See Figure 1 for an illustration of several cases in an “ear splicing” step.

l

Q
j-1

v1

j
P

vl+1
Q

j-2

vl

Q
h

/

v1
vl+1

Q
i

/

T
/

w1

j
P

v1
T

/

T
/i

Q
/

Q
i

/

P
j

3

v

v2
v3

(b)

v2
v3

(c)

w

vl
Q

j-1v2
v3

vl+1
4

w

(a)

Fig. 1. Illustration of the proof of Proposition 4.1. (a), (b) The first and second cases. Ears Pj

and Q′
i are indicated by solid lines, and ear Qj−1 is indicated by dashed lines. (c) The third case.

Ears Pj , Q
′
i, Q

′
h are indicated by solid lines, and ear Qj−2 is indicated by dashed lines.

Proposition 4.1. Let G = (V,E) be a 2-node connected graph. Let P0 + P1 +
· · ·+Pk be an open evenmin ear decomposition of G. There is a linear-time algorithm
that, given P0+P1+ · · ·+Pk, finds an ear decomposition Q0+Q1+ · · ·+Qk satisfying
property (α).

Proof. The following procedure adds one ear Pj , (j = 0, . . . , k) at a time using
ear splicing if necessary.

Suppose that Q′0 + · · · + Q′j−1 have property (α). We will find in linear time in
the length of Pj an ear-decomposition Q0 + · · · + Qj of Q′0 + · · · + Q′j−1 + Pj that
satisfies (α). Let T ′ denote here the set of internal nodes of the ears of length 3. If Pj
has no endpoint in T ′, or has one endpoint in T ′ and the length of Pj is 1, we simply
add it, that is, Qi := Q′i (i = 0, . . . , j − 1), Qj = Pj .

If Pj has one endpoint in T ′ and has length bigger than 1, or has two endpoints in
T ′ and these are in different 3-ears, then we add the appropriate subpaths of length 2
of these 3-ear(s) to Pj (Figure 1(a) and (c)). We get from the 3-ear(s) and Pj by this

APPROXIMATING A MINIMUM 2-EDGE CONNECTED SUBGRAPH 175

ear-splicing an ear Qj and 1-ear(s). Clearly, Qj has the same parity as Pj . Property
(α) is preserved, even if the two endpoints of Qj are the same, since Qj has length
≥ 4. Therefore, leaving the other ears as they are, the ear decomposition we have has
property (α).

Finally if Pj has two endpoints in T ′ and both in the same ear (this is the only
remaining case), then we add the first and last edge of the 3-ear to Pj to get Qj ,
and the middle edge becomes a 1-ear (Figure 1(b)). The two new ears (Qj and the
1-ear) should replace the 3-ear and Pj in the decomposition Q′0 + · · · + Q′j−1 + Pj ,
and property (α) is again maintained.

Remark. In the induction step, which applies for j ≥ 2 (but not for j = 1), it is
essential that the ear Pj is open, though Q′i (and Q′h) may be either open or closed.
Note that Q1 is not a 3-ear provided |V |
= 3. Our main result (Theorem 4.3) does
not use part (3) of property (α).

Our approximation algorithm for a minimum-size 2-ECSS computes the ear de-
composition Q0+Q1+· · ·+Qk satisfying property (α), starting from an open evenmin
ear decomposition P0 + P1 + · · ·+ Pk. Then, the algorithm discards all the edges in
1-ears. Let the resulting graph be G′ = (V,E′). G′ is 2-edge connected by Proposi-
tion 2.1.

Let T denote the set of internal nodes of the 3-ears of Q0 +Q1 + · · ·+Qk, and let
t = |T |. (Note that the node in Q0 is not counted by t.) Property (α) implies that in
the subgraph of G induced by T , G[T], every (connected) component has exactly two
nodes. Consider the approximation guarantee for G′, i.e., the quantity |E′|/ε(G).

Lemma 4.2. ε(G) ≥ L�c(G) ≥ 3t/2.
Proof. Apply Proposition 2.4 with S = V −T (so |S| = n− t) and c = c(G−S) =

t/2 to get ε(G) ≥ n− (n− t) + (t/2).
Theorem 4.3. Given a 2-edge connected graph G = (V,E), the above algorithm

finds a 2-ECSS G′ = (V,E′) such that |E′|/ε(G) ≤ 17
12 . The algorithm runs in time

O(|V | · |E|).
Proof. By the previous lemma and Proposition 3.3,

ε(G) ≥ max(3t/2, Lϕ(G)).(4.1)

We claim that

|E′| ≤ t

4
+

5Lϕ(G)

4
.(4.2)

To see this, let us denote by k, ke, k3, ko the number of ears, the number of even
ears, the number of 3-ears, and the number of odd ears of length > 3. Note that
k = ke + k3 + ko, ke = ϕ(G), k3 = t/2, and ko ≤ (n − t − 1)/4. Thus, by (2.1),
|E′| = n + k − 1 = n + ke + k3 + ko − 1 ≤ n + ϕ(G) + t/2 + (n − t − 1)/4 − 1 ≤
t/4 + 5(n + ϕ(G)− 1)/4 = t/4 + 5Lϕ(G)/4.

The approximation guarantee follows since, by (4.1) and (4.2),

|E′|
ε(G)

≤ t/4 + 5Lϕ(G)/4

max(3t/2, Lϕ(G))
≤ t

4

2

3t
+

5Lϕ(G)

4Lϕ(G)
=

17

12
.

The next result follows from the proof of Theorem 4.3.
Corollary 4.4. For a 2-edge connected graph G = (V,E),

ε(G) ≤ 5

4
Lϕ +

1

6
L�c ≤

17

12
max(L�c , Lϕ).

176 J. CHERIYAN, A. SEBŐ, AND Z. SZIGETI

5. Conclusions.

5.1. Lower bounds for ε and the relation to the TSP frac43 conjecture.
This subsection has a comparison of several lower bounds for ε(G); throughout, G =
(V,E) denotes an arbitrary 2-edge connected graph. The best of these lower bounds
is given by a linear programming relaxation based on cut constraints. Moreover, we
show that ε(G) is at most 17

12 times this lower bound. Theorem 5.1 below implies that
if the well-known TSP 4

3 conjecture is true, then we have 4
3 rather than 17

12 in the
previous statement.

Recall that Lϕ(G) = |V | + ϕ(G) − 1 = 2µ(G) is a lower bound on ε(G), where
µ(G) is the maximum size of a join of G; see Proposition 3.3.

Garg, Santosh, and Singla [8, Theorem 4.2] introduced another lower bound on
ε(G) that we denote by Lc. Let

Lc(G)

= max

{
�∑
i=1

c(G− Si) : S1, S2, . . . , S� is a partition of V, where � is any integer ≥ 1

}
.

(We remark that in the lower bound in [8, Theorem 4.2] S1, S2, . . . , S� is a subpartition
rather than a partition, but it can be seen that this lower bound equals Lc.) Clearly,
Lc ≥ |V |, by the partition of V into singleton sets. Notice that the lower bound in
Proposition 2.4, L�c(G) = max{c(G−S)+ |V −S| : ∅
= S ⊆ V }, is ≤ Lc; to see this,
apply the definition of Lc with S1 = S and S2, . . . , S� being singleton sets of V − S.

Let Lz(G) denote the optimal value of the following linear programming relaxation
of the minimum-size 2-ECSS problem. There is one nonnegative variable xe for each
edge e in G, and the other constraints state that every (nontrivial) cut has x-weight
at least two. Let 1 be a vector of “1”s with |E| entries.

Lz(G) = minimize 1 · x
subject to x(δ(S)) ≥ 2 ∀S ⊂ V, ∅
= S
= V,

x ≥ 0,
x ∈ R.

Clearly, Lz(G) is a lower bound on ε(G) since the incidence vector of a minimum-size
2-ECSS satisfies all the constraints. We may have arbitrary coefficients c : E→R in
the objective function rather than unit coefficients, and then we will use Lz(G, c) to
denote the optimal value. Note that the optimal value of the linear program (LP) is
computable in polynomial time, e.g., via the ellipsoid method.

Now consider the metric TSP. Let G′ = Kn be a complete graph and let c′ :
E(G′)→R assign metric costs to the edges (so for every triple of nodes i, j, k we have
c′(ij) ≤ c′(ik) + c′(kj)). Let tsp(G′, c′) denote the minimum cost of a Hamiltonian
cycle (or TSP tour) of G′, c′. Clearly, the above linear program, but with objective
vector c′ instead of 1, is a relaxation of the TSP, so Lz(G

′, c′) ≤ tsp(G′, c′).
The 4

3 conjecture for the TSP is the following: if c′ is a metric, then tsp(G′, c′) ≤
4
3 Lz(G

′, c′).
Remark. It is known that tsp(G′, c′) ≤ 1.5Lz(G

′, c′); see [4],[9],[17]. The conjec-
ture actually refers to the optimal value of the linear programming relaxation that has
the additional constraints x(δ(v)) = 2 for each node v; however, if the edge costs are
metric, then the addition of the new constraints does not change the optimal value;
see [14],[9].

APPROXIMATING A MINIMUM 2-EDGE CONNECTED SUBGRAPH 177

Theorem 5.1. Let G = (V,E) be a 2-edge connected graph. Then

Lϕ = 2µ ≤ Lc ≤ Lz ≤ ε ≤ 17

12
Lc ≤ 17

12
Lz.

Moreover, if the 4
3 conjecture for the metric TSP holds, then

ε ≤ 4

3
Lz.

Proof. To prove the first statement, we will derive the first two inequalities.
• (2µ ≤ Lc) Let J be a join of G with |J | = µ. By [6, Theorem 8′] there exists

a partition V1, . . . , Vr (r ≥ 1) of V such that 2|J | ≤∑r
i=1 c(G− Vi). Therefore,

2µ(G) ≤ max

{
�∑
i=1

c(G− Si) : S1, S2, . . . , S� is a partition of V

}
= Lc.

Note that the maximization is over � as well as the sets S1, S2, . . . , S� in the partition.
• (Lc ≤ Lz) Let S1, S2, . . . , S� denote the optimal partition in the definition of

Lc, so Lc =
∑�
i=1 c(G− Si). We sum up the following constraints (inequalities) from

the linear program defining Lz: x(δ(V (D))) ≥ 2 for each component D of G − Si,
for each i = 1, . . . , �. Let the resulting inequality be

∑
e∈E aexe ≥ b0. Clearly,

b0 = 2
∑�
i=1 c(G−Si). Moreover, note that every coefficient avw (vw ∈ E) is ≤ 2. To

see this, we consider two cases: v, w are in different sets, say, v ∈ Si, w ∈ Sj (i
= j),
or v, w are in the same set Si. Consider the first case in detail; the inequality for the
component of G− Si containing w contributes xvw, and similarly for the component
of G− Sj containing v, so avw = 2. In the second case, avw = 0. Hence,

2x(E) ≥
∑
e∈E

aexe ≥ b0 = 2

�∑
i=1

c(G− Si) = 2Lc,

where x : E→R is any feasible solution to the linear program. If x is an optimal
solution of the linear program, then we get 2Lz = 2x(E) ≥ 2Lc. This proves the
second inequality in the theorem. Moreover, by Corollary 4.4 and the fact that L�c ≤
Lc, we have ε(G) ≤ 17

12 max(L�c , Lϕ) ≤ 17
12 Lc ≤ 17

12 Lz. Hence, the first statement in
the theorem follows.

Focus on the second statement in the theorem. The multiedge (or uncapacitated)
version of our minimum-size 2-ECSS problem is the following: Given G = (V,E) as
above, compute ε̃(G), the minimum size (counting multiplicities) of a 2-edge connected
spanning submultigraph H = (V, F), where F is a multiset of edges of E. (To give an
analogy, if we take ε(G) to correspond to the f -factor problem, then ε̃(G) corresponds
to the f -matching problem.)

Fact 5.2. If G is a 2-edge connected graph, then ε̃(G) = ε(G).
Proof. Let H = (V, F) give the optimal solution for ε̃(G). If H uses two copies

of an edge vw, then we can replace one of the copies by some other edge of G in the
cut given by H − {vw, vw}. In other words, if S is the node set of one of the two
components of H − {vw, vw}, then we replace one copy of vw by some edge from
δG(S)− {vw}.

Remark. The above is a lucky fact. It fails to generalize both for minimum-cost
(rather than minimum-size) 2-ECSS and for minimum-size k-ECSS, k ≥ 3.

178 J. CHERIYAN, A. SEBŐ, AND Z. SZIGETI

Given an n-node graph G = (V,E) together with edge costs c (possibly c assigns
unit costs), define its metric completion G′, c′ to be the complete graph Kn = G′ with
c′vw (∀ v, w ∈ V) equal to the minimum-cost of a v-w path in G, c.

Fact 5.3. Let G be a 2-edge connected graph, and let c assign unit costs to
the edges. The minimum cost of the TSP on the metric completion of G, c satisfies
tsp(G′, c′) ≥ ε̃(G) = ε(G).

Proof. Let T be an optimal solution to the TSP. We replace each edge vw ∈
E(T)−E(G) by the edges of a minimum-cost v-w path in G, c. The resulting multi-
graph H is obviously 2-edge connected and has tsp(G′, c′) = c(H) ≥ ε̃(G).

The previous two facts show that ε(G) ≤ tsp(G′, c′). Moreover, note that for the
metric completion G′, c′, Lz(G,1) equals Lz(G

′, c′), since every feasible solution of
the LP on G′, c′ gives a feasible solution of the LP on G, 1 of the same objective
value and vice versa. Hence, if the TSP 4

3 conjecture holds, then we have ε(G) ≤
tsp(G′, c′) ≤ 4

3 Lz(G
′, c′) = 4

3 Lz.

(d)

G

(c)
4

node w in another copy of H(a)

2w

2v

4w

4v

3w

3v

1w

1v

0u

1u

2u

3u

4u

5u

3-ears

5-ear

(b)

node u in another copy of H1

u

H1 Hq

0

5u

0 = 75

3 6

9

12

15

30

60

45

21

Fig. 2. Tight examples for our 17
12
-approximation algorithm for minimum-size 2-ECSS. Top:

The first example, with q = 2. Some of the node labels 0, 1, 2, . . . , 3× 5q − 1 are indicated. Bottom:
The second example. (a) The graph H; (b) “covering” the nodes of H by a 5-ear and four 3-ears;
(c) “covering” the nodes of H − {u0, u5} by a subpath of a Hamiltonian cycle; (d) the graph G.

5.2. Tight examples. Our analysis of the heuristic is (asymptotically) tight.
We give two example graphs. Each is an n-node Hamiltonian graph G = (V,E), where

APPROXIMATING A MINIMUM 2-EDGE CONNECTED SUBGRAPH 179

(b)

P1

P3
P2

Pk

(a)

(c)

Fig. 3. Comparing the lower bounds L�
c and Lϕ with ε. The graphs achieve the following

ratios. (a) ε/Lϕ ≥ 1.5 − Θ(1)/n. (b) ε/L�
c ≥ 1.5 − Θ(1)/n. (c) ε/L�

c ≥ 4/3 − Θ(1)/n. To get a
graph with ε/max(L�

c , Lϕ) ≥ 5/4 − Θ(1)/n, subdivide every “thick edge” (3rd edge in path). The
resulting graph G has L�

c ≤ n + 1 (G has a Hamiltonian path), Lϕ ≤ n (G is factor-critical), and
ε = |E(G)| = (5n− 7)/4.

the heuristic (in the worst case) finds a 2-ECSS G′ = (V,E′) with 17n/12−Θ(1) edges.
Here is the first example graph, G = (V,E) (see Figure 2 (top)). The number of

nodes is n = 3 × 5q, and V = {0, 1, 2, . . . , 3 × 5q − 1}. The “first node” 0 will also
be denoted 3 × 5q. The edge set E consists of (the edge set of) a Hamiltonian cycle
together with (the edge sets of) “shortcut cycles” of lengths n/3, n/(3 × 5), n/(3 ×
52), . . . , 5. In detail, E = {i(i+1) : 0 ≤ i ≤ n−1}∪{(3×5j×i)(3×5j×(i+1)) : 0 ≤
j ≤ q−1, 0 ≤ i ≤ 5q−j−1}. Note that |E| = 3×5q+5q+5q−1+· · ·+5 = (17×5q−5)/4.
In the worst case, the heuristic initially finds 5-ears, and finally finds 3-ears, and so
the 2-ECSS (V,E′) found by the heuristic has all the edges of G. Hence, we have
|E′|/ε(G) = |E|/n = 17/12− 1/(12× 5q−1).

The second example graph, G, (see Figure 2 (bottom)) is constructed by “joining”
many copies of the following graph H: H consists of a 5-edge path u0, u1, u2, u3, u4, u5,
and four disjoint edges v1w1, v2w2, v3w3, v4w4. We take q copies of H and identify
the node u0 in all copies and identify the node u5 in all copies. Then we add all
possible edges uivj , and all possible edges uiwj , i.e., we add the edge set of a complete
bipartite graph on all the u-nodes and all the v-nodes, and we add the edge set of
another complete bipartite graph on all the u-nodes and all the w-nodes. Finally,
we add three more nodes u′1, u

′
2, u
′
3 and five more edges to obtain a 5-edge cycle

u0, u
′
1, u
′
2, u
′
3, u5, u0. Clearly, ε(G) = n = 12q + 5. If the heuristic starts with the

closed 5-ear u0,u
′
1,u
′
2,u
′
3,u5,u0, and then finds the 5-ears u0,u1,u2,u3,u4,u5 in all the

copies of H, and finally finds the 3-ears u0vjwju5 (1 ≤ j ≤ 4) in all the copies of H,
then we have |E′| = 17q + 5.

How do the lower bounds in Proposition 2.4 (namely, L�c) and in Proposition 3.3
(namely, Lϕ) compare with ε? Let n denote the number of nodes in the graph. There is
a 2-node connected graph such that ε/Lϕ ≥ 1.5−Θ(1)/n (see Figure 3(a)). Therefore
the upper bound |E′| ≤ 1.5max(Lϕ, n) of Proposition 3.4 is tight. There is another
2-edge connected (but not 2-node connected) graph such that ε/L�c ≥ 1.5 − Θ(1)/n
and ε/Lϕ ≥ 1.5−Θ(1)/n (see Figure 3(b)). Huh [10] uses the proof of Theorem 3.1
of Garg, Santosh, and Singla [8] to show that ε ≤ 1.5L�c . Among 2-node connected
graphs, we have a graph with ε/L�c ≥ 4/3−Θ(1)/n, but we do not know whether there
exist graphs that give higher ratios (see Figure 3(c)). There is a 2-node connected
graph such that ε/max(L�c , Lϕ) ≥ 5/4−Θ(1)/n, but we do not know whether there
exist graphs that give higher ratios (see Figure 3(c)).

180 J. CHERIYAN, A. SEBŐ, AND Z. SZIGETI

Acknowledgment. We thank the referees for their comments.

REFERENCES

[1] R. Carr and R. Ravi, A new bound for the 2-edge connected subgraph problem, in Proceed-
ings of the Sixth International Integer Programming and Combinatorial Optimization
Conference, Houston, Texas, 1998, Lecture Notes in Comput. Sci. 1412, R.E. Bixby, E.A.
Boyd, R.Z. Rios-Mercado, eds., Springer-Verlag, Berlin, pp.112–125.

[2] J. Cheriyan, A. Sebő, and Z. Szigeti, An improved approximation algorithm for minimum
size 2-edge connected spanning subgraphs, in Proceedings of the Sixth International In-
teger Programming and Combinatorial Optimization Conference, Houston, Texas, 1998,
Lecture Notes in Comput. Sci. 1412, R.E. Bixby, E.A. Boyd, R.Z. Rios-Mercado, eds.,
Springer-Verlag, Berlin, pp. 126–136.

[3] J. Cheriyan and R. Thurimella, Approximating minimum-size k-connected spanning sub-
graphs via matching, in Proceedings of the 37th Annual IEEE Symposium on Founda-
tions of Computer Science, IEEE, Los Alamitos, CA, 1996, pp. 292–301; SIAM J. Sci.
Comput., 30 (2000), pp. 528–560.

[4] N. Christofides, Worst-Case Analysis of a New Heuristic for the Travelling Salesman
Problem, Technical report, G.S.I.A., Carnegie-Mellon University, Pittsburgh, PA, 1976.

[5] A. Frank, Conservative weightings and ear-decompositions of graphs, Combinatorica, 13
(1993), pp. 65–81.

[6] A. Frank, A. Sebő, and E. Tardos, Covering directed and odd cuts, Math. Programming
Stud., 22 (1984), pp. 99–112.

[7] G. L. Frederickson and J. Ja’Ja’, On the relationship between the biconnectivity augmen-
tation and traveling salesman problems, Theoret. Comput. Sci., 19 (1982), pp. 189–201.

[8] N. Garg, V. S. Santosh, and A. Singla, Improved approximation algorithms for bicon-
nected subgraphs via better lower bounding techniques, in Proceedings of the Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, TX, 1993, ACM, New
York, pp. 103–111.

[9] M. X. Goemans and D. J. Bertsimas, Survivable networks, linear programming relaxations
and the parsimonious property, Math. Program., 60 (1993), pp. 143–166.

[10] T. Huh, On 2-edge connected spanning subgraphs, M. Math essay, Department of Combina-
torics and Optimization, University of Waterloo, Waterloo, Ontario, Canada, 1998.

[11] S. Khuller and U. Vishkin, Biconnectivity approximations and graph carvings, J. ACM,
41 (1994), pp. 214–235. A preliminary version appears in Proceeding of the 24th Annual
ACM Symposium on Theory of Computing, ACM, New York, 1992, pp. 759–770.

[12] L. Lovász, A note on factor-critical graphs, Studia Sci. Math. Hungar., 7 (1972), pp. 279–
280.

[13] L. Lovász and M. D. Plummer, Matching Theory, Akadémiai Kiadó, Budapest, 1986.
[14] C. L. Monma, B. S. Munson, and W. R. Pulleyblank, Minimum-weight two-connected

spanning networks, Math. Program., 46 (1990), pp. 153–171.
[15] S. Vempala and A. Vetta, Factor 4/3 approximations for minimum 2-connected sub-

graphs, in Proceedings of the Third International Workshop on Approximation Algo-
rithms for Combinatorial Optimization Problems, Max-Planck-Institut für Informatik,
Saarbrücken, Germany, 2000, Springer, Berlin, 2000, pp. 262–273.

[16] H. Whitney, Nonseparable and planar graphs, Trans. Amer. Math. Soc., 34 (1932), pp.
339–362.

[17] L. A. Wolsey, Heuristic analysis, linear programming and branch and bound, Math. Pro-
gram. Stud., 13 (1980), pp. 121–134.

COMPACT REPRESENTATIONS OF THE INTERSECTION
STRUCTURE OF FAMILIES OF FINITE SETS∗

JÁNOS KÖRNER† AND ANGELO MONTI†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 2, pp. 181–192

Abstract. The Nešetřil–Pultr dimension of the Kneser graph is interpreted as the shortest
length of strings over an infinite alphabet representing the vertices of the graph so that the absence of
coincidences in the codewords of a pair of vertices is equivalent to adjacency, i.e., to the two underlying
sets being disjoint. We study analogous but more demanding representations in case the alphabet
size may be limited and yet the full intersection has to be determined from the coincidences. Our
results introduce a connection between extremal set theory and zero-error problems in multiterminal
source coding in the Shannon sense.

Key words. dimension, Kneser graph, coloring

AMS subject classifications. 05C62, 05D05, 68P30, 05C15, 94A24

PII. S0895480198348343

1. Introduction. Let [n] denote a generic set (alphabet) of n elements and let(
[n]
k

)
stand for the family of all the k-element subsets of an n-set. Given two of these

sometimes we are only interested to know whether or not they intersect. This can be
decided on the basis of a compact representation of the sets in the following sense.
We denote by N the set of positive integers. Given the sequences x ∈ Nt and y ∈ Nt

let I(x,y) denote the set of those indices i for which the ith coordinates xi and yi
of the two sequences are equal. A function f :

(
[n]
k

) → Nt is called a Nešetřil–Pultr

representation of the family
(
[n]
k

)
if for any A ∈ ([n]

k

)
, B ∈ ([n]

k

)
,

A ∩B = ∅ ⇔ I(f(A), f(B)) = ∅.

The minimum value t = t(n, k) for which
(
[n]
k

)
has a Nešetřil–Pultr representation

is called the Nešetřil–Pultr dimension of the family
(
[n]
k

)
. This quantity seems to be

very hard to determine. The elements of
(
[n]
k

)
can be considered as the vertices of a

graph G([n]
k)
in which they are adjacent if the two sets in question are disjoint. Such

a graph is called a Kneser graph and the above minimum is usually referred to as its
Nešetřil–Pultr (or Prague) dimension [11], [12]. (Needless to say that this concept
of dimension is defined for arbitrary graphs.) Lovász, Nešetřil, and Pultr [10] have
shown that

t(2n, n) =

⌈
log

(
2n

n

)⌉
.

(Note that here and throughout the paper all logarithms are binary.) However, not
much more is known about this quantity and it seems to us that t(αn, n) is unknown
even for α = 3. The asymptotics of t(n, k) is heavily dependent on the relative order
of magnitude of k and n. The most investigated case is when k is fixed and only n

∗Received by the editors December 2, 1998; accepted for publication December 19, 2000; published
electronically March 15, 2001.

http://www.siam.org/journals/sidma/14-2/34834.html
†Department of Computer Science, “La Sapienza” University of Rome, via Salaria 113, 00198

Rome, Italy (korner@dsi.uniroma1.it, monti@dsi.uniroma1.it).

181

182 JÁNOS KÖRNER AND ANGELO MONTI

goes to infinity. In particular, Poljak, Pultr, and Rödl [12], [13] (cf. also Poljak and
Tuza [14]) have shown that

1 ≤ lim inf
n→∞

t(n, k)

log log n
≤ lim sup

n→∞
t(n, k)

log log n
≤ k(k − 1)
log k

.

As it was noticed already in [12], the upper bound can be improved for k = 2 in
a rather elementary manner and as we shall soon see the asymptotics of t(n, 2) is
known. Combining the representation idea of [12] with the construction of qualita-
tively independent partitions of Gargano, Körner, and Vaccaro [3] (cf. also [7] and
[4]) the upper bound becomes

lim sup
n→∞

t(n, k)

log log n
≤ k

2
,

and this better upper bound has been conjectured tight in [6]. (Note that the lower
and upper bounds coincide for k = 2.)
Our paper grew out of a failed tentative to prove the conjecture. It seems to us

that a novel proof technique would be needed to get a lower bound depending on
k. Our analysis has brought about a wealth of new, analogous problems and some
nontrivial results. We expect to return to all of these questions in later work.
Since the representation in [12] and even its modified version [3] use a Nešetřil–

Pultr representation of
(
[n]
k

)
from which actually the reconstruction of the whole in-

tersection of the set pair is possible, it is natural to ask what happens if we directly
ask for such a reconstruction. More precisely, we shall say that a pair of functions

f :

(
[n]

k

)
→ Nt,

φ : {0, 1}t → 2[n]

is a Bohemian representation of
(
[n]
k

)
if for every pair of distinct sets A ∈ ([n]

k

)
,

B ∈ ([n]
k

)
,

φ(i(f(A), f(B))) = A ∩B,(1)

where i(f(A), f(B)) is the t-length binary characteristic vector of the set I(f(A), f(B)).
We shall call the number t the length of the representation. Let T (n, k) denote the

smallest integer t for which
(
[n]
k

)
has a Bohemian representation. We call T (n, k) the

Bohemian dimension of
(
[n]
k

)
. Clearly, its determination is a completely new question

even though it is not unrelated to the original one. In particular, the new concept has
no immediate extension to arbitrary graphs. On the other hand, while the problem
of determining the Prague dimension of

(
[n]
k

)
becomes trivial when k > n

2 , not so for
our new dimension. In general, the Bohemian dimension is exponentially larger than
the Prague dimension. In a subsequent section we shall show that the concept of
Bohemian dimension has a meaningful and perhaps even interesting generalization to
arbitrary graphs and hypergraphs.
A more detailed analysis of our problems inevitably leads to the question of how

large a subset of N is effectively needed for an optimal Bohemian representation of
(
[n]
k

)
.

The analogous question is less interesting in the case of a Prague representation of the
Kneser graph G([n]

k)
since if f :

(
[n]
k

) → Nt is such a representation and fi :
(
[n]
k

) → N

COMPACT REPRESENTATIONS OF SET FAMILIES 183

denotes the ith coordinate of its value, then, as it is easily seen, each fi must be a
vertex-coloring of G([n]

k)
whence |fi(

(
[n]
k

)
)| ≥ n − 2k + 2 by Lovász’ celebrated result

on the chromatic number of the Kneser graph [9], [1]. (Actually, one immediately sees

that |fi(
(
[n]
k

)
)| ≥ n

k .) Our present case is different and we will show that Bohemian
representation remains possible even for a binary alphabet. More precisely, for any
fixed value b ≥ 2 let us call the pair of functions (f, φ) with

f :

(
[n]

k

)
→ [b]t,

φ : {0, 1}t → 2[n]

a b-limited Bohemian representation of
(
[n]
k

)
if for every pair of distinct sets A ∈ ([n]

k

)
,

B ∈ ([n]
k

)
,

φ(i(f(A), f(B))) = A ∩B.(2)

Further, let Tb(n, k) denote the smallest integer t for which
(
[n]
k

)
has a b-limited

Bohemian representation. Clearly, b ≤ c implies Tb(n, k) ≥ Tc(n, k) ≥ T (n, k). The
main objective of this paper is to present asymptotic information on all of these
quantities for fixed k. In particular, we shall show that all of them grow logarithmically
with n.

2. Bohemian dimension. We concentrate our attention on various dimension-
type invariants of

(
[n]
2

)
. At first glance, this family has little interest, for its Prague

dimension is rather easy to determine. In fact, as it was observed in [12] we have

log log n ≤ t(n, 2) ≤ �log log n.(3)

Yet, we have not been able to determine even the Bohemian dimension T (n, 2). The
following bounds show, nevertheless, that there is an exponential gap between t(n, 2)
and T (n, 2).

Theorem 1.

3

log 5
≤ lim inf

n→∞
T (n, 2)

log n
≤ lim sup

n→∞
T (n, 2)

log n
≤ 2.

Proof. In order to prove the lower bound, consider a Bohemian representation
(f, φ) of length t.With the help of this Bohemian representation we obtain a mapping

F :

(
[n]

3

)
→
({0, 1}t
3

)

as follows by setting

F ({x, y, z}) = {i(f({x, y}), f({y, z})), i(f({y, z}), f({z, x})), i(f({z, x}), f({x, y}))}.
Denoting

{φ(i(f({x, y}), f({y, z}))), φ(i(f({y, z}), f({z, x}))), φ(i(f({z, x}), f({x, y})))}
by Φ({x, y, z}) we recall that by our hypothesis the latter is the identity mapping on(
[n]
3

)
. On the other hand, it should be clear that Φ is a function of F and therefore(

n

3

)
=

∣∣∣∣
(
[n]

3

)∣∣∣∣ =
∣∣∣∣Φ
((
[n]

3

))∣∣∣∣ ≤
∣∣∣∣F
((
[n]

3

))∣∣∣∣ .(4)

184 JÁNOS KÖRNER AND ANGELO MONTI

Given a set {x, y, z} the value of F ({x, y, z}) is an unordered triple of three binary
sequences of length t, but it can be thought of, equivalently, as a unique supersequence
of length t every supercoordinate of which consists of 3 bits. Thus in every superco-
ordinate we might see at most eight different triples of bits. However, we would like
to argue that only five of these values can actually show up in each supercoordinate.
In order to understand this, it suffices to realize that for any j = 1, . . . , t the jth
coordinate of i(f({x, y}), f({y, z})) equals one iff the corresponding coordinates fj
satisfy

fj({x, y}) = fj({y, z}),
and since if two of these relations occur, then the third also has to hold, it follows that
among the three-bit supercoordinates we shall never see those in which the number
of bits equal to one is precisely two. This leaves us five choices, and hence∣∣∣∣F

((
[n]

3

))∣∣∣∣ ≤ 5t.
Comparing this to (4) we see that (

n

3

)
≤ 5t,

proving the desired lower bound.
Next, in order to establish the promised upper bound on T (n, 2) we shall exhibit

a Bohemian representation of
(
[n]
2

)
of length

t(n) = �log log n+ 2�log n.
Consider the Prague representation of minimum length t1(n) of

(
[n]
2

)
f1 :

(
[n]

2

)
→ Nt1(n)

and recall that by the definition of such a representation there exists a function φ1 :
{0, 1}t1(n) → {0, 1} for which

φ1(i(f1(A), f1(B))) = 0⇔ A ∩B = ∅.(5)

Further, since its length is minimum, (3) implies

t1(n) ≤ �log log n.(6)

In order to proceed, we now introduce some notation. Considering n as fixed, we
write l = l(n) = �log n and define for every element m ∈ [n] its binary representation
by an arbitrary injection

λ : [n]→ {0, 1}l.
Also, let Λ(m) denote the set of coordinates in which the binary vector λ(m) equals

one. Further, we shall associate with every set A ∈ ([n]
2

)
a private name by another

arbitrary injection

ν :

(
[n]

2

)
→ {N− [n]}.

COMPACT REPRESENTATIONS OF SET FAMILIES 185

Now we are ready to construct our Bohemian representation of
(
[n]
2

)
in the form of the

juxtaposition of three mappings fh, h = 1, 2, 3, of which one has been defined above
for h = 1 and now we complete the picture by introducing the additional two;

fh :

(
[n]

2

)
→ Nth(n), h = 2, 3.

First set h = 2 and consider a set A = {a, b} ∈ ([n]
2

)
. We shall denote by f2(A, i) the

ith coordinate of f2(A) and define it by setting

f2(A, i) = a if i ∈ Λ(a)− Λ(b),
f2(A, i) = b if i ∈ Λ(b)− Λ(a),
f2(A, i) =ν(A) else.

Notice that with this definition we have

t2(n) = �log n.(7)

Next, let w ∈ N be an element present neither in [n] nor in ν(
(
[n]
2

)
). We define the

coordinates f3(A, i) of f3(A) as follows:

f3(A, i) = w if i �∈ Λ(a) ∪ Λ(b),
f3(A, i) =ν(A) else.

As before, we once again have

t3(n) = �log n.(8)

We claim that defining f(A) by juxtaposition as

f(A) = f1(A), f2(A), f3(A)

gives rise to a function

f :

(
[n]

2

)
→ Nt1(n)+t2(n)+t3(n)

to which we can find another function φ : {0, 1}t1(n)+t2(n)+t3(n) → 2[n] such that the

pair (f, φ) is a Bohemian representation of
(
[n]
2

)
. By the relations (6)–(8) we see that

the length of this alleged representation is

t(n) = �log log n+ 2�log n,
as claimed. It remains to be seen that a corresponding function φ can be found so
that (f, φ) yields the requested Bohemian representation. To this end, it is sufficient

to show that for any two sets A ∈ ([n]
2

)
, B ∈ ([n]

2

)
with A �= B we can reconstruct

A ∩B from the t(n) = t1(n) + t2(n) + t3(n)-length binary sequence i(f(A), f(B)). If
A ∩ B = ∅, then, as observed in (5), we will already realize this upon inspection of
the first t1(n) coordinates of i(f(A), f(B)). Suppose therefore that A∩B = {x}. Let
us say that A = {a, x} and B = {b, x} for some a �= b from [n]. Then notice that
i(f2({a, x}), f2({b, x})) is the l-length binary characteristic vector χ((Λ(x)− Λ(a)) ∩
(Λ(x) − Λ(b))) of the set [Λ(x) − Λ(a)] ∩ [Λ(x) − Λ(b)]. Similarly, by its definition,

186 JÁNOS KÖRNER AND ANGELO MONTI

i(f3({a, x}), f3({b, x})) is the l-length binary characteristic vector χ(Λ(a) ∩ Λ(x) ∩
Λ(b) ∩ Λ(x)) of the complement of the set [Λ(a)∩Λ(x)]∪ [Λ(b)∩Λ(x)]. Hence knowing
the value of both i(f2({a, x}), f2({b, x})) and i(f3({a, x}), f3({b, x})) means knowing
both of the sets [Λ(x)−Λ(a)]∩ [Λ(x)−Λ(b)] and [Λ(a)∩Λ(b)]∪ [Λ(b)∩Λ(x)]. Now the
union of these two is precisely Λ(x) and this allows us to complete the construction
of a function φ as requested.
As an immediate consequence of the above result, in particular, its upper bound

part, we can give a weak although not entirely trivial limitation for the general case.
Proposition 1.

k − 1 ≤ lim inf
n→∞

T (n, k)

log n
≤ lim sup

n→∞
T (n, k)

log n
≤ k(k − 1).

Proof. The lower bound is an immediate consequence of the fact that if (f, φ)

form a Bohemian representation of length t of
(
[n]
k

)
, then the set

φ

(
i

(
f

((
[n]

k

))
, f

((
[n]

k

))))

must contain
(

[n]
k−1

)
and therefore(
n

k − 1
)
≤ |φ

(
f

((
[n]

k

))
, f

((
[n]

k

)))
| ≤ 2t.

To prove the upper bound, let us fix a Bohemian representation (f, φ) of minimum

length T (n, 2) of
(
[n]
2

)
. Further, for an arbitrary set A ∈ ([n]

k

)
and {i, j} ∈ ([n]

2

)
let

A(i, j) denote the set consisting of the ith and the jth elements of A in the natural

ordering of N.We construct a Bohemian representation (F,Φ) of
(
[n]
k

)
by juxtaposition.

More precisely, we define the value F (A) of any A ∈ ([n]
k

)
by juxtaposing the f -images

of the two-element subsets of A in some fixed order, independent of A. Thus we write

F (A) = f(A(1, 2)), f(A(1, 3)), . . . , f(A(k − 1, k)).
The construction works because we can obtain the intersection of any two k-element
sets as the union of the intersections of their respective two-element subsets;

A ∩B =
⋃

{i,j}∈([k]
2)

[A(i, j) ∩B(i, j)].

With the function Φ defined in a similar piecewise fashion we are therefore enabled
to represent the intersections of the two-element subsets at length �log n by the
function f(i, j) and its counterpart φ. To conclude, notice that the overall length of
the representation (F,Φ) is 2

(
k
2

)�log n and this proves the upper bound.
3. Binary representations. We have mentioned that in the case of a Prague

representation of
(
[n]
2

)
the alphabet size must necessarily grow to infinity with the

size of the ground set; not so in our case. We shall illustrate this difference for the
simplest situation of representing

(
[n]
2

)
by a binary alphabet. We will show, however,

that as one might expect, there is a penalty to be paid in the sense that even the best
binary representation must be longer than its unlimited alphabet size counterpart.
We introduce the shorthand notation T (n) = T2(n, 2). Our main result is the

following theorem.

COMPACT REPRESENTATIONS OF SET FAMILIES 187

Theorem 2.

3 ≤ lim inf
n→∞

T (n)

log n
≤ lim sup

n→∞
T (n)

log n
≤ 6.

Proof. To prove the lower bound consider a 2-limited Bohemian representation
(f, φ) of length t of

(
[n]
2

)
,

f :

(
[n]

2

)
→ {0, 1}t, φ : {0, 1}t → 2[n].

By definition, we must have

φ(i(f(A), f(B))) = A ∩B.
Let us fix an arbitrary a ∈ [n]. We claim that the values

i(f({a, x}), f({y, z}))

must all be different provided that the sets {x, y, z} ∈ ([n]−a
3

)
are also. (More could be

said, but this much will prove sufficient.) To verify the previous statement, suppose
to the contrary that

i(f({a, x}), f({y, z})) = i(f({a, x′}), f({y′, z′})) for some {x, y, z} �= {x′, y′, z′},

where we have {x, y, z} and {x′, y′, z′} ∈ ([n]−a
3

)
. Noticing that for any two binary

sequences x and y of length t the value of i(x,y) is just the binary complement of
their sum x⊕ y in vector addition modulo 2, one immediately sees that the previous
equality implies

i(f({a, x}), f({a, x′})) = i(f({y, z)}, f({y′, z′})).
On the other hand, we know that

φ(i(f({a, x}), f({a, x′}))) = {a, x} ∩ {a, x′} = {a}
while

φ(i(f({y, z}), f({y′, z′}))) = {y, z} ∩ {y′, z′}
and since the sets on the right-hand side of the last two relations are different, we get
a contradiction. We conclude that(

n− 1
3

)
≤
∣∣∣∣
{
i(f({a, x}), f({y, z})) ; {x, y, z} ∈

(
[n]− a

3

)}∣∣∣∣ ≤ 2t.
Comparing the two ends of this chain of inequalities and taking logarithms we get the
desired lower bound.
To prove the upper bound we will find a Bohemian representation by a routine

random choice argument. Let us consider the family G of all the functions f : ([n]
2

)→
{0, 1}t and let Γ be a random variable with uniform distribution on G. Then, clearly,
for any ordered pair of distinct and fixed two-element subsets A and B of [n] and for
any fixed binary string x ∈ {0, 1}t we have

Pr{i(Γ(A), Γ(B)) = x} = 2−t.

188 JÁNOS KÖRNER AND ANGELO MONTI

Actually, we can even say that given any pair of different set pairs (A,B) ∈ ([n]
2

)×([n]
2

)
and (A′, B′) ∈ ([n]

2

)× ([n]
2

)
satisfying

A �= B, A′ �= B′ and {A,B} �= {A′, B′}
and any pair of (not necessarily distinct) sequences (x,y) ∈ {0, 1}t × {0, 1}t we have

Pr{i(Γ(A),Γ(B)) = x, i(Γ(A′),Γ(B′)) = y} = 2−2t.

Hence it follows that

Pr{i(Γ(A),Γ(B)) = i(Γ(A′),Γ(B′))} =
∑

x∈{0,1}t
2−2t = 2−t.(9)

Next notice that we don’t always have to avoid the equality

i(Γ(A),Γ(B)) = i(Γ(A′),Γ(B′)).(10)

In fact, this equality causes us no problem if |A∪B ∪A′ ∪B′| = 8 for this means that
both intersections A∩B and A′∩B′ are empty and therefore equal. On the other hand,
we will have to avoid a situation leading to (10) in all the other cases. This means

that the total number of configurations of pairs of pairs from [(A,B), (A′, B′)] ∈ ([n]
2

)4
which we have to keep under control corresponds to those pairs of pairs of sets for
which we have

|A ∪B ∪A′ ∪B′| ≤ 7,(11)

and this amounts to a total of at most n7 configurations from
(
[n]
2

)4
. For an ar-

bitrary function f :
(
[n]
2

) → {0, 1}t now let B(f) denote the set of pairs of pairs
[(A,B), (A′, B′)] ∈ ([n]

2

)4
satisfying both (11) and (10). For the expectation of |B(f)|

we have

E|B(Γ)| =
∑

[(A,B),(A′,B′)]∈([n]
2)

4

Pr{[(A,B), (A′, B′)] ∈ B(Γ)} ≤ n7 · 2−t,(12)

where the last inequality is a consequence of (9). Now choose t so as to satisfy
n7 · 2−t ≤ n

2 . To this end, we specify

t = t(n) = 6�log n+ 1.(13)

With this choice (12) implies that

E|B(Γ)| ≤ n

2
,

whence we can conclude that there exists a function f :
(
[n]
2

) → {0, 1}t for which
|B(f)| ≤ n

2 . Let us now omit from our ground set [n] for each of the configurations
[(A,B), (A′, B′)] ∈ B(f) an arbitrary element from the union of the underlying set
A∪B∪A′∪B′. The remaining ground set will have at least n2 elements and without loss
of generality we can suppose that it is just [m] form = �n2 . Restricting our function f
to this new ground set will result in its having no bad configurations. Thus our f gives
rise to a Bohemian representation of

(
m
2

)
of length t(m) = 6�logm + 7, concluding

the proof.
Remark (added later). The upper bound in this theorem can be lowered from 6

to 4 if instead of the above random choice argument one uses a well-known result of
Lindström [8].

COMPACT REPRESENTATIONS OF SET FAMILIES 189

4. A wealth of dimensions. So far we have considered only the Bohemian rep-
resentation of the family of all the k-sets of an [n]-set. The reason for this limitation
is that only in this case (related to Kneser graphs) do we have results of some signifi-
cance. It should be clear, however, that our concepts extend to arbitrary set families
(i.e., hypergraphs in the sense of Berge [1]). As a consequence of this extension we
will be able to define the Bohemian dimension of arbitrary graphs. This and similar
new concepts of dimension are the topic of this section. We will describe definitions
and open problems, thereby offering a framework for further research.
A hypergraph is a family of subsets of a set but for most purposes what matters

is only what we would like to call its intersection structure. A (finite) hypergraph
H = (V (H), E(H)) is an ordered couple of finite sets satisfying the relation E(H) ⊆
2V (H). The elements of V (H) are called vertices, those of E(H) are called hyperedges.

The intersection structure of H is a function σH :
(
E(H)

2

)→ 2V (H) for which

σH({A,B}) = A ∩B for every {A,B} ∈
(
E(H)

2

)
.(14)

If we determine the intersection structure of a hypergraph, then we will not necessarily
know it completely, since the intersection structure gives us no information on those
vertices in V (H) that belong to a single hyperedge. Actually, what we will not know
is just how many of them the various hyperedges contain, and this is usually quite
irrelevant.

Definition 1. A pair of functions

f : E(H)→ Nt, φ : {0, 1}t → 2V (H)

constitute a Bohemian representation of the hypergraph H = (V (H), E(H)) if

φ(i[f(A), f(B)]) = σH({A,B}) for every {A,B} ∈
(
E(H)

2

)
.

The integer t is called the length of the representation. The smallest integer t for
which H has a Bohemian representation is called its dimension.
Analogously, we can define the b-limited Bohemian dimension of a hypergraph;

we omit the details.
In this language the problem treated in section 2 regards the Bohemian dimension

of the complete k-uniform hypergraph on n vertices. Next we would like to explain
that in our view there is a strong connection between the concept of Bohemian and the
Nešetřil–Pultr dimension of graphs and hypergraphs in the sense that both of them
are analogous special instances of a more general concept. For the sake of simplicity
of notation let us suppose for the rest of our discussion that all our hypergraphs have
a vertex set contained in N.

Definition 2. Given an arbitrary function τ : 2N → R a pair of functions

f : E(H)→ Nt, φ : {0, 1}t → R

is called a τ -partial Bohemian representation of the hypergraph H if

φ(i[f(A), f(B)]) = τ(A ∩B) for every {A,B} ∈
(
E(H)

2

)
.

Once again, the integer t is called the length of the representation. The smallest
integer t for which H has a τ -partial Bohemian representation is called its τ -partial
dimension.

190 JÁNOS KÖRNER AND ANGELO MONTI

If τ is the identity function, the last definition gives back the previous one. Chang-
ing the definition of the function τ we obtain various new characteristics interpretable
as partial dimension. Other natural choices are the cardinality function τ1 defined by

τ1(A) = |A|
and the positivity function τ2 defined by setting

τ2(A) = 0 if |A| = 0,
1 if |A| > 0.

Clearly, the corresponding dimensions of the same hypergraph are decreasing in
the order of introduction of these concepts. Their determination represents a lot of
new problems in this area.
There are many ways to arrive at further generalizations and variations of our

problems. One of these is a consequence of replacing the function i by a different
coincidence function, ι : N× N→ N ∪ {0}, defined by setting

ι(a, b) = a if a = b,

0 if a �= b.

This function represents a majority vote on the two values in the same coordinate
position. Further, let c denote the usual extension of ι to t-length sequences by
juxtaposition, i.e., let us have

c([x,y]) = ι(x1, y1) . . . ι(xt, yt).

We conclude this section by defining the corresponding dimension, to be called
the Malá Strana dimension of a hypergraph H = (V (H), E(H)).

Definition 3. A pair of functions

f : E(H)→ Nt, φ : (N ∪ {0})t → 2V (H)

constitute a Malá Strana representation of the hypergraph H = (V (H), E(H)) if

φ(c[f(A), f(B)]) = A ∩B for every {A,B} ∈
(
E(H)

2

)
.

The integer t is called the length of the representation. The smallest integer t for
which H has a Malá Strana representation is called its Malá Strana dimension.
A rapid analysis of the construction idea of [12] can convince the reader that in

view of the already cited result of [3] we have the following proposition.
Proposition 2. The Malá Strana dimension M(n, k) of the complete k-uniform

hypergraph on n vertices satisfies

lim sup
n→∞

M(n, k)

log log n
≤ k

2
.

We omit the proof since it is an easy exercise for anyone familiar with the above
cited results of [12] and [3]. Compared to Bohemian dimension of the same hyper-
graph, our last observation is telling us that Malá Strana dimension is on the same
side of the exponential gap with the Prague dimension of these hypergraphs. Unfor-
tunately, we don’t know any nontrivial lower bound for the Malá Strana dimension of

COMPACT REPRESENTATIONS OF SET FAMILIES 191

complete uniform hypergraphs. With respect to the Prague representation we have
two different conditions affecting the numerical result in opposite directions. On the
one hand, the majority function c gives more information on the comparison of the
values of f but on the other hand, in the definition of Malá Strana representation,
we drop the restriction that disjoint sets should be represented by f -vectors with no
coincidence in their coordinates.

5. Dimension and information theory. For those familiar with the Shannon
theory of information and especially with coding theorems for multiterminal sources
all the above might ring a bell. All our models are very much like zero-error problems
in multiuser information theory. Considering Bohemian representations, one sees that
the functions (f, φ) are a coder-decoder pair, the comparator function i is playing the
role of a multiaccess channel among other things. Although our present problems
are not zero-error versions of coding problems in information theory, there is still a
conceptual connection as it should be. Here and there one is dealing with compact
representations of a given structure in a prescribed form. Here and there one expects
that the theoretical limit for the “size” of such a representation is a “measure of
information content.” Since this paper is meant to be self-contained from the point of
view of readers interested in combinatorics, we will not elaborate on the connections,
but those interested can use the book [2] or the survey article [6] and the references
therein. On the other hand, we can consider our models as part of the effort of
analyzing functional complexity in the spirit of Shannon’s seminal paper [15]. A more
precise connection is offered through the concept of relative capacity capturing the
extent to which the powers of a graph can mimic those of another one. This notion,
a true generalization of Shannon’s capacity [16] of graphs was introduced in [5] and
we shall return to its relevance for the Prague dimension elsewhere.

6. A tribute. This paper is a late tribute to the living memory of Svata Poljak
whose beautiful invention of combining constructions of perfect hashing and qualita-
tively independent partitions into Nešetřil–Pultr representations (as described in [12])
motivated our research.

REFERENCES

[1] C. Berge, Hypergraphes, Combinatoire des ensembles finis, Gauthier–Villars, Paris, 1987.
[2] I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless

Systems, Academic Press, New York, 1982 and Akadémiai Kiadó, Budapest, 1981.
[3] L. Gargano, J. Körner, and U. Vaccaro, Sperner capacities, Graphs Combin., 9 (1993),

pp. 31–46.
[4] L. Gargano, J. Körner, and U. Vaccaro, Capacities: From information theory to extremal

set theory, J. Combin. Theory Ser. A, 68 (1994), pp. 296–316.
[5] J. Körner and K. Marton, Relative Shannon capacity of graphs, in Proceedings of the IEEE

Symposium on Information Theory, Ann Arbor, 1986.
[6] J. Körner and A. Orlitsky, Zero-error information theory. Information theory: 1948–1998,

IEEE Trans. Inform. Theory, 44 (1998), pp. 2207–2229.
[7] J. Körner and G. Simonyi, A Sperner-type theorem and qualitative independence, J. Combin.

Theory Ser. A, 59 (1992), pp. 90–103.
[8] B. Lindström, Determination of two vectors from the sum, J. Combin. Theory Ser. A, 6 (1969),

pp. 402–407.
[9] L. Lovász, Kneser’s conjecture, chromatic number and homotopy, J. Combin. Theory Ser. A,

25 (1978), pp. 319–324.
[10] L. Lovász, J. Nešetřil, and A. Pultr, On a product dimension of graphs, J. Combin. Theory

Ser. B, 29 (1980), pp. 47–67.

192 JÁNOS KÖRNER AND ANGELO MONTI

[11] J. Nešetřil and A. Pultr, Product and other representations of graphs and related character-
istics, in Algebraic Methods in Graph Theory, Colloq. Math. Soc. János Bolyai 25, North-
Holland, Amsterdam, 1981, pp. 571–598.

[12] S. Poljak, A. Pultr, and V. Rödl, On the dimension of Kneser graphs, in Algebraic Methods
in Graph Theory, Colloq. Math. Soc. János Bolyai 25, North-Holland, Amsterdam, 1981,
pp. 631–646.

[13] S. Poljak, A. Pultr, and V. Rödl, On qualitatively independent partitions and related prob-
lems, Discrete Appl. Math., 6 (1983), pp. 193–205.

[14] S. Poljak and Z. Tuza, On the maximum number of qualitatively independent partitions, J.
Combin. Theory Ser. A, 51 (1989), pp. 111–116.

[15] C. E. Shannon, The synthesis of two–terminal switching circuits, Bell System Tech. J., 28
(1949), pp. 59–98.

[16] C. E. Shannon, The zero–error capacity of a noisy channel, IRE Trans. Inform. Theory, 2
(1956), pp. 8–19.

SORTING STRINGS BY REVERSALS AND BY TRANSPOSITIONS∗

DAVID A. CHRISTIE† AND ROBERT W. IRVING†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 2, pp. 193–206

Abstract. The problems of sorting by reversals and sorting by transpositions have been studied
because of their applications to genome comparison. Prior studies of both problems have assumed
that the sequences to be compared (or sorted) contain no duplicates, but there is a natural gener-
alization in which the sequences are allowed to contain repeated characters. In this paper we study
primarily the versions of these problems in which the strings to be compared are drawn from a binary
alphabet. We obtain upper and lower bounds for reversal and transposition distance and show that
the problem of finding reversal distance between binary strings, and therefore between strings over
an arbitrary fixed-size alphabet, is NP-hard.

Key words. strings, sorting, genome comparison, reversals, transpositions, NP-complete prob-
lems

AMS subject classifications. 68R05, 68R15, 68Q17, 92D15

PII. S0895480197331995

1. Introduction.

1.1. Reversals and transpositions over permutations. The reversal dis-
tance and the transposition distance between two permutations (and the related prob-
lems of sorting by reversals and sorting by transpositions) are used to estimate the
number of global mutations between genomes and can be used by molecular biologists
to infer evolutionary and functional relationships between genomes. A reversal (or
inversion) involves reversing the order of elements in a substring of the permutation.
More formally, the reversal ρ(i, j) (1 ≤ i < j ≤ n) transforms the permutation π of
{1, 2, . . . , n} into π′, where

π′(k) =
{

π(i+ j − k) if i ≤ k ≤ j,
π(k) otherwise.

A transposition involves swapping two adjacent substrings of the permutation. More
formally, the transposition τ(i, j, k) (1 ≤ i < j < k ≤ n+ 1) transforms the permuta-
tion π of {1, 2, . . . , n} into π′, where

π′(m) =

π(m+ j − i) if i ≤ m < i+ k − j,
π(m− k + j) if i+ k − j ≤ m < k,
π(m) otherwise.

Sorting by reversals is the problem of finding the minimum number dr(π) of reversals
needed to transform a given permutation π into the identity permutation ı. Sorting by
transpositions is the analogous problem of determining dt(π), the minimum number
of transpositions needed to transform π into ı. The functions dr(π) and dt(π) are
known as the reversal distance and transposition distance, respectively, of π.

In the context of sorting by reversals, Kececioglu and Sankoff [14] introduced the
concept of a breakpoint. A permutation π of {1, 2, . . . , n} has a breakpoint at position

∗Received by the editors December 31, 1997; accepted for publication (in revised form) December
21, 2000; published electronically March 15, 2001.

http://www.siam.org/journals/sidma/14-2/33199.html
†Department of Computing Science, University of Glasgow, Glasgow G12 8RZ, Scotland, UK

(christie@dcs.gla.ac.uk, rwi@dcs.gla.ac.uk).

193

194 DAVID A. CHRISTIE AND ROBERT W. IRVING

i if |π(i)− π(i− 1)| �= 1. (Special elements π(0) = 0 and π(n+ 1) = n+ 1 are added
so that breakpoints at the ends of the permutation are included.) Consideration of
breakpoints leads to simple lower and upper bounds for reversal distance [14]. The
reversal diameter of the symmetric group Sn is the maximum value of dr(π) over
all permutations of length n. Bafna and Pevzner [1] have proved that the reversal
diameter of Sn is n− 1 and is achieved by only two permutations of length n.

In the transposition case, Bafna and Pevzner [2] defined breakpoints slightly dif-
ferently. Here, π has a breakpoint at position i if π(i)− π(i− 1) �= 1, and once again,
consideration of breakpoints leads to simple lower and upper bounds for transposition
distance [2]. The transposition diameter of Sn is the maximum value of dt(π) over all
permutations of length n. The transposition diameter of Sn has not been resolved,
but Bafna and Pevzner [2] have shown that it lies somewhere between n/2 + 1 and
3n/4.

Caprara [4] (see also [5]) has shown that sorting by reversals is NP-hard. Earlier,
Kececioglu and Sankoff [14] had found a simple 2-approximation algorithm and Bafna
and Pevzner [1] a 7/4-approximation algorithm. Christie [7] has obtained a 3/2-
approximation algorithm, which is the best currently known for this problem.

There is a variation of sorting by reversals in which each element of the permu-
tation is given a sign “+” or “−” that is flipped when the element is involved in a
reversal. Perhaps surprisingly, this version of the problem is solvable in polynomial
time, as was proved by Hannenhalli and Pevzner [11] (see also [12]). Their algorithm
to find signed reversal distance has been improved and simplified by Berman and
Hannenhalli [3] and also by Kaplan, Shamir, and Tarjan [13].

Sorting by transpositions is less well understood than sorting by reversals, and in
particular, the complexity of sorting by transpositions remains open. However, Bafna
and Pevzner [2] have described a 3/2-approximation algorithm for the problem.

1.2. Reversals and transpositions over strings. In the context of genome
comparisons, duplicate genes can occur, so that the permutation model is not always
the appropriate one. In this paper, we define reversal distance and transposition dis-
tance on strings and investigate these new problems, which are of interest in their
own right, focusing primarily on the case of a binary alphabet. However, some of the
bounds that we establish can be extended to arbitrary fixed-size alphabets, and our
main NP-hardness result—for reversal distance over a binary alphabet—immediately
implies NP-hardness of the corresponding problem over an arbitrary fixed-size alpha-
bet.

For permutations, transforming π into ρ is equivalent to transforming ρ−1·π into
ı. However, there is no direct analogue of this result for strings. Therefore in this
context the problems are expressed in terms of the distance between two strings.

For strings S and T , the reversal distance dr(S, T) between S and T is the min-
imum number of reversals required to transform S into T ; and the transposition
distance dt(S, T) is the minimum number of transpositions required to transform S
into T . It is impossible to insert or delete characters using reversals or transpositions,
so in each case T must be a rearrangement of S. We say that S and T are related if
T is a rearrangement of S.

Note that the sorting problem on permutations is a special case of the distance
problem on strings. Therefore, for reversals and transpositions, the distance problem
on strings is at least as hard as the sorting problem on permutations. Thus, finding the
reversal distance between strings is NP-hard since sorting permutations by reversals is
NP-hard. However, if the strings are drawn from a fixed-size alphabet, then minimally

SORTING STRINGS BY REVERSALS AND BY TRANSPOSITIONS 195

sorting a permutation is no longer a special case of finding the distance between
two strings, and the hardness of sorting permutations by reversals does not imply a
corresponding result for sorting strings by reversals in this case.

The remainder of the paper is organized as follows. Section 2 introduces ap-
propriate terminology and notation. Section 3 is devoted to reversals and section 4
to transpositions. In these two sections lower bounds, upper bounds, and diameter
results are described for each problem, respectively. In section 5 it is proved that
the generalized version of sorting by reversals is NP-hard, even when the strings are
drawn from a binary alphabet. In the final section we compare and contrast the
results obtained for binary strings with the known results for sorting problems over
permutations.

2. Terminology and notation. We denote the ith symbol of a string S by
S(i). A reversal on a string will be represented by enclosing in brackets the substring
to be reversed. For example, 0[1010110]1 = 001101011. A similar notation, in which
two adjacent substrings are bracketed, will be used to describe transpositions—for
instance, 0[10][1011]01 = 010111001.

Let 0k represent a string of zeros of length k, 1k a string of ones of length k, and,
in general, let Sk (or (S)

k
) represent the string obtained by concatenating k copies of

S for any string S. We use S ·T , or simply ST , to denote the concatenation of strings
S and T , and we define a string concatenation operation (

∑
) that can be used in a

similar way to summation. For example,
∑3
i=1(0

i1) = 010010001. We also use the
standard notation S+ to represent the concatenation of one or more copies of S and
S∗ the concatenation of zero or more copies of S.

Let Bn be the set of binary strings of length n. For a particular transformation,
the diameter of Bn is the maximum distance between any two related binary strings
of length n. Define Ek = 0

k1k and Ck = (10)
k
. For example, E4 = 00001111 and

C4 = 10101010. These strings are particularly useful for establishing diameter results
in later sections.

Let S represent the string derived from S by switching ones and zeros, and let SR

represent the string S in reverse order. Therefore, for example, if S = 0100110001,

then S = 1011001110, SR = 1000110010, and S
R
= 0111001101.

Strings X and Y are isomorphic to strings S and T if

(i) X = S and Y = T , or X = T and Y = S, or
(ii) X = S and Y = T , or X = T and Y = S, or
(iii) X = SR and Y = TR, or X = TR and Y = SR, or

(iv) X = S
R
and Y = T

R
, or X = T

R
and Y = S

R
.

In other words, the pairs {X,Y } and {S, T} are isomorphic if one pair can be ob-
tained from the other by a fixed permutation of the alphabet, followed by an optional
complete reversal of both strings in the pair. This version of the definition applies
equally to strings over an arbitrary alphabet. Obviously, if X and Y are isomorphic
to S and T , then dr(X,Y) = dr(S, T) and dt(X,Y) = dt(S, T).

Define lcp(S, T) and lcs(S, T) to be the lengths of the longest common prefix and
the longest common suffix, respectively, of S and T .

A block of zeros is a maximal length substring that consists only of the character
0. A block of ones is defined similarly. Let b(S) denote the total number of blocks
in S and z(S) denote the number of blocks of zeros in S. Therefore, for example,
b(001110101) = 6 and z(001110101) = 3.

Finally, we represent by . . . an arbitrary substring of length ≥ 0. For example,

196 DAVID A. CHRISTIE AND ROBERT W. IRVING

if S has prefix “01,” a substring “00,” and suffix “11,” then we could write S =
01 . . . 00 . . . 11.

3. Reversal distance between binary strings. In this section, we describe a
lower bound and an upper bound for reversal distance between binary strings. These
bounds are then used to determine the reversal diameter of Bn and also to identify
some strings that achieve this reversal diameter. A restricted version of the problem,
that is in some sense analogous to sorting permutations by reversals, is shown to be
solvable in polynomial time. However, in section 5 the general problem of determining
reversal distance between two (binary) strings is shown to be NP-hard.

3.1. A lower bound. We first adapt the concept of breakpoint from permu-
tation sorting problems for use in the context of string sorting. This new kind of
breakpoint is then used to establish a lower bound for reversal distance. Recall that,
for permutations, two elements form a breakpoint if they are adjacent in π but not
adjacent in the identity permutation. Substrings of length two represent adjacencies
in strings S and T , so our definition of breakpoints on strings will be based on these
substrings.

If S contains more “00” substrings than T , then each extra “00” must be broken,
by a reversal, at some time in the transformation from S into T . Each extra “00” in S
is an example of a reversal breakpoint. An obvious difference between breakpoints on
strings and on permutations is that, on strings, the specific location of a breakpoint
may not necessarily be identified. For instance, if S contains three “00” substrings
and T contains only two “00” substrings, then one of the “00” substrings in S is
a breakpoint, but no particular “00” substring of S is identified as the breakpoint.
Breakpoints also occur for “01,” “10,” and “11” substrings as well. However, be-
cause reversals can convert “01” substrings into “10” substrings and vice versa, these
substrings must be counted together when considering reversal breakpoints.

Breakpoints can also be contributed from the beginning and end of the strings.
For example, if S(1) �= T (1), then position one contributes a breakpoint. In order
to deal with these breakpoints, S and T are extended by adding special characters
α at the beginning and ω at the end of both strings. These breakpoints can then be
counted by comparing the number of occurrences of the substrings “α0,” “α1,” “0ω,”
and “1ω” in both strings. Adding α and ω to S and T is similar to adding 0 and n+1
to π when dealing with permutations.

The number of times the substring “ab” occurs in S, i.e., the frequency count
for “ab” in S, is denoted by fab(S), where a, b ∈ {α, 0, 1, ω}. We also assume, for
convenience, α < 0 < 1 < ω.

We now define the number of reversal breakpoints between S and T , br(S, T) to
be

br(S, T) =
∑

α≤a<b≤ω
δ(fab(S) + fba(S)− fab(T)− fba(T)) +

∑
0≤a≤1

δ(faa(S)− faa(T)),

where

δ(x) = x if x > 0 and 0 otherwise.

Clearly, if S = T , then br(S, T) = 0. However, it is possible to have br(S, T) = 0,
even when S �= T , for example, if S = 100101 and T = 101001.

Note that, although the definition of the number of breakpoints is not symmetric
with respect to the two strings S and T , it is easy to see that br(S, T) = br(T, S).

SORTING STRINGS BY REVERSALS AND BY TRANSPOSITIONS 197

We now derive a lower bound for reversal distance based on these breakpoints.
Lemma 3.1. Suppose that S′ is obtained from S by a single reversal. Then

br(S
′, T) ≥ br(S, T)− 2.

Proof. A reversal on S cuts two substrings of length two in the extended version
of S. Hence the number of breakpoints can be reduced by at most two as a result of
such a reversal, and the result follows.

This lemma can be used to easily deduce the following lower bound for reversal
distance.

Theorem 3.2. Let S and T be related binary strings. Then

dr(S, T) ≥ �br(S, T)/2�.
It is easy to find examples for which this lower bound is not tight; e.g., if S =

0011000111 and T = 1110011000, then br(S, T) = 2 and dr(S, T) = 2 �= �br(S, T)/2�.
The definition of a reversal breakpoint for binary strings, together with the bound

of Theorem 3.2, can be generalized in a straightforward way to strings over larger
alphabets.

3.2. An upper bound. In this section we derive a simple upper bound on
reversal distance for binary strings.

Lemma 3.3. Let S and T be related strings of length n such that S �= T . Then it
is possible either

(a) to apply a reversal on S resulting in the string S′, such that
lcp(S′, T) + lcs(S′, T) ≥ lcp(S, T) + lcs(S, T) + 2, or
(b) to apply a reversal on T resulting in the string T ′ such that
lcp(S, T ′) + lcs(S, T ′) ≥ lcp(S, T) + lcs(S, T) + 2.

Proof. Without loss of generality, it can be assumed that S(1) = 0, since otherwise
we could consider S and T and apply the resulting reversal to S or T . Further, it can
be assumed that S(1) �= T (1), and S(n) �= T (n), because otherwise we could reduce
n by removing any common prefix or suffix from both strings.

The reversal applied to S or T depends on S and T . We describe seven cases and
show a reversal with the required property in each case. (Each case is considered only
if S and T fail to meet the conditions of any of the earlier cases, and the cases are
thereby mutually exclusive.)

Case (i). S(n) = 1: then S = 0 . . . 1 and T = 1 . . . 0, so take S′ = [0 . . . 1].
Case (ii). T (2) = 0: then S = 0 . . . 0 and T = 10 . . . 1, so take S′ = [0+1] . . . 0.
Case (iii). T (n − 1) = 0: then S = 0 . . . 0 and T = 11 . . . 01, so, by considering

SR and TR, this case can be dealt with in a similar way to Case (ii).
Case (iv). f11(S) > 0: then S = 0 . . . 11 . . . 0 and T = 11 . . . 11, so take S′ =

[0+(10+)∗11] . . . 0.
Case (v). S(2) = 1: then S = 01 . . . 0 and T = 11 . . . 11, so, by considering T and

S, this case can be dealt with in a similar way to Case (ii).
Case (vi). S(n− 1) = 1: then S = 00 . . . 10 and T = 11 . . . 11, so, by considering

T
R
and S

R
, this case can be dealt with in a similar way to Case (ii).

Case (vii). f00(T) > 0: then S = 00 . . . 00 and T = 11 . . . 00 . . . 11, so, by
considering T and S, this case can be dealt with in a similar way to Case (iv).

This completes the proof because Cases (i)–(iv) can fail to apply only if S contains
more zeros than ones, whereas Cases (i) and (v)–(vii) can fail to apply only if T
contains more ones than zeros.

198 DAVID A. CHRISTIE AND ROBERT W. IRVING

Theorem 3.4. Let S and T be related binary strings of length n. Then

dr(S, T) ≤ n/2�.

Proof. Lemma 3.3 describes a way to increase the combined length of the common
prefix and suffix of S and T by at least two using a single reversal. Therefore a
sequence of n/2� such reversals will be enough to transform S into T .

For example, if S = 010101010 and T = 110000011, then applying reversals as
described in the proof of Lemma 3.3 results in the following sequence of strings:

0 1 [0 1] 0 1 0 1 0
0 1 1 0 0 [1 0 1 0]
0 1 1 0 0 0 [1 0] 1
[0 1 1] 0 0 0 0 1 1
1 1 0 0 0 0 0 1 1

Note that the first reversal found by the proof of Lemma 3.3 is the one that
reverses the first three symbols of T , and so it is the last reversal shown in the
illustration.

3.3. Reversal diameter of Bn. The reversal diameter, Dr(n), of Bn is defined
to be the maximum value of dr(S, T) over all related binary strings S and T of length
n. More formally

Dr(n) = max{dr(S, T) : S, T are related binary strings of length n}.

Lemma 3.5. ∀k ≥ 1, dr(Ek, Ck) = k and dr(0 · Ek, 0 · Ck) = k.
Proof. This follows at once by application of Theorems 3.2 and 3.4 to these

strings.
Theorem 3.6. ∀n ≥ 1, Dr(n) = n/2�.
Proof. This is an immediate consequence of Theorem 3.4 and Lemma 3.5.
Theorem 3.7. Let S and T be related binary strings of length 2n ≥ 6. Then

dr(S, T) = n if and only if S and T are isomorphic to Cn and En.
Proof. We prove this theorem by induction. The base case is when n = 3. Then,

by complete search, it may be verified that dr(S, T) = 3 if and only if S and T are
isomorphic to E3 and C3. Now suppose that the theorem holds when n ≤ k. Let S
and T be strings of length 2k + 2 such that dr(S, T) = k + 1. We show that S and T
are isomorphic to Ck+1 and Ek+1.

By Lemma 3.3, we can apply a reversal to S or T that increases the combined
length of the common prefix and suffix by at least two. Without loss of generality, we
can relabel S and T so that the reversal found in the proof of Lemma 3.3 is applied to
S resulting in the string S′. Furthermore, we can assume, without loss of generality,
that S(1) = 0.

It must be that lcp(S′, T)+ lcs(S′, T) = 2 and dr(S′, T) = k, since any alternative
would contradict dr(S, T) = k+1. Let S′e and Te be the strings S

′ and T excluding any
common prefix and suffix. By the induction hypothesis, S′e and Te must be isomorphic
to Ek and Ck. Therefore, since Ek = Ek

R and Ck = Ck
R, either (a) S′e = Ek and

Te = Ck, or (b) S
′
e = Ck and Te = Ek, or (c) S

′
e = Ek

R and Te = Ck
R, or (d)

S′e = Ck
R and Te = Ek

R.
By the proof of Lemma 3.3 there are essentially three ways that the reversal can

be applied to S, as typified by Cases (i), (ii), and (iv) in that proof. We take each

SORTING STRINGS BY REVERSALS AND BY TRANSPOSITIONS 199

of these three cases in turn and show that for the four possible values of S′e and Te,
dr(S, T) = k + 1 if and only if S and T are isomorphic to Ek+1 and Ck+1.

Case (i). S = 0 . . . 1, T = 1 . . . 0. In this case the whole of S is reversed. We show
that cases (a) and (b) for S′e and Te lead to contradictions, whereas cases (c) and (d)
establish the induction step.

(a) S = 0·EkR ·1 = 0·1k ·0k ·1 and T = 1·Ck ·0 = 1·(10)k ·0. Suppose that instead
of applying the reversal of Lemma 3.3 we apply the reversal [011]1k−2 ·0k ·1 to obtain
S′′. This reversal extends the common prefix by three characters, so dr(S′′, T) < k.
Therefore dr(S, T) < k + 1, a contradiction.

(b) S = 0 · CkR · 1 = 0 · (01)k · 1 and T = 1 · Ek · 0 = 1 · 0k · 1k · 0. These strings
are isomorphic to the strings in (a), so dr(S, T) < k + 1, a contradiction.

(c) S = 0 · Ek · 1 = Ek+1 and T = 1 · CkR · 0 = Ck+1.

(d) S = 0 · Ck · 1 = Ck+1
R and T = 1 · EkR · 0 = Ek+1

R.

Case (ii). S = 0 . . . 0 and T = 10 . . . 1. In this case the reversal results in a string
S′ that has prefix “10.” Therefore S′e and Te must be suffixes of S

′ and T . Now since
T ends with a 1, only cases (b) and (c) need to be considered. Both cases lead to a
contradiction.

(b) S′ = 10 · Ck = 10 · (10)k and T = 10 · Ek = 10 · 0k · 1k. The reversal on S

ends with the first “1” in S, so S = 01 · (10)k. Then the reversal [01101]0 · (10)k−2

produces string S′′ that has dr(S′′, T) < k by the induction hypothesis. Therefore
dr(S, T) < k + 1, a contradiction.

(c) S′ = 10 · EkR = 10 · 1k · 0k and T = 10 · CkR = 10 · (01)k. Therefore
S = 01 · 1k · 0k, because the reversal on S ends with the first “1.” Then the reversal
01·1k−1[10k] results in a string S′′ that has dr(S′′, T) < k by the induction hypothesis.
Therefore dr(S, T) < k + 1, a contradiction.

Case (iv). S = 0 . . . 11 . . . 0 and T = 11 . . . 11. In this case the reversal is applied
to S to obtain a string S′ that has prefix 11. Therefore S′e and Te must be suffixes of
S′ and T . Now, since T ends with “11” only case (b) need be considered. However,
in fact, even this case cannot occur.

(b) S′ = 11 · Ck = 11 · (10)k and T = 11 · Ek = 11 · 0k · 1k. However, then the
reversal on S could not have moved the first “11” substring in S. Therefore this case
cannot occur.

Therefore dr(S, T) = k + 1 if and only if S and T are isomorphic to Ek+1 and
Ck+1. Therefore, by induction, we have proved the theorem.

Theorem 3.7 describes the strings of length n that achieve the reversal diameter
when n is even. When n is odd, significantly more pairs of strings achieve the reversal
diameter.

We note in passing that there appears to be no simple analogue of Lemma 3.3 in
the case of alphabet size > 2 and therefore no easy generalization of Theorem 3.6.

3.4. Sorting by reversals. Let Sı denote the string that is related to S and con-
sists only of a block of zeros, followed by a block of ones. For example, if S = 01100110,
then Sı = 00001111. Then determining dr(S, Sı) is an analogue of determining the
reversal distance of a permutation. We show that dr(S, Sı) can be determined in
polynomial time.

Recall that z(S) denotes the number of blocks of zeros contained in S. Obviously,
z(Sı) = 1 (unless S does not contain any zeros). The following lemma can be verified
easily.

200 DAVID A. CHRISTIE AND ROBERT W. IRVING

Lemma 3.8. Let S′ be a string obtained from S by a single reversal. Then

z(S′) ≥ z(S)− 1.
With this lemma we can determine dr(S, Sı).
Theorem 3.9. For any binary string S,

dr(S, Sı) =

{
z(S)− 1 if S(1) = 0,
z(S) otherwise.

Proof. By Lemma 3.8, dr(S, Sı) ≥ z(S)− 1. If S(1) = 0, then z(S)− 1 reversals
of the form 0+[1+0+]1 . . . or 0+[1+0+] transform S into Sı. If S(1) = 1, then an
extra reversal is required because it is impossible to change the first symbol to a 0
and also reduce the value of z. This bound can be achieved by performing a reversal
[1 . . . 0]1 . . . or [1 . . . 0] before performing z(S) − 1 reversals as described for the case
S(1) = 0.

The distance described in Theorem 3.9 can be calculated easily in polynomial
time. In section 5 it is shown that, in general, determining dr(S, T) is NP-hard.

4. Transposition distance between binary strings. In this section, we pre-
sent an upper bound and a lower bound for transposition distance between binary
strings. These bounds are used to determine the transposition diameter, and identify
some strings that achieve the diameter. A restricted version of the problem, that
is analogous to the problem of sorting by transpositions, is shown to be solvable in
polynomial time.

4.1. A lower bound. Again, it is the appropriate concept of a breakpoint that
is used to obtain a lower bound for transposition distance.

Transposition breakpoints are defined in a similar way to reversal breakpoints. For
example, if S contains more “11” substrings than T , then each extra “11” substring
contributes a breakpoint. However, a crucial difference between reversal breakpoints
and transposition breakpoints is that “01” and “10” substrings are counted separately,
since a transposition cannot transform one to the other. As before, we prepend α and
append ω to each string.

The number of transposition breakpoints is therefore

bt(S, T) =
∑
a,b∈A

δ(fab(S)− fab(T)),

where A = {α, 0, 1, ω} and, as before,
δ(x) = x if x > 0 and 0 otherwise.

Clearly, if S = T , then bt(S, T) = 0. However, it is possible that bt(S, T) = 0,
even when S �= T , for example, if S = 101001 and T = 100101.

Lemma 4.1. Suppose that S′ is obtained from S by a single transposition. Then

bt(S
′, T) ≥

{
bt(S, T)− 3 if S(1) �= S′(1) and S(n) �= S′(n),
bt(S, T)− 2 otherwise.

Proof. The transposition must have the form . . . a[b . . . c][d . . . e]f . . ., where a ∈
{α, 0, 1}, b, c, d, e ∈ {0, 1}, and f ∈ {0, 1, ω}. The transposition results in the string
. . . a[d . . . e][b . . . c]f Now let us suppose that the none of the substrings “ab,” “cd,”

SORTING STRINGS BY REVERSALS AND BY TRANSPOSITIONS 201

or “ef” is the same as any of the substrings “ad,” “eb,” or “cf .” Then “cd”�=“cf ,”
so d �= f . Similarly, c �= a, b �= f , and e �= a. Now suppose that a �= α. Then c = e.
However, then “ef”=“cf”, a contradiction. Similarly if f �= ω, then “ab”=“ad.”
Therefore, if a �= α or f �= ω, then at least one of the substrings “ab,” “cd,” or “ef”
is the same as one of the substrings “ad,” “eb,” or “cf .”

If a transposition moves the first and last symbol of S, then at most three sub-
strings of length two may change as a result of the transposition. Given the definition
of bt(S

′, T), this means that bt(S′, T) ≥ bt(S, T) − 3. However, if a transposition
does not move the first and last symbols of S, then at most two substrings of length
two may change as a result of the transposition. In such cases bt(S

′, T) ≥ bt(S, T)
−2.

Theorem 4.2. Let S and T be related binary strings of length n. Then

dt(S, T) ≥
{ �bt(S, T)/2� if S(1) = T (1), or S(n) = T (n),
�(bt(S, T)− 1)/2� otherwise.

Proof. A sequence of transpositions that transforms S into T can contain at most
one transposition that reduces the number of breakpoints by 3. Such a transposition
is only possible if S(1) �= T (1) and S(n) �= T (n). Every other transposition can
reduce the number of breakpoints by at most 2. The theorem follows easily from
these observations.

As before, it is easy to find examples for which this lower bound is not exact;
for example, if S = 011100110001 and T = 100011001110, then the bound is 1, but
dt(S, T) = 2.

Again, the definition of a transposition breakpoint for binary strings together with
the bound of Theorem 4.2 can be directly extended to strings over larger alphabets.
For alphabets of size > 2, however, each transposition can reduce the number of
breakpoints by 3. Hence the extended version of Theorem 4.2 is as follows.

Theorem 4.3. Let S and T be related strings, of length n, over an alphabet of
size > 2. Then

dt(S, T) ≥ �bt(S, T)/3�.
4.2. An upper bound. In this section a simple upper bound is derived for

transposition distance.
Lemma 4.4. Let S and T be related strings of length n such that S �= T . Then it

is possible either
(a) to apply a transposition to S resulting in a string S′ such that
lcp(S′, T) + lcs(S′, T) ≥ lcp(S, T) + lcs(S, T) + 2 or
(b) to apply a transposition to T resulting in a string T ′ such that
lcp(S, T ′) + lcs(S, T ′) ≥ lcp(S, T) + lcs(S, T) + 2.

Proof. Without loss of generality, it can be assumed that S(1) = 0, S(1) �= T (1),
and S(n) �= T (n). The transposition that is applied to S or T depends on S and
T . Three cases are described, and for each case a transposition is shown with the
required property. (Again, each case is considered only if S and T fail to meet the
conditions of any earlier case, making the cases mutually exclusive.)

Case (i). S(n) = 1: then S = 0 . . . 1 and T = 1 . . . 0, so take S′ = [0+][1 . . .].
Case (ii). f11(S) > 0: then S = 0 . . . 11 . . . 0 and T = 1 . . . 1, so take S′ =

[0+(10+)
∗
1][1 . . . 0].

Case (iii). f11(S) = 0 and f00(T) > 0: then S = 0 . . . 0 and T = 1 . . . 00 . . . 1, so,
by considering T and S, this case is similar to Case (ii).

202 DAVID A. CHRISTIE AND ROBERT W. IRVING

This completes the proof because Cases (i) and (ii) can fail to apply only if S
contains more zeros than ones, whereas Cases (i) and (iii) can fail to apply only if T
contains more ones than zeros.

Theorem 4.5. Let S and T be related binary strings of length n. Then

dt(S, T) ≤ n/2�.
Proof. Lemma 4.4 describes a way to increase the combined length of the common

prefix and suffix of S and T by at least two using a single transposition. Therefore a
sequence of n/2� such transpositions will be enough to transform S into T .

4.3. Transposition diameter of Bn. The transposition diameter, Dt(n), of
Bn is the maximum value of dt(S, T) taken over all related binary strings of length n.
More formally

Dt(n) = max{dt(S, T) : S, T are related binary strings of length n}.
Lemma 4.6. ∀k ≥ 1, dt(Ek, Ck) = k and dt(0 · Ek, 0 · Ck) = k.
Proof. Both cases follow at once by application of Theorems 4.2 and 4.5.
Theorem 4.7. ∀n ≥ 1, Dt(n) = n/2�.
Proof. This is an immediate consequence of Theorem 4.5 and Lemma 4.6.
Theorem 4.8. Let S and T be related binary strings of length 2n ≥ 4. Then

dt(S, T) = n if and only if S and T are isomorphic to Cn and En.
Proof. We prove this theorem by induction. The base case is when n = 2. Then,

by complete search, it may be verified that dt(S, T) = 2 if and only if S and T are
isomorphic to E2 and C2. Now suppose that the theorem holds when n ≤ k. Let S
and T be strings of length 2k + 2 such that dt(S, T) = k + 1. We show that S and T
are isomorphic to Ck+1 and Ek+1.

By Lemma 4.4 we can apply a transposition to S or T that increases the combined
length of the common prefix and suffix by at least two. Without loss of generality,
we can relabel S and T so that the transposition found in the proof of Lemma 4.4 is
applied to S resulting in the string S′. Furthermore, we can assume, without loss of
generality, that S(1) = 0.

It must be that lcp(S′, T)+ lcs(S′, T) = 2 and dt(S′, T) = k, since any alternative
would contradict dt(S, T) = k + 1. Let S′e and Te be the strings S

′ and T excluding
any common prefix and suffix. By the induction hypothesis, S′e and Te must be
isomorphic to Ek and Ck. Therefore, either (a) S

′
e = Ek and Te = Ck, or (b) S

′
e = Ck

and Te = Ek, or (c) S
′
e = Ek

R and Te = Ck
R, or (d) S′e = Ck

R and Te = Ek
R.

By the proof of Lemma 4.4, there are essentially two ways that the transposition
can be applied to S, as typified by Cases (i) and (ii) in that proof. We take each case
in turn and show that for the four possible values of S′e and Te, dt(S, T) = k + 1 if
and only if S and T are isomorphic to Ek+1 and Ck+1.

Case (i). S = 0 . . . 1, T = 1 . . . 0. In this case the transposition moves the block
of zeros at the front of S to the end. We show that cases (c) and (d) for S′e and Te
establish the induction step, whereas cases (a) and (b) lead to contradictions.

(a) S′ = 1 · Ek · 0 = 1 · 0k · 1k · 0 and T = 1 · Ck · 0 = 1 · (10)k · 0. Therefore
S = 01 · 0k · 1k. However, then the transposition 0[100][0k−2 · 1k] produces a string
S′′ such that dt(S′′, T) < k by the induction hypothesis. Therefore dt(S, T) < k + 1,
giving a contradiction.

(b) S′ = 1 · Ck · 0 = 1 · (10)k · 0 and T = 1 · Ek · 0 = 1 · 0k · 1k · 0. Then
S = 001·(10)k−1 ·1. However, then the transposition [001·(10)k−1

][1] produces a string

SORTING STRINGS BY REVERSALS AND BY TRANSPOSITIONS 203

S′′ such that dt(S′′, T) < k by the induction hypothesis. Therefore dt(S, T) < k + 1,
giving a contradiction.

(c) S′ = 1 · EkR · 0 = Ek+1
R and T = 1 · CkR · 0 = Ck+1. Therefore S = Ek+1.

(d) S′ = 1 · CkR · 0 = Ck+1 and T = 1 · EkR · 0 = Ek+1
R. Therefore S = Ck+1

R.
Case (ii). S = 0 . . . 11 . . . 0, T = 1 . . . 1. In this case the transposition applied to S

to obtain S′ is of the form [0+(10+)∗1][1 . . . 0]. Note that this transposition splits the
first occurrence of “11” in S. Note also that S′ must contain “00” and end with “01,”
so only Case (c) needs to be considered. However, this cases leads to contradiction.

(c) S′ = 1 · EkR · 1 = 1 · 1k · 0k · 1 and T = 1 · CkR · 1 = 1 · (01)k · 1. Then
S = 0+ · 1k+2 · 0+. However, the transposition 0+ · 1k[11][0+] produces a string S′′
such that dt(S

′′, T) < k by the induction hypothesis. Therefore dt(S, T) < k + 1,
giving a contradiction.

Therefore dt(S, T) = k + 1 if and only if S and T are isomorphic to Ek+1 and
Ck+1. Therefore by induction the theorem is true.

Again, we note that there appears to be no direct analogue of Lemma 4.4 when
the alphabet size is > 2 and therefore no easy generalization of Theorem 4.7.

4.4. Sorting by transpositions. We show that dt(S, Sı) can be determined in
polynomial time. The following lemma can be verified easily.

Lemma 4.9. Let S′ be a string obtained from S by a single transposition. Then

z(S′) ≥ z(S)− 1.

With this lemma we can determine dt(S, Sı).
Theorem 4.10. For any binary string S,

dt(S, Sı) =

{
z(S)− 1 if S(1) = 0,
z(S) otherwise.

Proof. By Lemma 4.9, dt(S, Sı) ≥ z(S) − 1. If S(1) = 0, then z(S) − 1 trans-
positions of the form 0+[1+][0+]1 . . . or 0+[1+][0+] transform S into Sı. If S(1) = 1,
an extra transposition is required, because it is impossible to change the letter at the
front of the string to 0 with a transposition and also reduce the value of z. The bound
in this case can be achieved by performing the transposition [1+][0+]1 . . . or [1+][0+],
followed by the sequence of transpositions used when S(1) = 0.

The distance described in Theorem 4.10 can be calculated easily in polynomial
time. The question of whether, in general, the transposition distance between any
two strings can be calculated in polynomial time remains open.

5. NP-completeness of reversal distance. In this section, we prove that the
general problem of finding the reversal distance between two related strings is NP-
hard, even if the strings are drawn from a binary alphabet. We begin with a definition
of the reversal distance problem as a decision problem (RD):

RD
Instance: Related strings S and T of length n, over an alphabet of
size t ≥ 2, and a bound d ∈ Z+.
Question: Is dr(S, T) ≤ d?

The proof consists of a pseudopolynomial transformation from 3-Partition to RD.
The definition of 3-Partition is as follows:

3-Partition
Instance: A set A of 3m elements, a bound B ∈ Z+, and a size

204 DAVID A. CHRISTIE AND ROBERT W. IRVING

s(a) ∈ Z+ for each a ∈ A such that B/4 < s(a) < B/2 and such that∑
a∈A s(a) = mB.

Question: Can A be partitioned into m disjoint sets A1, A2, . . . , Am,
such that, for 1 ≤ i ≤ m,

∑
a∈Ai

s(a) = B? (Note that each Ai must
contain exactly three elements from A.)

Garey and Johnson [9] (see also Chapter 4.2 of [10]) have proved that 3-Partition
is NP-complete (in the strong sense). Therefore a pseudopolynomial transformation
from 3-Partition to RD is enough to prove that RD is NP-complete.

Theorem 5.1. RD is NP-complete, even when t = 2.

Proof. RD is in NP because, given a sequence of reversals, it can easily be checked
in polynomial time that the sequence transforms S into T and has length at most d.
We now describe the pseudopolynomial transformation from 3-Partition to RD.

Let I be an instance of 3-Partition. From this instance construct an instance, I ′,
of RD with S = (

∑3m−1
i=1 0s(ai)13) · 0s(a3m), T = (0B1)m · 18m−3, and d = 3m − 1.

Therefore the blocks of zeros in S represent elements of A and the lengths of the
blocks represent the sizes of the elements.

We first show that dr(S, T) ≥ 3m− 1.
Let U be a string that is related to S and T . Recall that z(U) is the number

of blocks of zeros in the string U . Define o(U) as the number of blocks of ones of
length one in U . Then the function f(U) = z(U) − o(U) − 1 can be viewed as a
kind of distance function between strings U and T , since f(T) = 0. Furthermore,
f(S) = 3m− 1. We show that, if U ′ is obtained from U by applying a single reversal,
then f(U ′) ≥ f(U)− 1.

Suppose that ρ is a reversal that transforms U into U ′ with f(U ′) < f(U). Then
ρ must reduce the number of blocks of zeros or increase the number of blocks of ones
of length one.

If ρ reduces the number blocks of zeros, then it must have the form . . . 1[0 . . . 1]0 . . .
or . . . 0[1 . . . 0]1 . . ., and therefore f(U) − f(U ′) = 1. Therefore it is impossible for ρ
to increase the number of blocks of ones of length one as well as reduce the number
of blocks of zeros.

If ρ increases the number of blocks of ones of length one, then it must be of
the form . . . 01[10 . . . 0]0 . . ., or . . . 1[10 . . . 11]0 . . ., or . . . 01[1 . . . 0]11 . . ., or the mir-
ror image of one of these three reversals. (Note the reversals . . . 01[11 . . . 0]0 . . . and
. . . 11[10 . . . 0]0 . . . do not reduce the value of f .) In each case f(U) − f(U ′) = 1.
Therefore dr(S, T) ≥ 3m− 1.

Note that the first reversal in the previous paragraph is special because it increases
the number of blocks of length one by two but also increases the number of blocks of
zeros. We call this kind of reversal a bad reversal.

We now show that the given transformation from 3-Partition to an instance of
RD is a pseudopolynomial transformation. To do so we have to verify four standard
properties of a pseudopolynomial transformation [10, p. 101]. We verify these four
properties in turn.

For property (a), we have to show that I is a yes instance of 3-Partition if and
only if dr(S, T) ≤ 3m− 1.

We have already shown that dr(S, T) ≥ 3m− 1. We now show that if dr(S, T) =
3m−1, then no minimal length sequence of reversals that transforms S into T contains
a bad reversal.

Suppose that dr(S, T) = 3m−1. Every reversal in a minimal length sequence that
transforms S into T must reduce the value of f by one. For a reversal to be bad the

SORTING STRINGS BY REVERSALS AND BY TRANSPOSITIONS 205

string must contain 0110 as a substring. However, S contains no such substring, and
no reversal that reduces the value of f by one can create such a substring. Therefore
if dr(S, T) = 3m− 1, then no minimal length sequence of reversals that transforms S
into T contains a bad reversal.

This means that if dr(S, T) = 3m − 1, each block of zeros in T is constructed
from three blocks of zeros in S. It follows that I is a yes instance of 3-Partition if
dr(S, T) = 3m− 1.

Now we show that if I is a yes instance of 3-Partition, then dr(S, T) ≤ 3m − 1.
Since I is a yes instance, we can partition A into m disjoint sets A1, . . ., Am, each
of which contains three elements and sums to B. For each subset Ai in turn, we
can use two reversals of the form . . . 0[1 . . . 0]a . . ., where a ∈ {1, ω} (where ω is the
special character used to denote the end of the string) to merge the three blocks of
zeros representing the elements of Ai into a single block of zeros of length B without
affecting any other block of zeros. (Note that the reversals shown do not move the
block of zeros at the front of the string.) Then we can use m − 1 reversals of the
form . . . 01[11 . . . 0]1 . . . to create blocks of ones of length one separating the blocks
of zeros. This sequence of reversals has length 3m − 1, so dr(S, T) ≤ 3m − 1. This
establishes the required property (a).

To prove properties (b), (c), and (d) we need Length and Max functions for
3-Partition and RD. For 3-Partition, reasonable definitions are Length(I) = |A| +∑
a∈A�log2 s(a)� and Max(I) = max{s(a) : a ∈ A}. For RD, reasonable definitions

are Length′(I ′) = 2n+�log2 d� and Max′(I ′) = 1 (since RD is not a number problem).
Note that n =

∑
a∈A s(a) + |A| − 3. Given these functions, the required properties

can be proved quite easily.
Therefore the transformation is a pseudopolynomial transformation and therefore

RD is NP-complete.
The transformation just described was obtained after several other simpler trans-

formations had been shown to fail. An example is a potential transformation from
sorting by reversals to RD. Given a permutation π, define strings S = (

∑n−1
i=1 0

π(i)1) ·
0π(n) and T = (

∑n−1
i=1 0

i1) · 0n. One might conjecture that determining the value
of dr(S, T) must also determine the value of dr(π). However, if π = 3142, then
dr(π) = 3, but S = 0001010000100, T = 0100100010000, and dr(S, T) = 2. Therefore
this transformation does not work.

6. Conclusion. In this paper we have shown that, just as sorting permutations
by reversals is NP-hard, so also is finding the reversal distance between two strings,
even when the strings are drawn from a binary alphabet. We have derived lower and
upper bounds for the reversal distance between binary strings and used these to find
the reversal diameter of Bn.

The complexity of finding the transposition distance between two strings remains
open, just as the complexity of sorting permutations by transpositions is open. We
have also derived lower and upper bounds for the transposition distance between
binary strings and used these to find the transposition diameter of Bn. This contrasts
with the problem of transposition diameter for permutations, which is unresolved.

In [6], Christie introduces the problem of sorting by block-interchanges. A block-
interchange is similar to a transposition, except that the substrings that are swapped
need not be adjacent. Christie proved that this problem could be solved in polynomial
time. When extended to strings, however, it can be shown [8] in a manner similar to
that used in the proof of Theorem 5.1 that the block-interchange distance problem is
NP-hard, even when the strings are drawn from a binary alphabet.

206 DAVID A. CHRISTIE AND ROBERT W. IRVING

REFERENCES

[1] V. Bafna and P. A. Pevzner, Genome rearrangements and sorting by reversals, SIAM J.
Comput., 25 (1996), pp. 272–289.

[2] V. Bafna and P. A. Pevzner, Sorting by transpositions, SIAM J. Discrete Math., 11 (1998),
pp. 224–240.

[3] P. Berman and S. Hannenhalli, Fast sorting by reversals, in Combinatorial Pattern Match-
ing, Lecture Notes in Comput. Sci. 1075, Springer, Berlin, 1996, pp. 168–185.

[4] A. Caprara, Sorting by reversals is difficult, in Proceedings of the First International Con-
ference on Computational Molecular Biology (RECOMB’97), ACM Press, Santa Fe, NM,
1997, pp. 75–83.

[5] A. Caprara, Sorting permutations by reversals and Eulerian cycle decompositions, SIAM J.
Discrete Math., 12 (1999), pp. 91–110.

[6] D. A. Christie, Sorting permutations by block-interchanges, Inform. Process. Lett., 60 (1996),
pp. 165–169.

[7] D. A. Christie, A 3/2-approximation algorithm for sorting by reversals, in Proceedings of
the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, 1998,
pp. 244–252.

[8] D. A. Christie, Genome Rearrangement Problems, Ph.D. thesis, Department of Computing
Science, University of Glasgow, Glasgow, Scotland, 1998.

[9] M. R. Garey and D. S. Johnson, Complexity results for multiprocessor scheduling under
resource constraints, SIAM J. Comput., 4 (1975), pp. 397–411.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.

[11] S. Hannenhalli and P. A. Pevzner, Transforming cabbage into turnip (polynomial algorithm
for sorting signed permutations by reversals), in Proceedings of the 27th Annual ACM
Symposium on Theory of Computing, Las Vegas, 1995, pp. 178–189.

[12] S. Hannenhalli and P. A. Pevzner, Transforming cabbage into turnip: polynomial algorithm
for sorting signed permutations by reversals, J. ACM, 46 (1999), pp. 1–27.

[13] H. Kaplan, R. Shamir, and R. E. Tarjan, Faster and simpler algorithm for sorting signed
permutations by reversals, in Proceedings of the Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, New Orleans, 1997, pp. 344–351.

[14] J. Kececioglu and D. Sankoff, Exact and approximation algorithms for sorting by reversals,
with application to genome rearrangement, Algorithmica, 13 (1995), pp. 180–210.

THE WAKEUP PROBLEM IN SYNCHRONOUS BROADCAST
SYSTEMS∗

LESZEK GA̧SIENIEC† , ANDRZEJ PELC‡ , AND DAVID PELEG§

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 2, pp. 207–222

Abstract. This paper studies the differences between two levels of synchronization in a dis-
tributed broadcast system (or a multiple-access channel). In the globally synchronous model, all
processors have access to a global clock. In the locally synchronous model, processors have local
clocks ticking at the same rate, but each clock starts individually when the processor wakes up.

We consider the fundamental problem of waking up all n processors of a completely connected
broadcast system. Some processors wake up spontaneously, while others have to be woken up. Only
awake processors can send messages; a sleeping processor is woken up upon hearing a message. The
processors hear a message in a given round if and only if exactly one processor sends a message in
that round. Our goal is to wake up all processors as fast as possible in the worst case, assuming an
adversary controls which processors wake up and when. We analyze the problem in both the globally
synchronous and locally synchronous models with or without the assumption that n is known to the
processors. We propose randomized and deterministic algorithms for the problem, as well as lower
bounds in some of the cases. These bounds establish a gap between the globally synchronous and
locally synchronous models.

Key words. broadcast, clock, synchronous, wakeup

AMS subject classifications. 68W15, 68W20

PII. S0895480100376022

1. Introduction.

1.1. The problem. This paper focuses on the effects of the level of synchroniza-
tion required in broadcast systems (or multiple-access channels) such as the Ethernet.
The communication system is assumed to be synchronous, namely, processors send
messages in rounds. As the communication channel is shared by all processors, mes-
sages might collide. It is assumed that the processors succeed in hearing a message
in a given round if and only if exactly one processor sends a message in that round;
if more than one processor, or none of them, sends a message in that round, then
nobody hears anything. Hence the communication model is equivalent to the radio
model; cf. [1, 2, 5, 6, 7, 8, 9, 10, 14, 18, 19, 20, 22] in a complete graph without
collision detection. As pointed out in [3], which studied the relationships between
radio networks with and without collision detection, the absence of collision detection
characterizes noisy networks since the noise does not allow processors to distinguish
no transmission from multitransmission.

∗Received by the editors August 1, 2000; accepted for publication (in revised form) January
19, 2001; published electronically April 3, 2001. A preliminary version of this paper appeared in
Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing, Portland,
OR, 2000, pp. 113–121.

http://www.siam.org/journals/sidma/14-2/37602.html
†Department of Computer Science, The University of Liverpool, Liverpool L69 7ZF, United King-

dom (leszek@csc.liv.ac.uk).
‡Département d’Informatique, Université du Québec à Hull, Hull, Québec J8X 3X7, Canada

(Andrzej Pelc@uqah.uquebec.ca). The research of this author was supported in part by NSERC
grant OGP 0008136. This research was done during the author’s stay at the University of Liverpool.

§Department of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot
76100, Israel (peleg@wisdom.weizmann.ac.il). The research of this author was supported in part by
grants from the Israel Ministry of Science and Art.

207

208 LESZEK GA̧SIENIEC, ANDRZEJ PELC, AND DAVID PELEG

Evidently, the possibility of collisions makes broadcast systems harder to coordi-
nate and control than standard point-to-point message passing systems, and perform-
ing even simple tasks poses serious difficulties. A central problem in such systems
is therefore to establish a pattern of access to the shared communication media that
will allow messages to go through with as little interruption as possible, i.e., avoid (or
efficiently resolve) message collisions.

This problem is somewhat easier if the processors are required to be constantly
attentive to the communication channel. This enables the system to use, for instance,
round-robin based access protocols, as well as other schemes based on the processors
being fully synchronized at all times. However, it is often desirable to allow a processor
to stop being “alert” on the communication channel, whenever there is no traffic
currently being transmitted on the channel, and the processor itself does not wish
to send a message. From the point of view of the communication system, such a
processor switches from “alert” to “sleeping,” until such time as its participation
is required again. Clearly, allowing processors to “sleep” entails a certain loss of
synchronization, which must be regained when the processors become alert again and
wish to communicate. This loss of synchronization and its effects are at the focus of
the current study.

Specifically, in this paper we consider the fundamental problem of waking up all of
n processors, numbered 1, . . . , n, in a completely connected broadcast system. Some
processors wake up spontaneously, in different rounds, while the others have to be
woken up. Only awake processors can send messages. A sleeping processor wakes up
upon hearing a message. This will happen on the first “successful” round, namely,
the first round when exactly one processor sends a message.

We consider two settings of measuring time. In the first setting, termed the
globally synchronous model, all processors have access to a global clock showing the
current round number. The global clock is always available, and when a processor
wakes up it can immediately see the current round number. The clock thus counts
round numbers globally for all processors, starting in round 1. In the second setting,
termed the locally synchronous model, each processor has a local clock. All local clocks
tick at the same rate, one tick per round. However, no global count is available, and
the local clock of processor i starts counting rounds in the round in which processor
i wakes up. Moreover, in each of the above settings, we distinguish the situation
when the size n of the system is known to all processors and the situation when n is
unknown.

Our goal is to construct algorithms for waking up all processors as fast as possible
via a multiple-access channel. We focus on the worst case, when an adversary controls
which processors wake up spontaneously and when. The time complexity of the
wakeup process is measured by the number of rounds elapsing from the time the first
processor wakes up (spontaneously) and the time all processors are woken up (i.e.,
the first successful round).

During the execution, each of the processors is active (sends a message) in some
rounds and idle in the others. The rounds in which a processor i is active are decided
by a local protocol Πi. The protocol Πi can be thought of as generating a binary
activation sequence αi, designating the activation times of processor i. Specifically, if
the sequence contains 1 in its tth position, i.e., αi[t] = 1, then processor i is required
to be active on the tth round after it wakes up; conversely, αi[t] = 0 means i must
remain silent.

The protocols Πi used by the processors may assume any one of a number of

WAKEUP PROBLEM IN SYNCHRONOUS BROADCAST SYSTEMS 209

forms. In the current paper we distinguish between the following types of algorithms.
The simplest and most rigid type of protocol is what is hereafter referred to as a fixed
schedule. It is specified by a predefined (and sufficiently long) activation sequence αi
for each processor i. The sequence αi is constructed for each processor i in advance by
a preprocessing algorithm Πpre and is stored at its local memory. Once the processor
i wakes up, it starts following its activation sequence αi without deviation, regardless
of any other parameters or inputs it may have. We refer to the set of sequences
A = {α1, . . . , αn} of the fixed schedule as the activation set of the system. Observe
that using a fixed schedule makes the adversary rather powerful (in a manner of
speaking), as it can use this knowledge in order to decide on its waking strategy.

Alternatively, the protocol Πi may be an online distributed protocol, which is
invoked locally by processor i upon waking up and starts generating the activation
sequence αi online. Such a protocol may be either deterministic or randomized.

Note that in the locally synchronous model there is no difference between a fixed
schedule and a deterministic online algorithm; in both, the activation sequence αi
used by processor i is unique in all executions. This is no longer the case in the
globally synchronous model, where in different executions, processor i may wake up
on different rounds and may use the global round number as input to the algorithm Πi,
thus generating different sequences. Nevertheless, it is clear that even in the globally
synchronous model, the adversary has complete knowledge of the activation sequences,
as it controls the spontaneous wakeup time of the processors. The situation is radically
different once we consider randomized protocols, as in this setting the adversary is
prevented from knowing the activation sequences in advance.

1.2. Related work. Multiple-access channels, including systems such as the
Aloha multiaccess system, the local area Ethernet network, multitapped buses, satel-
lite communication systems, and packet radio networks, have been studied extensively
in the literature (see [4, 23] and the references therein). Some of these models (in par-
ticular the Ethernet) assume an intermediate model of collision detection, which is not
discussed here, in which the transmitting processor detects the fact that its message
has collided. This feature naturally simplifies the wakeup problem.

Collision detection and resolution, as well as access management algorithms for
multiple-access channels, were studied mainly in the queueing theory model, i.e.,
assuming a probability distribution on the arrival rate of messages at the different
processors; cf. [4, 17, 16, 15]. Also, the wakeup problem was not considered as such
in these contexts, although the complications that arise are similar. (The wakeup
problem has been studied in a number of other contexts within the area of distributed
systems; see, for example, [11, 13, 21], but the issues and techniques are naturally
different, given the radically different communication model.)

The broadcast operation in multihop radio networks was studied in [1, 2, 5, 6, 9,
10]. The model used in those papers is based on one of two assumptions, namely, either
there is a single source initiating the process, or all processors wake up spontaneously
at time 0. Hence the starting point for the broadcast problem assumes that the
wakeup problem, dealt with here, has already been solved. Nevertheless, there are
strong links between the models.

Our model is closely related to certain restricted forms of concurrent write PRAM
models. See, for example, [12].

To the best of our knowledge, the current paper is the first attempt to provide
worst-case time bounds (against an adversary) for the wakeup problem in the syn-
chronous setting.

210 LESZEK GA̧SIENIEC, ANDRZEJ PELC, AND DAVID PELEG

1.3. Our results. We begin by showing that in the globally synchronous model,
where all processors have access to a global clock, optimal deterministic wakeup time
is exactly n in the worst case if the size n is known to all processors. We also show
a randomized online algorithm that operates in time O(log n · log(1/ε)) and succeeds
in waking up the system with probability at least 1− ε under the same assumptions.
In the case of unknown n we construct a deterministic wakeup algorithm working in
worst-case time 4n.

Under the locally synchronous model with known n, we construct a randomized
online algorithm that operates in time O(n log(1/ε)) and succeeds in waking up the
system with probability at least 1− ε. On the other hand, we construct a O(n2 log n)
deterministic wakeup algorithm. We also show that even when n is known, every
deterministic wakeup algorithm requires worst-case time at least (1 + ε)n for some
ε > 0. This establishes a gap in efficiency between the locally and globally synchronous
models. Finally, still in the locally synchronous model with known n, we prove (non-
constructively) the existence of a fixed schedule with wakeup time O(n log2 n).

Under the weakest assumptions, namely, in the locally synchronous model without
the knowledge of n, we present two wakeup algorithms. The first is a randomized
online algorithm which succeeds in waking up the system in time O(n2 log(1/ε)) with
probability at least 1− ε; the second is a deterministic wakeup algorithm working in
time O(n4 log5 n).

2. The globally synchronous model. In this section we consider the globally
synchronous model, where a global clock is available to all processors, and every round
has a global number which is known to all currently awake processors.

2.1. Known system size. We first consider the case when the number of pro-
cessors, n, is known to all of them. In this simplest case we have tight upper and
lower bounds on the time required for waking up the system deterministically.

Theorem 2.1. If a global clock is available, the processors are labeled {1, . . . , n}
and the number n of processors is known to all of them, then there exists a determin-
istic online algorithm for waking up the system in time n in the worst case.

Proof. Every processor sends a message only once after waking up in the earliest
round whose number (modulo n) is equal to its label minus 1. Thus in each round
at most one processor sends a message. Clearly every processor sends a message at
most n rounds after waking up.

Theorem 2.2. The worst-case minimum time to wake up an n-processor system
by either a deterministic online algorithm or a fixed schedule is at least n, even if a
global clock is available and the number n of processors is known to all of them.

Proof. In order to prove the lower bound, consider an algorithm that guarantees
wakeup time k < n in the worst case. We show that this leads to a contradiction
by presenting an adversary that wakes up a certain nonempty subset of processors in
round 1 and prevents any processor from being the only sender of a message in any
round until round k.

The adversary constructs a sequence R0, . . . , Rk of sets of integers as follows. Let
R0 = {1, . . . , n}. Suppose that Rj is already constructed. Let Sj be the set of those
integers i ∈ Rj for which there exists a round r ≤ k such that i is the only processor
in Rj with the following property: it sends a message in round r if it wakes up in
round 1. Let Rj+1 = Rj \ Sj .

It follows from the construction that the union of all sets Sj , j < k, has size at
most k. Since k < n, it follows that Rk is nonempty. The adversary wakes up all

WAKEUP PROBLEM IN SYNCHRONOUS BROADCAST SYSTEMS 211

processors from the set Rk in round 1. By definition of Rk, in any round r ∈ {1, . . . , k}
either none or at least two processors send messages.

We next show that the problem can be solved by a polylogarithmic time random-
ized online algorithm.

Algorithm Repeated-Decay. The algorithm makes use of a variant of the pro-
cedure Decay presented in [2] for performing broadcast. The procedure assumes that
all processors wake up at time 0, and some 1 ≤ d ≤ n processors contend on finding
a free time slot and broadcasting their message. Each of the d contending processors
repeatedly performs the following, up to a maximum of k = 2�log n	 rounds. In each
round it broadcasts a wakeup message and then flips a fair coin. If the outcome of
the coinflip is 0, then it quits the procedure.

To adapt the procedure to our setting, we partition the time axis into consecutive
blocks of k rounds each and repeatedly execute procedure Decay in each block of
rounds. A processor waking up spontaneously on some round t must remain silent
until the end of the current block and may start participating in procedure Decay
only at the beginning of the next block. Hence all currently awake processors execute
procedure Decay in an aligned manner.

Theorem 2.3. If a global clock is available and the number n of processors
is known to all of them, then the randomized algorithm Repeated-Decay succeeds in
waking up the system in time O(log n · log(1/ε)) with probability at least 1− ε.

Proof. It is shown in [2] that in a single invocation of procedure Decay, with
probability at least 1/2, there will be a successful round in which exactly one of the
contending processors will broadcast. (Intuitively, the reason can be thought of as
follows. Roughly half of the contenders quit after each round. Therefore there will
likely be one or two final rounds in the phase, roughly after log d rounds, in which
the number of participating contenders is small, say, one or two. On those rounds,
there’s a good chance of success.)

Consequently, the probability that k repeated invocations of the procedure will
fail to wake up the system is at most 1/2k. It follows that within log(1/ε) time blocks
from the time the first processor woke up spontaneously, the system will be woken up
with probability at least 1− 1/2log(1/ε) = 1− ε.

2.2. Unknown system size. If the number of processors is not known to any
of them but the global clock is available, it is still possible to wake up the system by
a deterministic online algorithm in linear time.

Algorithm Interleave. For any positive integer i, partition the set of all rounds
into segments Ri1, R

i
2, . . . of length 2i, starting from round 1, i.e., Rij = {(j − 1)2i +

1, . . . , j · 2i}. Consider the following schedule. Nodes 1 and 2 send messages, respec-
tively, in the first and second round of each segment R1

j of length 2. Nodes 3 and
4 send messages, respectively, in the first and second round of each odd segment of
length 2, i.e., R1

j for odd j. Nodes 5, 6, 7, and 8 send messages, respectively, in the

first, second, third, and fourth round of odd segments of length 4, i.e., R2
j for odd

j. In general, for any i > 0, processors 2i + 1, . . . , 2i+1 send messages in consecutive
rounds of odd segments of length 2j , i.e., Rij for odd j.

Figure 2.1 illustrates the schedule. Note that in the set Sj = {i1 < i2 < · · ·} of
nodes transmitting on any given round j, the node numbers grow at least exponen-
tially, i.e., il+1 ≥ 2il for every l ≥ 1.

Theorem 2.4. For an n-processor system, if a global clock is available, then the
deterministic online algorithm Interleave succeeds in waking up the system in time at

212 LESZEK GA̧SIENIEC, ANDRZEJ PELC, AND DAVID PELEG

9 10 11 12 13 14 15 16 9 10

3 4 3 4 3 4 3 4 3 4

5 6 7 8 5 6 7 8 5 6

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig. 2.1. The schedule used by algorithm Interleave. Each node i is listed on all rounds in
which it transmits.

most 4n, even when the number n of processors is not known to any of them.
Proof. Suppose that 2k < n ≤ 2k+1, and let r′ be the round when the first

processor is woken up. Let r ≤ r′ + 2k+1 be the first round in which any processor
sends a message. Let S ⊆ {1, . . . , n} be the set of all processors woken up by the
adversary. We will show that some processor in S is the only one to send a message
in a round j ≤ r + 2k+1 < r′ + 4n.

Let x1 be the largest processor sending a message in round r. If no other processor
sends a message in round r, we are done. Otherwise, let x2 < x1 be the largest
such processor different from x1. We have x2 ≤ 2k. Consequently, in some round
r2 ≤ r + 2k, x2 is the largest processor that sends a message. If no other processor
sends a message in round r2, we are done. Otherwise, let x3 < x2 be the largest
such processor different from x2. We have x3 ≤ 2k−1. Consequently, in some round
r3 ≤ r + 2k + 2k−1, x3 is the largest processor that sends a message. Using this
reasoning inductively, we conclude that there is a round j ≤ r + 2k+1 < r′ + 4n in
which exactly one processor in S sends a message. (Indeed, if processor 1 or processor
2 is the largest one to send a message in a round, it is also unique.)

3. The locally synchronous model with known n. In this section we con-
sider the locally synchronous model, where only local (equal rate) clocks are available
at processors, and the local clock of each processor starts measuring time on the round
when the processor wakes up. We assume that the size n of the system is known to
all processors. In section 3.1 we present a randomized algorithm for the problem. We
then turn to fixed schedules. Following section 3.2, which provides some necessary
terminology, in section 3.3 we present a deterministic wakeup algorithm, section 3.4
describes a randomized schedule construction algorithm, and section 3.5 establishes a
lower bound on wakeup time with a fixed schedule.

3.1. Randomized online algorithm. Consider the following straightforward
randomized algorithm.

Algorithm Rand-Try. Upon waking up spontaneously, each processor performs
the following in each round. It randomly sets a bit

b←R

{
1 with probability 1/n,
0 with probability 1− 1/n.

If the outcome is b = 1, then it broadcasts a wakeup message.
Theorem 3.1. If the number n of processors is known to all of them, then the ran-

domized algorithm Rand-Try succeeds in waking up the system in time O(n log(1/ε))

WAKEUP PROBLEM IN SYNCHRONOUS BROADCAST SYSTEMS 213

with probability at least 1− ε.
Proof. Let W(t) denote the event of a successful wakeup in a round t in which k

processors are awake. The success probability of this event is

P(W(t)) =

(
1− 1

n

)k−1

· 1
n
· k ≥

(
1− 1

n

)n
· 1
n
≥ 1

2en
.

Hence the probability that none of the first �2en ln(1/ε)	 rounds succeed is at most

P

(⋂
r∈R
W(t)

)
≤
(

1− 1

2en

)2en ln(1/ε)

≤ (1/e)ln(1/ε) = ε.

Hence after O(n log(1/ε)) from the time the first processor woke up spontaneously,
the system will be woken up with probability at least 1− ε.

3.2. Fixed schedules. Throughout the remainder of this section, we concen-
trate on fixed schedules (including deterministic algorithms as a special case). Let
us begin by introducing some necessary terminology concerning activation sequences
and executions. To begin with, note that each processor i may wake up and start
its activation sequence αi at a different time pi (controlled by the adversary). As we
start counting time from the round in which the first processor wakes up, at least one
processor i must have pi = 0. A sequence αi is said to be aligned if it starts at time
pi = 0.

The resulting set of start-time assignments for the processors is denoted P =
{(i, pi) | 1 ≤ i ≤ n}. Given such a set P , it is possible to view each sequence αi as
shifted to the right by pi positions, and padded by zeros at the left, thus yielding some
actual activation sequence αPi which is the actual sequence governing the actions of
processor i in the execution corresponding to P . Hence when we talk hereafter about
bit position t of the sequence αi under the shift pattern P , we actually look at αPi [t],
the tth bit of the sequence αPi , or equivalently at αi[t − pi], the (t − pi)th bit of the
original sequence αi (if t < pi, then this bit is zero by default).

The set P is henceforth referred to as the shift pattern of the execution. Later on
we will also consider partial shift patterns, specifying the start-times for only some
of the activation sequences, i.e., P = {(ij , pij) | 1 ≤ j ≤ k} for some k < n. For
an activation set A and a shift pattern P , the set of shifted activation sequences
resulting from applying P to A is denoted by AP = {αPi | αi ∈ A}. Recall that every
shifted activation set AP must contain at least one aligned sequence, as every shift
pattern P contains at least one pair (i, pi) with pi = 0. The original activation set
(or equivalently, the set AP resulting from selecting the starting time pi = 0 for all
sequences) is referred to as the aligned activation set.

Definition 3.2. The bit position t ≥ 0 is covered by the shifted activation set
AP if there is exactly one sequence αi ∈ A satisfying αPi [t] = 1, and the rest have
αPj [t] = 0. Position t is blocked by AP if it is not covered by it. It is filled by AP if

there is at least one sequence αi ∈ A such that αPi [t] = 1.
Two sequences αPi and αPj in the shifted activation set AP collide in position t if

αPi [t] = αPj [t] = 1.
For integers k ≥ m ≥ 0, the shift pattern P is said to be [m, k]-blocking for A if

the shifted activation set AP blocks every bit position m ≤ t ≤ k.
For an activation set A, let W (A) denote the worst-case wakeup time of A,

namely, the minimal integer k such that there does not exist a [0, k]-blocking shift
pattern P for A.

214 LESZEK GA̧SIENIEC, ANDRZEJ PELC, AND DAVID PELEG

Note that an algorithm for the wakeup problem does not need to generate activa-
tion sequences of infinite length. Assuming it generates the sequences of an activation
set A with W (A) <∞, one bit at a time, it suffices to generate the first W (A) bits.

Since the adversary controls the times when the processors wake up (i.e., it con-
trols the shift pattern P), our problem of minimizing the wakeup time of the system
is equivalent to constructing an activation set A of n binary sequences αi of minimal
wakeup time W (A). Without loss of generality, all sequences start with bit 1, i.e.,
αi[1] = 1 for all i = 1, . . . , n. (This is because there is a one-to-one correspondence
between sequences of leading zeros and late wakeup times, and the latter are under
the control of the adversary. Hence W (A) cannot be improved by, say, padding each
sequence αi ∈ A with zi leading zeros, since the adversary can always nullify the
effect of the leading zeros, and mimic the worst shift pattern P for A on the modified
activation set, simply by making every processor i wake up zi rounds earlier than in
P .)

3.3. A deterministic online algorithm.

Algorithm Prime-Steps. Let qi, for i = 1, . . . , n, be the ith prime number
larger than n. We define a set of sequences A = {αi : i = 1, . . . , n} of lengths
mi = nqi + 1 as follows. The sequence αi, describing the behavior of processor i, has
bit 1 on positions kqi, for natural k = 0, 1, . . . , n, and bit 0 on all other positions.

For example, suppose that n = 4. Then we take q1 = 5, q2 = 7, q3 = 11, and
q4 = 13, and hence the (periodic) sequences of rounds t̄i in which node i transmits
(after waking up) are

t̄1 = (0, 5, 10, 15, 20),

t̄2 = (0, 7, 14, 21, 28),

t̄3 = (0, 11, 22, 33, 44),

t̄4 = (0, 13, 26, 39, 52).

The choice of algorithm Prime-Steps ensures that the sequences assigned to dif-
ferent processors collide rather infrequently, as detailed in the proof of the following
theorem.

Theorem 3.3. Algorithm Prime-Steps wakes up a system of n processors in time
O(n2 log n).

Proof. Since qi is of size O(n log n), for all i = 1, 2, . . . , n, we have mi ∈
O(n2 log n). Fix a shift pattern P . It suffices to show that there exists a bit po-
sition covered by AP . Let i be the processor that wakes up first, i.e., pi = 0. If bit
position 0 is not covered, then some other sequence αPj1 necessarily has 1 in position

0. It follows that sequences αPi and αPj1 do not collide in positions t > 0. (Since qi and

qj1 are primes, αPi and αPj1 collide as rarely as qiqj1 which is larger than mi and mj1 .)

If bit position qi is not covered, it means that some sequence αPj2 , different from αPi
and αPj1 , has 1 in position qi. Again, sequences αPi and αPj2 do not collide in positions
t > qi. Consequently, in order to guarantee that bit positions kqi, for i = 0, 1, 2, . . .
are not covered, the adversary must generate a collision with a different sequence αjk
for each bit position kqi. Since there are only n − 1 sequences different from αi, it
follows that one of the bit positions kqi, for i = 0, 1, . . . , n−1, must be covered. Since
nqi < mi, the theorem follows.

WAKEUP PROBLEM IN SYNCHRONOUS BROADCAST SYSTEMS 215

3.4. The existence of a short fixed schedule. We now show that there exists
a fixed schedule guaranteeing much faster wakeup times than those given by the de-
terministic online algorithm Prime-Steps. The proof is nonconstructive; we describe
a randomized (Monte-Carlo) preprocessing algorithm Πrandom, which randomly se-
lects an activation set A for n processors, with the property that W (A) = O(n log2 n)
with probability at least 1 − 1

n . This implies that there must exist a fixed schedule

with wakeup time O(n log2 n), as the nonexistence of such a schedule would force
the success probability of algorithm Πrandom to be zero. However, we know of no
efficient (deterministic or randomized) algorithmic way for ascertaining the wakeup
time W (A) of any given activation set A, whether constructed by the preprocessing
algorithm Πrandom or produced by any other means. Subsequently, we do not have
a way of transforming algorithm Πrandom into a polynomial expected time Las Vegas
algorithm for constructing fixed schedules.

Set1 m = cn log n lnn, for c = 33.

Preprocessing algorithm Πrandom. Construct the sequences αi of the acti-
vation set A by randomly setting each bit αi[t], for 1 ≤ i ≤ n and 0 ≤ t ≤ m,
fixing

αi[t]←R

{
1 with probability 1/n,
0 with probability 1− 1/n.

Analysis. For every 0 ≤ ! ≤ log n, let T� = cn lnn · !.
For every 0 ≤ t ≤ m, let w(t) denote the number of processors already awake by

time t, w(t) = |{i | pi ≤ t}|. Note that w(t) is nondecreasing in the range 0 ≤ t ≤ m.
Definition 3.4. P is said to be !-regular if w(T�) ≥ 2� and w(T�+1) < 2�+1. Let

I(P) denote the smallest index such that P is !-regular,

I(P) = min{! | P is !-regular} .

Note. For every P , there exists some 0 ≤ ! ≤ log n such that P is !-regular;
hence 0 ≤ I(P) ≤ log n.

Partition the shift patterns into classes P0, . . . ,Plogn, such that P� contains all
shift patterns P for which I(P) = !,

P� = {P | I(P) = !} .

Consider a shift pattern P ∈ P�. Let Cov(P, t) be the event that bit position t for
T� ≤ t ≤ m is covered by P (i.e., it has exactly one 1 and w(t)− 1 zeros). Then

P(Cov(P, t)) ≥ w(t) · 1
n
·
(

1− 1

n

)w(t)−1

≥ 2� · 1
n
·
(

1− 1

n

)n
≈ 2�

en
.

Let B(P, !) be the event that P is [T�, T�+1]-blocking. Then

P(B(P, !)) ≤
(

1− 2�

en

)cn lnn

≈ exp(−c lnn · 2�/e)

≤ exp(−c′ lnn · 2�) ,(1)

1For notational simplicity we ignore rounding throughout the paper; whenever an integer value is
called for, log n and lnn should be thought of as rounded upwards to �logn� and �lnn�, respectively.

216 LESZEK GA̧SIENIEC, ANDRZEJ PELC, AND DAVID PELEG

for c′ = 12.
For any two sets of processors S1, S2 let P�[S1, S2] denote the subclass of P� in

which

0 ≤ pj ≤ T�, j ∈ S1 ,
T� < pj ≤ T�+1, j ∈ S2 ,
T�+1 < pj , j /∈ S1 ∪ S2 .

Note that the class P� is the union of subclasses P�[S1, S2] over all possible choices of
processor sets S1, S2 such that 2� ≤ |S1| < 2�+1 and 0 ≤ |S2| < 2�+1− |S1|. Formally,
letting

S = {(S1, S2) | 2� ≤ |S1| < 2�+1 and 0 ≤ |S2| < 2�+1 − |S1|} ,

we have

P� =
⋃

(S1,S2)∈S
P�[S1, S2] .

Let β(S1) denote the set of all shift patterns for the processors of S1 in the range
[0, T�]. Thus, for S1 = {j1, . . . , js},

β(S1) = {(pj1 , . . . , pjs) | 0 ≤ pjl ≤ T� for 1 ≤ l ≤ s} .

Similarly, let γ(S2) denote the set of all shift patterns for the processors of S2 in the
range (T�, T�+1], i.e., for S2 = {j1, . . . , jr},

γ(S2) = {(pj1 , . . . , pjr) | T� < pjl ≤ T�+1 for 1 ≤ l ≤ r} .

For shift patterns β ∈ β(S1) and γ ∈ γ(S2), let P�[β, S1, γ, S2] denote the subclass
of P�[S1, S2] consisting of all shift patterns P ∈ P� that match β over S1 and γ over
S2. Hence

P� =
⋃

(S1,S2)∈S

⋃
β∈β(S1)

γ∈γ(S2)

P�[β, S1, γ, S2] .

For any set E of shift patterns, let B(E , !) denote the event that some P ∈ E is
[T�, T�+1]-blocking and let B(E) denote the event that some P ∈ E is blocking. Clearly,

P(B(E)) ≤ P(B(E , !))(2)

for every E and !. Note that the event B(P�[β, S1, γ, S2], !) happens if and only if
every P ∈ P�[β, S1, γ, S2] is [T�, T�+1]-blocking, since for all P, P ′ ∈ P�[β, S1, γ, S2], P
and P ′ have the same shift configuration in the range (T�, T�+1]; hence P is [T�, T�+1]-
blocking if and only if P ′ is [T�, T�+1]-blocking. Hence for every P ∈ P�[β, S1, γ, S2],

P(B(P�[β, S1, γ, S2], !)) = P(B(P, !)) ,

and using inequalities (2) and (1),

P(B(P�[β, S1, γ, S2])) ≤ P(B(P�[β, S1, γ, S2], !))

≤ exp(−c′ lnn · 2�) .(3)

WAKEUP PROBLEM IN SYNCHRONOUS BROADCAST SYSTEMS 217

As

B(P�) =
⋃

(S1,S2)∈S

⋃
β∈β(S1)

γ∈γ(S2)

B(P�[β, S1, γ, S2]) ,

we have that

P(B(P�)) =
∑

(S1,S2)∈S

∑
β∈β(S1)

γ∈γ(S2)

P(B(P�[β, S1, γ, S2]))

≤
∑

(S1,S2)∈S
|β(S1)| · |γ(S2)| · P(B(P, !)) .

As

|β(S1)| = (T� + 1)s = (1 + cn lnn · !)s ,

|γ(S2)| = (T�+1 − T�)
r = (cn lnn)r ≤ (cn lnn)2

	+1−s ,

we have

|β(S1)| · |γ(S2)| ≤ (1 + cn lnn log n)2
	+1

;

hence by inequality (3)

P(B(P�)) ≤
∑

(S1,S2)∈S
(1 + cn lnn log n)2

	+1 · exp(−c′ lnn · 2�)

≤
∑

s≤2	+1

(
n

s

) ∑
r≤2	+1−s

(
n− s

r

)
· exp(2 lnn · 2�+1 − c′ lnn · 2�)

≤ n2	+2+2 · exp((4− c′) lnn · 2�)
≤ exp((10− c′) lnn · 2�)
≤ exp(−2 lnn) .

B(P) =
⋃
� B(P�), so

P(B(P)) ≤ log n · P(B(P�)) ≤ log n

n2
� 1

n
.

The above analysis yields the following theorem.
Theorem 3.5. For an n-processor system with n known to the processors,

algorithm Πrandom constructs an activation set A whose wakeup time is W (A) =
O(n log2 n) with probability at least 1− 1

n .
Corollary 3.6. For an n-processor system with n known to the processors,

there exists a fixed schedule with wakeup time O(n log2 n).
It is important to underline the difference between algorithm Rand-Try and al-

gorithm Πrandom. Although randomness is involved in both of them, the former is an
online algorithm, while the latter is a randomized method to produce a fixed schedule.
Consequently, in algorithm Rand-Try the adversary does not know the behavior of
processors in advance and must decide if and when to wake up each of them based
only on the history to date. In the second scenario, on the other hand, the adversary
is given a fixed schedule in advance, and hence it also has knowledge of the behavior of

218 LESZEK GA̧SIENIEC, ANDRZEJ PELC, AND DAVID PELEG

processors in the future. This additional information gives the adversary more power
which is reflected by the worse performance of the fixed schedule, as compared to the
randomized online algorithm Rand-Try. In principle, our existence proof can be used
for generating a (provably correct) short schedule; simply construct schedules one by
one as indicated by the proof and test each of them until finding one satisfying the
requirements. Unfortunately, testing the correctness of a given schedule (i.e., verifying
that it succeeds in waking up the processors against any adversarial behavior) seems
to be a difficult task, and we do not see any way of achieving it short of the naive
brute-force testing of all possible schedules.

3.5. Lower bound for fixed schedules. We do not know what is the optimal
time of a deterministic online wakeup algorithm (or fixed schedule). Below we give
a lower bound that serves primarily to establish a gap between the global clock and
local clocks scenarios; while in the former scenario we showed an algorithm working
in time n, it turns out that without a global clock, the wakeup time of any fixed
schedule (including in particular those generated by a deterministic algorithm) must
be greater than (1 + ε)n for some positive constant ε.

Consider an activation set consisting of n infinite binary activation sequences, A =
{α1, . . . , αn}. We show that the adversary can select the waking times of processors,
i.e., the shift pattern P for these sequences on the time axis, in such a way that no
message is heard within the first (1 + ε)n rounds, counted from waking up the first
processor, for some constant ε > 0. (No attempt has been made to optimize the
constant. We give the proof for ε = 0.001, when n is sufficiently large.)

To establish the lower bound, it suffices to show that for some 1 ≤ x ≤ n, there
exist an activation set B ⊂ A of cardinality x and an [0, x+εn]-blocking shift pattern
P for B. The remaining n−x sequences can be used to block at least n−x additional
positions, x + εn + 1, . . . , n + εn, using one shifted sequence to block each of these
positions.

Lemma 3.7 (blocking technique). Let Q be any set of m (not necessarily con-
secutive) positions and let B be any aligned activation set of m + 1 sequences. Then
there exists a nonempty subset of B which blocks all positions in Q.

Proof. Repeat the following process at most m times. For any position j in Q
covered by B, remove the sequence covering j from the set B. After removing at
most m sequences, all positions of Q are blocked and at least one sequence remains in
B.

Let δ and σ be positive integer constants to be determined later and let N = n/σ.
For any sequence αi, the m-head of αi, denoted head(αi,m), is its prefix of length

m. Let ones(αi,m) denote the number of ones in head(αi,m).
Lemma 3.8. For every two integers a ≥ 1 and m ≥ 2a, and for every aligned

activation set B of m or more sequences satisfying ones(αi,m) ≤ a, there exist an
integer 0 ≤ ! ≤ a − 1 and a set C ⊆ B of size |C| > m/2�+1 such that every αi ∈ C
contains zeros at all positions m/2�+1 + 1 to m/2�.

Proof. The proof is by induction on a. For a = 1, each sequence in B contains
a single 1 at the first position and zeros at all other positions; hence the set C = B
satisfies the claim with ! = 0. Considering a > 1, assume the claim holds for every
a′ < a. Let B′ be the set of all sequences αi ∈ B which contain a 1 at some position
from m/2 + 1 to m. If |B′| < m/2, then the claim holds for ! = 0 and C = B \ B′,
and we are done. Otherwise, letting m′ = m/2 and a′ = a − 1, the set B′ satisfies
|B′| ≥ m′ and every sequence αi ∈ B′ satisfies ones(αi,m

′) ≤ a′. Hence by the
inductive hypothesis, there exist an integer 0 ≤ !′ ≤ a′ − 1 and a set C ⊆ B′ of size

WAKEUP PROBLEM IN SYNCHRONOUS BROADCAST SYSTEMS 219

|C| > m′/2�
′+1 such that every αi ∈ C contains zeros at all positions m′/2�

′+1 + 1 to
m′/2�

′
. The claim now holds for C and ! = !′ + 1.

Returning to the analysis, there are two cases.
Case 1: At least N sequences have N -heads with at most δ − 1 ones.
Let B be an activation set consisting of N sequences with the above property. By

Lemma 3.8, there exist an integer 0 ≤ ! ≤ δ−2 and a set C ⊆ B of size |C| > N/2�+1

such that every αi ∈ C contains zeros at all positions N/2�+1 + 1 to N/2�. Using
the blocking technique of Lemma 3.7, we can now use a subset C ′ ⊆ C of at most
N/2�+1 + 1 sequences to block the first N/2�+1 positions and gain N/2�+1 blocked
positions “for free.” Then we use the remaining n− |C ′| sequences to block n− |C ′|
additional positions for a total of n+ N

2	+1 − 1 positions. In the worst case, occurring
when ! = δ − 2, this amounts to n + n

σ·2δ−1 − 1 blocked positions.
Case 2: More than n−N sequences have N -heads with at least δ ones.
Let M = n − N and let B be an activation set of M sequences with the above

property. Let In denote the time interval of the first n + 1 positions, 0, 1, . . . , n. We
show that we can block all positions of In by selecting a subset C ⊆ B of ρn sequences,
for ρ ≤ 1 − 1/σ, and a shift pattern P for C, in such a way that each position of In
is filled by at least two sequences of CP . Assume, without loss of generality, that the
number of ones in each N -head is exactly δ (ignore other ones).

For each sequence αi ∈ B we consider only M possibilities of right shifts from
the aligned position, namely, by pi ∈ {1, . . . ,M}. We call these the possible shifts.
For each of them, the entire N -head of αi corresponds to positions within the interval
In. We construct a shift pattern P for a subset of sequences C ⊆ B. The set C is
initialized to ∅. Our goal is to fill all positions in In by CP . Suppose that at some
stage of the construction, some positions in In are already filled by CP . Selecting
a new sequence αi to be added to C, we look for a shift pi that fills as many new
positions as possible (i.e., we try to align many ones from the N -head of αi with yet
unfilled positions in In).

Lemma 3.9. If the number of filled positions in In is strictly less than kM/δ, for
1 ≤ k ≤ δ, then for any sequence αi ∈ B there exists a possible shift pi which fills at
least δ − k + 1 new positions in In.

Proof. Assume the contrary and consider a sequence αi such that for each possible
shift pi of αi, at least k ones of its N -head correspond to filled positions in In. Thus
in total we have at least kM such matches.

On the other hand, each filled position in In can be matched with at most δ ones
from the N -head of αi. There are strictly fewer than kM/δ filled positions in In, so
the total number of matches is strictly less than kM , a contradiction.

The process of constructing C and filling the positions of the interval In is divided
into δ consecutive stages. In stage k, when the number of filled positions in In is at
least (k− 1)M/δ but strictly smaller than kM/δ, it is possible to add in each step an
appropriately shifted sequence to C filling at least new δ−k+1 positions in In. Thus

stage k consists of at most (kMδ − (k−1)M
δ) · 1

δ−k+1 such steps, and the total number
of sequences needed to fill all positions of In is at most

δ∑
k=1

⌈
1

δ − k + 1
· M

δ

⌉
+ N ≤ M

δ

δ∑
k=1

1

k
+ N + δ.

Notice that each of the last N sequences is used to fill only a single position thus
we can use sequences outside of B for this purpose.

220 LESZEK GA̧SIENIEC, ANDRZEJ PELC, AND DAVID PELEG

It follows that all positions of In can be blocked by repeating this process twice,
and the number of sequences used is at most

2n

(
1

δ

(
1− 1

σ

) δ∑
k=1

1

k
+

1

σ

)
+ 2δ .

Finally take constants δ = 8 and σ = 5. Then 1
δ

∑δ
k=1

1
k < 0.34, and the total number

of sequences used to block all positions of In is at most �0.95n	+ 16. The remaining
�0.05n� − 16 sequences are used to block �0.05n� − 16 additional positions for a total
of �1.05n�−16 positions. In Case 1 we could block at least n+ n

σ·2δ−1 −1 = n+ n
640−1

positions. This gives a lower bound 1.001n in both cases for sufficiently large n.
Theorem 3.10. If a global clock is not available, then every deterministic algo-

rithm waking up a system of n processors must use worst-case time at least (1 + ε)n
for some positive constant ε and sufficiently large n.

4. The locally synchronous model with unknown n. We conclude the pa-
per by presenting two wakeup algorithms working under the weakest scenario, namely,
when a global clock is not available and the size n of the system is not known to pro-
cessors. The first is a randomized online algorithm waking up the system in time
O(n2 log(1/ε)) with probability at least 1−ε, and the second is a deterministic online
algorithm working in worst case time O(n4 log5 n).

4.1. Randomized algorithm Size-Probing. For any integer j ≥ 1 let Tj =

�e ln(1/ε)	 · 2j+1. Also let Si =
∑i
j=1 Tj = �e ln(1/ε)	 · (2j+2 − 2). Any processor,

after waking up spontaneously, operates in consecutive phases numbered by positive
integers. Phase j lasts Tj rounds. In each of these rounds the processor randomly
sets a bit

b←R

{
1 with probability 1/2j ,
0 with probability 1− 1/2j .

If the outcome is b = 1, then it broadcasts a wakeup message.
Theorem 4.1. Algorithm Size-Probing succeeds in waking up an n-processor

system in time O(n2 log(1/ε)) with probability at least 1− ε.
Proof. Let i be the unique integer satisfying that 2i−1 < n ≤ 2i. Our analysis

focuses on what happens in the system beginning on the special round τ which is the
first round such that some processor wakes up (spontaneously) on round τ and no
processor wakes up on rounds τ + 1, . . . , τ + Si. Clearly τ ≤ nSi = O(n2 log(1/ε)).

Consider the set of rounds R = {τ +Si−1 +1, . . . , τ +Si}. Let p be the processor
that woke up on round τ and let X be the set of awake processors at the beginning of
round τ (excluding p). In each round t ∈ R, processor p broadcasts with probability
1/2i and all other awake processors from X broadcast with probabilities at most 1/2i.
For a round t ∈ R, let W(t) denote the event that round t ∈ R succeeds, namely,
exactly one processor broadcasts. The probability that this happens is

P(W(t)) ≥ 1

2i

(
1− 1

2i

)n
≥ 1

2i

(
1− 1

n

)n

≥ 1

2i
· 1

2e
=

1

2i+1 · e .

Hence the probability that none of the rounds in R succeed is at most

P

(⋂
t∈R
W(t)

)
≤
(

1− 1

2i+1 · e
)Ti

WAKEUP PROBLEM IN SYNCHRONOUS BROADCAST SYSTEMS 221

≤
(

1− 1

2i+1 · e
)2i+1e ln(1/ε)

≤ (1/e)ln(1/ε) = ε.

Hence the system is woken up with probability at least 1−ε after τ+Si = O(n2 log(1/ε))
rounds.

4.2. Deterministic algorithm Squared Prime-Steps. In order to present
our last algorithm, define the integer sequence S = 〈s1, s2, . . .〉 by setting

sj =

1, j = 1,
2, j = 2,

s2
j−1 log2 sj−1, j ≥ 3.

For every processor i, find a value j, such that sj−1 < i ≤ sj , and construct
the sequence αi describing the behavior of processor i as in algorithm Prime-Steps
assuming the size of the system is sj . Take the resulting set of sequences αi, padded
by zeros on the right, to be the activation set of the algorithm.

Theorem 4.2. Algorithm Squared Prime-Steps wakes up a system of n processors
in time O(n4 log5 n).

Proof. Fix any shift pattern P . Consider the set S of processors that are active
during the execution of algorithm Squared Prime-Steps. Let t be the largest processor
number in S and let j be such that sj−1 < t ≤ sj . Let Ŝ ⊆ S be the set of all processors

with indices larger than sj−1 and Â = {αi : i ∈ Ŝ}. Recall that |αl| ∈ O(s2
j−1 log sj−1)

for all l ∈ S \ Ŝ. Therefore∑
l∈S\Ŝ

|αl| ∈ sj−1 ·O(s2
j−1 log sj−1) = O(s3

j−1 log sj−1) ⊆ O(s2
j).

This means that the time used by algorithm Squared Prime-Steps, before processors
in Ŝ become active, is in O(s2

j). In what follows we show that the system is woken up

in time at most |αi| after the first processor i ∈ Ŝ become active. Recall that sequence
αi has sj + 1 positions set to 1. Since any two sequences in ÂP collide at most once

(see proof of Theorem 3.3) and |Ŝ| ≤ sj − sj−1, the number of positions where αPi is

set to 1 but all other sequences in ÂP are set to 0 is larger than sj−1 +1. Notice that

each sequence αPl , for l ∈ S \ Ŝ, can collide in at most one position with the sequence
αPi . This holds since |αl| ∈ O(s2

j−1 log sj−1) and distances between consecutive ones

in αi are at least sj ≥ s2
j−1 log2 sj−1. Since |S \ Ŝ| ≤ sj−1, the number of covered

positions is larger than sj−1 + 1− sj−1 = 1.
Hence the wakeup time is bounded by |αi| + O(s2

j) ⊆ O(s2
j log sj). Since n ≥ t

and sj ≤ t2 log2 t we get the bound O(n4 log5 n) of wakeup time for a system of n
processors.

REFERENCES

[1] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg, A lower bound for radio broadcast, J.
Comput. System Sci., 43 (1991), pp. 290–298.

[2] R. Bar-Yehuda, O. Goldreich, and A. Itai, On the time complexity of broadcast in multi-hop
radio networks: An exponential gap between determinism and randomization, J. Comput.
System Sci., 45 (1992), pp. 104–126.

222 LESZEK GA̧SIENIEC, ANDRZEJ PELC, AND DAVID PELEG

[3] R. Bar-Yehuda, O. Goldreich, and A. Itai, Efficient emulation of single-hop radio network
with collision detection on multi-hop radio network with no collision detection, Distrib.
Comput., 5 (1991), pp. 67–71.

[4] D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall, Englewood Cliffs, NJ, 1987.
[5] I. Chlamtac and S. Kutten, On broadcasting in radio networks – problem analysis and

protocol design, IEEE Trans. Comm., 33 (1985), pp. 1240–1246.
[6] I. Chlamtac and S. Kutten, Tree based broadcasting in multihop radio networks, IEEE Trans.

Comput., 36 (1987), pp. 1209–1223.
[7] I. Chlamtac and S. Kutten, A spatial reuse TDMA/FDMA for mobile multi-hop radio net-

works, in Proceedings of the Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM), Washington, D.C., 1985, pp. 389–394.

[8] I. Chlamtac and O. Weinstein, The wave expansion approach to broadcasting in multihop
radio networks, IEEE Trans. Comm., 39 (1991), pp. 426–433.

[9] B.S. Chlebus, L. Gasieniec, A. Gibbons, A. Pelc, and W. Rytter, Deterministic broad-
casting in unknown radio networks, in Proceedings of the Eleventh Annual ACM-SIAM
Symposium on Discrete Algorithms, San Francisco, 2000, pp. 861–870.

[10] K. Diks, E. Kranakis, D. Krizanc, and A. Pelc, The impact of knowledge on broadcast-
ing time in radio networks, in Proceedings of the 7th Annual European Symposium on
Algorithms, ESA’99, Prague, Czech Republic, 1999, Lecture Notes in Comput. Sci. 1643,
Springer, Berlin, 1999, pp. 41–52.

[11] S. Even and S. Rajsbaum, Unison, canon, and sluggish clocks in networks controlled by a
synchronizer, Math. Systems Theory, 28 (1995), pp. 421–435.

[12] F. Fich, R. Impagliazzo, B. Kapron, V. King, and M. Kutylowski, Limits on the power of
parallel random access machines with weak forms of write conflict resolution, J. Comput.
System Sci., 53 (1996), pp. 104–111.

[13] M.J. Fischer, S. Moran, S. Rudich, and G. Taubenfeld, The wakeup problem, SIAM J.
Comput., 25 (1996), pp. 1332–1357.

[14] I. Gitman, R. M. Van Slyke, and H. Frank, Routing in packet-switching broadcast radio
networks, IEEE Trans. Comm., 24 (1976), pp. 926–930.

[15] J. Goodman, A. G. Greenberg, N. Madras, and P. March, On the stability of Ethernet, in
Proceedings of the 17th Symposium on Theory of Computing, Providence, RI, 1985, pp.
379–387.

[16] A. G. Greenberg, P. Flajolet, and R. E. Ladner, Estimating the multiplicities of conflicts
to speed their resolutions in multiple access channels, J. ACM, 34 (1987), pp. 289–325.

[17] J. Hastad, T. Leighton, and B. Rogoff, Analysis of backoff protocols for multiple access
channels, in Proceedings of the 19th ACM Symposium on Theory of Computing, 1987, pp.
241–253.

[18] R. E. Kahn, S. A. Gronemeyer, J. Burchfiel, and R. C. Kunzelman, Advances in packet
radio technology, Proc. IEEE, 66 (1978), pp. 1468–1496.

[19] R. C. Kunzelman, Overview of the ARPA packet radio experimental network, in Proceedings
of COMPCON, 1978, pp. 157–160.

[20] E. Kushilevitz and Y. Mansour, Computation in noisy radio networks, in Proceedings of
the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, 1998,
pp. 236–243.

[21] J. Mazoyer, On optimal solutions to the firing squad synchronization problem, Theoret. Com-
put. Sci., 168 (1996), pp. 367–404.

[22] N. Shacham and E. J. Craighill, Dynamic routing for real-time transport in packet radio
networks, in Proceedings of the Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM), 1982, pp. 152–158.

[23] A. Tannenbaum, Computer Networks, Prentice-Hall, Englewood Cliffs, NJ, 1981.

A NEW PROPERTY AND A FASTER ALGORITHM FOR
BASEBALL ELIMINATION∗

KEVIN D. WAYNE†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 2, pp. 223–229

Abstract. In the baseball elimination problem, there is a league consisting of n teams. At some
point during the season, team i has wi wins and gij games left to play against team j. A team is
eliminated if it cannot possibly finish the season in first place or tied for first place. The goal is to
determine exactly which teams are eliminated. The problem is not as easy as many sports writers
would have you believe, in part because the answer depends not only on the number of games won
and left to play but also on the schedule of remaining games. In the 1960’s, Schwartz showed how
to determine whether one particular team is eliminated using a maximum flow computation.

This paper indicates that the problem is not as difficult as many mathematicians would have you
believe. For each team i, let gi denote the number of games remaining. We prove that there exists a
value W ∗ such that team i is eliminated if and only if wi + gi < W ∗. Using this surprising fact, we
can determine all eliminated teams in time proportional to a single maximum flow computation in a
graph with n nodes; this improves upon the previous best known complexity bound by a factor of n.

Key words. network flow, combinatorial optimization

AMS subject classifications. 05C85, 68R10, 68Q25, 90B10, 90C27, 90C90

PII. S0895480198348847

1. Introduction. In the baseball elimination problem, there is a league consist-
ing of n teams, which we denote by the set T . At some point during the season,
each team has played some number of games. Team i ∈ T has wi wins, gij remaining
games against team j ∈ T , and gi =

∑
j∈T gij total remaining games. Table 1.1 gives

the input data for a sample league. The goal of a team is to finish the season with the
most wins. We say that a team is eliminated if it cannot finish in first place (i.e., with
the most wins or tied for the most wins) for any possible outcome of the remaining
games. We assume there are no ties (i.e., each game has a winner and loser) and no
rain-outs (i.e., all remaining games are played). Without loss of generality, we assume
all of the remaining games are against other teams in the same league. This classical
problem was first popularized by Alan Hoffman in the 1960’s as a nice application of
optimization and network flow. The reader is referred to [2, 4] for textbook treatments
of the problem.

Schwartz [15] proposed a method to determine whether a single team is elimi-
nated using a maximum flow computation. Hoffman and Rivlin [11] generalized the
result of [15], providing a characterization of when a team is eliminated from finishing
in tth place. Robinson [14] gave a linear programming based model that finds the
maximum lead a team can have at the end of the season. Gusfield and Martel [10]
and McCormick [12] determined the elimination number, i.e., the minimum number
of remaining games a team must win in order to have any chance of finishing in first
place. Their methods use different extensions of the parametric maximum flow tech-
niques of Gallo, Grigoriadis, and Tarjan [5]. McCormick [12] also showed that it is

∗Received by the editors November 23, 1998; accepted for publication (in revised form) January
10, 2001; published electronically April 3, 2001. A preliminary version of this paper has appeared in
Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, 1999,
pp. 815–819.

http://www.siam.org/journals/sidma/14-2/34884.html
†Computer Science Department, Princeton University, Princeton, NJ 08544 (wayne@cs.princeton.

edu). This research was supported by ONR through grant AASERT N00014-97-1-0681 while the
author was at Cornell University.

223

224 KEVIN D. WAYNE

Table 1.1
Team standings and remaining schedule.

team wins to play schedule
i wi gi Atl Phi NY Mon

Atlanta 83 8 – 1 6 1
Philadelphia 79 4 1 – 0 3
New York 78 7 6 0 – 1
Montreal 76 5 1 3 1 –

NP-complete to determine whether a team is eliminated from finishing the season
in tth place or better. Adler et al. [1] proposed an integer programming formula-
tion to determine which teams are eliminated from finishing the season in first place
or as a wildcard playoff team and corresponding elimination numbers. Their Web
site www.riot.ieor.berkeley.edu/˜ baseball maintains these statistics on-line for major
league baseball.

In this paper we introduce a new structural property for the baseball elimination
problem. Specifically, we order the teams according to their total number of wins
possible (current wins + remaining games). We show that if a team is eliminated,
then so are all teams below it in the ordering. For example, this implies that if two
teams have the same number of wins and remaining games, then they are either both
eliminated or both not eliminated, regardless of their remaining opponents. Using
our new ordering and binary search, we can find all eliminated teams with log n
maximum flow computations. Using the parametric maximum flow techniques of
Gallo, Grigoriadis, and Tarjan [5], we show how to determine all eliminated teams in
the same complexity as a single maximum flow computation. It is also straightforward
to determine all of the elimination numbers from our computation.

We note that the new structural property was independently proved by Adler et
al. [1] using linear programming techniques. They also describe how to compute all
eliminated teams by solving a single linear program. Our proof is based on flows and
cuts and, as a result, leads to a faster algorithm.

2. Preliminaries. In this section we review the necessary and sufficient condi-
tions for a team to be eliminated. Also, we show how to determine whether a single
team is eliminated using a maximum flow computation.

Let xij be a variable representing the number of games that team i ∈ T wins
among games remaining to be played against team j ∈ T . Team k is not eliminated
if there is some assignment of nonnegative integer values {xij : i, j ∈ T} such that

∀i, j ∈ T : xij + xji = gij = gji,(2.1)

∀j ∈ T : wk +
∑
j∈T

xkj ≥ wi +
∑
j∈T

xij .(2.2)

Equations (2.1) imply that all remaining games are played; inequalities (2.2) imply
that no team finishes the season with more wins than team k.

Consider Table 1.1 above. Montreal is eliminated since it can finish with at most
81 wins, but Atlanta already has 83 wins. This is the simplest reason for elimination.
However, there can be more complicated reasons. For example, Philadelphia is also
eliminated. It can finish the season with at most 83 wins. However, either Atlanta
will win more than 83 games, or it will lose all 6 of its remaining games against New
York, in which case New York will finish with at least 84 wins.

A NEW PROPERTY FOR BASEBALL ELIMINATION 225

For any subset of teams R ⊆ N , let w(R) =
∑
i∈R wi denote the total number of

games already won by teams in R and let g(R) =
∑
{i,j}⊆R gij denote the number of

games remaining to be played by teams both in R. We define a(R) = w(R)+g(R)
|R| and

note that a(R) gives a lower bound on the average number of games (including games
already won) that must be won by teams in R: the teams in R have already won
w(R) games, and some team in R must win each of the g(R) games played between
teams both in R.

Lemma 2.1. Let i ∈ T and R ⊆ T − {i}. If a(R) > wi + gi, then team i is
eliminated.

Proof. If team i wins all of its remaining games, then it will finish the season with
wi + gi wins. On average, the teams in R win at least a(R) > wi + gi games. Thus
(at least) one team in R will finish with more wins than team i.

In this case, we say that R eliminates i, since it provides a certificate of elimination
for team i. Surprisingly, if a team is eliminated, there is always such a simple certificate
of elimination, as stated in Theorem 2.3. First, we review how to determine whether
or not a single team is eliminated. The following theorem is due to Schwartz [15].

Theorem 2.2. Using a single s-t minimum cut computation, we can determine
whether one particular team k is eliminated.

Proof. Clearly, the best possible scenario for team k is if it wins all of its remaining
games, in which case it will end up with W := wk+gk wins. If W < wi for any i ∈ T ,
then {i} trivially eliminates k.

Now, we check for more complicated reasons for elimination. We construct a
bipartite network in which feasible integral flows correspond to outcomes of the re-
maining schedule. The following network flow formulation is due to Schwartz [15]:
Gusfield and Martel [10] give an alternate construction. There are nodes correspond-
ing to teams and to remaining games. Intuitively, each unit of flow in the network
corresponds to a remaining game. As it flows through the network, it passes from a
game node, say, between teams i and j, then through one of the team nodes i or j,
classifying this game as being won by that team.

The flow network for the baseball elimination problem is shown in Figure 2.1.
Formally, let N := T − {k} denote the set of teams other than team k. Let P :=
{{i, j} ⊆ N : gij > 0} denote the set of pairs of teams (that don’t involve team k)
with remaining games to be played. Let V := P ∪N ∪ {s, t} denote the set of nodes
in the network. For each {i, j} ∈ P we include an arc (s, {i, j}) with capacity gij .
For each team i ∈ N we include an arc (i, t) with capacity W − wi. Finally, for each
{i, j} ∈ P we include arcs ({i, j}, i) and ({i, j}, j) with infinite capacity. The flow on
arc ({i, j}, i) represents the total number of remaining games in which i beats j. The
flow on arc (i, t) represents the total number of remaining games won by i.

It is easy to see that integral feasible flows of value g(N) in the resulting network
are in one-to-one correspondence with possible outcomes of the remaining games in
which team i is not eliminated, i.e., they satisfy (2.1) and (2.2). It follows that we can
determine whether i is eliminated with a single maximum integer flow (or minimum
s-t cut) computation in the above bipartite network.

The previous theorem says that we can determine whether any single team k is
eliminated using a maximum flow computation in an appropriate bipartite network.
In fact, if team k is eliminated, then the minimum s-t cut (in the same bipartite
network) indicates a subset of teams that eliminates k. The next theorem is due to
Hoffman and Rivlin [11]. We include its proof only for completeness.

226 KEVIN D. WAYNE

s {i,j}

i

j

t

Pair Nodes Team Nodes

∞
∞
∞

∞
∞
∞

gij

W −
w
i

W
− wj

Fig. 2.1. Flow network for baseball elimination.

Theorem 2.3. Suppose team k ∈ T is eliminated. Then there exists R ⊆ T −{k}
that eliminates k. Moreover, we can find such a subset R with a single s-t minimum
cut computation.

Proof. Consider the maximum flow network described in Theorem 2.2. Let
S denote the source side of a minimum s-t cut and let R = N ∩ S denote the
team nodes on the source side of the cut. For example, for the four team league
considered above with k = Philadelphia, it turns out that the minimum cut is
S = {s, {Atl, NY},Atl, NY} and R = {Atl, NY}. We note that R eliminates Philadel-
phia since a(R) = 167/2 > 83 = W = wk + gk.

In general, if team k is eliminated, we show that R = N ∩ S eliminates k. Since
k is eliminated, the maximum flow in the network is less than g(N). Hence, by the
max-flow min-cut theorem, the capacity of the minimum cut S is also less than g(N);
it is the sum of the capacities of some arcs leaving the source and some arcs entering
the sink: ∑

{i,j}∈P
gij = g(N) > cap(S)

=
∑

{i,j}∈P\S
gij +

∑
i∈R

(W − wi)

=
∑

{i,j}∈P\S
gij +W |R| − w(R).(2.3)

Let {i, j} ∈ P ∩S. Then i ∈ R and j ∈ R, since otherwise the cut would have infinite
capacity. Thus ∑

{i,j}∈P∩S
gij ≤

∑
{i,j}⊆R

gij = g(R).(2.4)

Combining (2.3) and (2.4) we obtain

W |R| − w(R) <
∑
{i,j}∈P

gij −
∑

{i,j}∈P\S
gij

=
∑

{i,j}∈P∩S
gij

≤ g(R).

In other words, R eliminates team k.

A NEW PROPERTY FOR BASEBALL ELIMINATION 227

3. Problem structure. We now provide a new structural property for the base-
ball elimination problem. We use the total order i j to indicate wi + gi ≤ wj + gj .
The following theorem indicates that if a team is eliminated, then so are all lower
ordered teams.

Theorem 3.1. Suppose team k ∈ T is eliminated. If i k, then team i is also
eliminated.

Proof. Since k is eliminated, by Theorem 2.3 there exists R ⊆ T − {k} that
eliminates k. That is

a(R) > wk + gk ≥ wi + gi.

If i /∈ R, then R also eliminates i. Now suppose i ∈ R. Clearly R �= {i}. Then, R\{i}
eliminates i since

a(R \ {j}) =
g(R− {i}) + w(R− {i})

|R| − 1

≥ g(R)− gi + w(R)− wi
|R| − 1

>
g(R) + w(R)− a(R)

|R| − 1

= a(R)

> wi + gi.

The following corollary was also derived independently by Adler et al. [1] using
linear programming techniques instead of flows of cuts.

Corollary 3.2. There exists a team i∗ ∈ T such that all teams i i∗ are
eliminated and all teams i � i∗ are not eliminated.

Proof. Choose i∗ to be the eliminated team with the largest value of wi+
gi.

Corollary 3.3. There exists a single subset of teams R∗ ⊆ T that eliminates
every eliminated team.

Proof. Choose R∗ to be a nonempty subset of teams that maximizes a(R). First
we observe that if team k is eliminated, then k /∈ R∗. This follows from our choice
of R∗ because the proof of Theorem 3.1 would then imply a(R∗ − {k}) > a(R∗).
By Theorem 2.3, if team k is eliminated, then there exists a subset R such that
a(R) > wk + gk. Now a(R∗) ≥ a(R) and k /∈ R∗, so R∗ also eliminates k.

4. Determining all eliminated teams. In this section we show how to find
all eliminated teams efficiently. It suffices to find the i∗ guaranteed by Corollary 3.2.
We can order the n teams according to their wi + gi values and use binary search to
find i∗. This requires log n minimum cut computations.

Now, we give an even faster method to find all eliminated teams. It suffices to
find the R∗ guaranteed by Corollary 3.3. We introduce an artificial team 0 which has
no remaining games and a variable number of wins W . Let R∗ be a nonempty subset
that maximizes a(R) and let W ∗ = a(R∗). Note that team 0 is eliminated if and only
if W < W ∗. Also the elimination number for team i is easily seen to be �W ∗� − wi.

Now, we show how to find W ∗ and R∗ efficiently. We construct a bipartite
maximum flow network as in Figure 2.1, but now k = 0 and N = T . Also for each
i ∈ N , the capacity of arc (i, t) is W − wi, where W is a parameter. Note that
all of the “parametric arcs” enter the sink and are increasing linear functions of the

228 KEVIN D. WAYNE

parameter W . Therefore, we are in a position to apply the parametric maximum
flow technique of Gallo, Grigoriadis, and Tarjan [5] which computes all minimum cut
values parametrically in terms of W in the same complexity as a single preflow-push
maximum flow computation. Thus, we can compute W ∗ efficiently. The team nodes
on the source side of the minimum cut gives R∗. The following theorem summarizes
this discussion.

Theorem 4.1. Let G = (V,E) be an undirected graph with arc weights gij
and node weights wi. We can find a nonempty subset of nodes R that maximizes

a(R) := g(R)+w(R)
|R| using a single monotone parametric maximum flow computation.

If the undirected network G has n nodes and m arcs, then the bipartite net-
work we construct has O(m) nodes and O(m) arcs. However, the smaller side
of the bipartition has only n1 = O(n) nodes. For a network with n nodes and
m arcs, the Goldberg–Tarjan [9] preflow-push algorithm solves the maximum flow
problem in O(mn log(m/n2)) time, and the Goldberg–Rao [8] algorithm requires
O(min(n2/3,m1/2)m log(n2/m) logU) time if the capacities are integers between 1
and U . In our problem U ≤ maxi∈T (wi + gi). Using the bipartite maximum flow
techniques of Ahuja et al. [3] and Goldberg [7], the running times remain valid for
bipartite networks when the number of nodes n is replaced by the number of nodes
on the smaller side of the bipartition n1.

Corollary 4.2. All eliminated teams can be determined in time proportional to
one preflow-push maximum flow computation in a network with n nodes.

The problem considered in Theorem 4.1 generalizes the maximum density sub-
graph problem considered by Goldberg [6]. In the maximum density subgraph prob-
lem, the goal is to find a subset of nodes that maximizes the ratio of the number of
internal arcs to the number of nodes. This is the special case of our problem when the
arc weights are uniform and the node weights are zero. Picard and Queyranne [13]
and Gallo, Grigoriadis, and Tarjan [5] considered a different generalization of the
maximum density subgraph problem that maximizes g(R)/w(R).

Acknowledgments. The author is thankful to Éva Tardos for helpful discus-
sions. The author also thanks the referees for providing useful comments that aided
in the presentation of this paper.

REFERENCES

[1] I. Adler, A. L. Erera, D. S. Hochbaum, and E. V. Olinick, Baseball, optimization, and
the world wide web, Interfaces, to appear.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and
Applications, Prentice-Hall, Englewood Cliffs, NJ, 1993.

[3] R. K. Ahuja, J. B. Orlin, C. Stein, and R. E. Tarjan, Improved algorithms for bipartite
network flow, SIAM J. Comput., 23 (1994), pp. 906–933.

[4] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver, Combinatorial
Optimization, John Wiley, New York, 1998.

[5] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan, A fast parametric maximum flow algorithm
and applications, SIAM J. Comput., 18 (1989), pp. 30–55.

[6] A. V. Goldberg, Finding a Maximum Density Subgraph, Technical report UCB CSD 84/171,
University of California, Berkeley, CA, 1984.

[7] A. V. Goldberg, private communication, NEC Research Institute, Princeton, NJ, 1998.
[8] A. V. Goldberg and S. Rao, Beyond the flow decomposition barrier, J. ACM, 45 (1998), pp.

753–782.
[9] A. V. Goldberg and R. E. Tarjan, A new approach to the maximum flow problem, J. ACM,

35 (1988), pp. 921–940.
[10] D. Gusfield and C. Martel, A fast algorithm for the generalized parametric minimum cut

problem and applications, Algorithmica, 7 (1992), pp. 499–519.

A NEW PROPERTY FOR BASEBALL ELIMINATION 229

[11] A. Hoffman and T. Rivlin, When is a team “mathematically” eliminated?, in Proceedings
of the Princeton Symposium on Mathematical Programming, Princeton, NJ, 1967, pp.
391–401.

[12] S. T. McCormick, Fast algorithms for parametric scheduling come from extensions to para-
metric maximum flow, Operations Research, 47 (1999), pp. 744–756.

[13] J. C. Picard and M. Queyranne, Selected applications of minimum cuts in networks, Infor-
mation Systems and Oper. Res., 20 (1982), pp. 394–422.

[14] L. W. Robinson, Baseball playoff eliminations: an application of linear programming, Oper.
Res. Lett., 10 (1991), pp. 67–74.

[15] B. L. Schwartz, Possible winners in partially completed tournaments, SIAM Rev., 8 (1966),
pp. 302–308.

A LOWER BOUND FOR HEILBRONN’S TRIANGLE PROBLEM IN d
DIMENSIONS∗

GILL BAREQUET†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 2, pp. 230–236

Abstract. In this paper we show a lower bound for the generalization of Heilbronn’s triangle
problem to d dimensions; namely, we show that there exists a set S of n points in the d-dimensional
unit cube so that every d + 1 points of S define a simplex of volume Ω(1

nd). We also show a
constructive incremental positioning of n points in a unit 3-cube for which every tetrahedron defined
by four of these points has volume Ω(1

n4).

Key words. Heilbronn’s triangle problem, probabilistic method

AMS subject classifications. 05D40, 51M16

PII. S0895480100365859

1. Introduction. Heilbronn’s triangle problem is the following problem.

Problem 1. Let {P1, P2, . . . , Pn} be a set of n points in [0, 1]2 such that the
minimum of the areas of the triangles PiPjPk (for 1 ≤ i < j < k ≤ n) assumes its
maximum possible value H2(n). Estimate H2(n).

Heilbronn [5] conjectured that H2(n) = O(1
n2), and Erdős set an Ω(1

n2) lower
bound for H2(n) by an example [ibid., appendix]. However, Komlós, Pintz, and
Szemerédi [4] showed by a rather involved probabilistic construction that H2(n) =
Ω(logn

n2). A simpler construction (which we follow in the present paper) by Alon and
Spencer [1] proves a weaker lower bound of Ω(1

n2).

It is trivial to obtain H2(n) = O(1
n) (any triangulation of any point set in the unit

square admits O(n) triangles). The first nontrivial upper bound, O(1/(n
√

log log n)),
was given by Roth [5]. Schmidt [9] improved this result 20 years later toO(1/(n

√
log n)).

Soon after that Roth [6, 7] improved the upper bound twice to O(1
n1.105...) and to

O(1
n1.117...).

1 Currently, the best known upper bound, H2(n) = O(1
n1.142...), is due to

Komlós, Pintz, and Szemerédi [3], who refined the proof of [6, 7]. A comprehensive
survey of the history of this problem (excluding the results of Komlós, Pintz, and
Szemeredi) is given by Roth in [8].

We are not aware of any generalization of Heilbronn’s problem to higher dimen-
sions. In this paper we use a probabilistic argument, as well as a specific example,
to show that Hd(n) = Ω(1

nd), where Hd(n) is the d-dimensional analogue of H2(n).

In particular, H3(n) = Ω(1
n3). We also give a constructive incremental method for

positioning n points in a unit 3-cube so that all the tetrahedra defined by quadruples
of the points have volume Ω(1

n4).

∗Received by the editors January 5, 2000; accepted for publication (in revised form) December
19, 2000; published electronically April 3, 2001. Work on this paper has been supported by the U.S.
Army Research Office under grant DAAH04-96-1-0013. A preliminary version of this paper appeared
in Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, MD,
1999, pp. 76–81.

http://www.siam.org/journals/sidma/14-2/36585.html
†Faculty of Computer Science, The Technion—Israel Institute of Technology, Haifa 32000, Israel

(barequet@cs.technion.ac.il). This work was done while the author was affiliated with the Center for
Geometric Computing, Department of Computer Science, Johns Hopkins University, Baltimore, MD
21218.

1The exponents of n in these bounds are the smaller roots µ = (17−√65)/8 and ν = 2−√0.8
of the equations 4µ2 − 17µ+ 14 = 0 and 5ν2 − 20ν + 16 = 0, respectively.

230

HEILBRONN’S TRIANGLE PROBLEM IN d DIMENSIONS 231

Fig. 1. Heilbronn’s problem in three dimensions.

The paper is organized as follows. In section 2 we give the incremental construc-
tion in three dimensions. In section 3 we use a probabilistic construction to improve
the lower bound for three dimensions and use the same method for proving a lower
bound for any fixed dimension. In section 4 we show the same lower bound by an
example (a generalization of Erdős’s planar construction) and argue why the much
more complex probabilistic construction is still of interest. Section 5 contains some
concluding remarks.

2. An incremental construction in three dimensions. The generalization
of Heilbronn’s triangle problem to three dimensions is straightforward.

Problem 2. Let {P1, P2, . . . , Pn} be a set of n points in [0, 1]3 such that the
minimum of the volumes of the tetrahedra PiPjPkPl (for 1 ≤ i < j < k < l ≤ n)
assumes its maximum possible value H3(n). Estimate H3(n).

Figure 1 shows eight points in the three-dimensional unit cube and the tetrahedron
of minimum volume defined by four of these points.

We first present an incremental construction for positioning n points in the unit
3-cube, in which we position one point at a time while maintaining the invariant
that after positioning the vth point, no two, three, or four of the already positioned v
points are “too close together.” In particular, no four points define a tetrahedron with
volume less than 1

c n4 (for some constant c > 0). After each step of the construction
the already v positioned points induce portions of the unit cube in which the next
point Pv+1 cannot be positioned. The task is to position Pv+1 outside the union of
all these “forbidden zones.” We show that this is always possible. Moreover, the
(v+ 1)st point can be positioned anywhere outside the forbidden zones while still not
spoiling the positioning of the remaining points. This is a generalization of Schmidt’s
method [9] for the analog two-dimensional problem; we comment in section 2.2 on
the use of his idea and mention the caveat in the generalization to three dimensions.
The construction gives us a constructive lower bound of Ω(1

n4) which is inferior to the
Ω(1

n3) bound shown in section 3.2. However, it solves a harder problem, the on-line

232 GILL BAREQUET

Heilbronn’s triangle problem, in which the number of points is not known in advance.

2.1. The construction. Denote by dij the distance between the points Pi and
Pj , by ∆ijk the area of the triangle defined by Pi, Pj , and Pk, and by Vijkl the volume
of the tetrahedron defined by Pi, Pj , Pk, and Pl (for 1 ≤ i < j < k < l ≤ n). When
we position the vth point we make sure that

(i) no two points are too close: for all 1 ≤ i < j ≤ v we have dij >
1

an1/3 ;
(ii) no three points are too close to being collinear: for all 1 ≤ i < j < k ≤ v we

have ∆ijk >
1
b n ;

(iii) no four points are too close to being coplanar: for all 1 ≤ i < j < k < l ≤ v
we have Vijkl >

1
c n4 .

The constants a, b, and c are defined later. The first two conditions ensure (as we
detail below) the satisfaction of the third condition, which implies the sought lower
bound: after positioning the nth point, all the tetrahedra defined by quadruples of
points have volume Ω(1

n4).
The main idea is that after positioning the vth point (for 1 ≤ v ≤ n), the

cumulative volume of all the forbidden zones induced by the three conditions is less
than 1. Therefore the construction cannot break down before it is complete. We
do not exploit the fact that the forbidden zones may, and in fact, must overlap.
Thus we obtain by this incremental construction a weaker lower bound than that of
the nonconstructive method of section 3.2. Let us then compute the volumes of the
forbidden zones after the vth step of the construction (throughout the computations
we ignore, as we may, low-order powers of n):

(i) Each of the first v points induces a forbidden ball of radius 1
an1/3 (see Fig-

ure 2(a)). The total forbidden volume of the v balls is

v∑
i=1

4

3
π

(
1

an1/3

)3

=
4π

3a3

(v
n

)
≤ 4π

3a3
.

(ii) Each pair of points Pi and Pj induces a forbidden cylinder of radius 2
b dijn

and of height at most
√

3 (see Figure 2(b)). The total forbidden volume of the
(
v
2

)
cylinders is thus at most

∑
1≤i<j≤v

√
3π

(
2

b dijn

)2

=
4
√

3π

b2n2

∑
1≤i<j≤v

1

d2
ij

.(1)

To bound
∑

1≤i<j≤v
1
d2
ij

, we fix Pi and sum over Pj using a volume-counting argument

∑
1≤j≤v

j �=i

1

d2
ij

≤
√

3an1/3∑
s=1

Nsa
2n2/3

s2
,(2)

whereNs is the number of points (out of the first v points) that lie in the spherical shell
centered at Pi with inner radius s

a n1/3 and outer radius s+1
an1/3 . Since dij >

1
an1/3 ,

we have Ns <
8s2

3 (this follows by an argument of packing spheres—actually, at
least half of each sphere—of volume at least 4π

3a3n within a shell whose volume is
4π(s+1)3

3a3n − 4πs3

3a3n <
16πs2

3a3n). Hence the sum in (2) is less than 8
√

3a3n. Summing up for
all Pi and substituting this in (1), we conclude that the total volume of the forbidden

cylinders is less than 96πa3v
b2n ≤ 96πa3

b2 .

HEILBRONN’S TRIANGLE PROBLEM IN d DIMENSIONS 233

1
an1/3

<
√

3

2
b dijn

(a) Ball (b) Cylinder

(area)
< 3

6
c∆ijkn4

(c) Box

Fig. 2. Forbidden zones.

(iii) Each triple of points Pi, Pj , and Pk induces a forbidden box of height 6
c∆ijkn4

and with base-area at most 3π
4 (see Figure 2(c)). The total forbidden volume of the(

v
3

)
boxes is thus at most

∑
1≤i<j<k≤v

(
3π

4
· 6

c∆ijkn4

)
<

9π

2c n4
· v

3

6
· (b n) =

3πb

4c

(v
n

)3

≤ 3πb

4c
.

After positioning each point, the total volume of the forbidden zones is therefore less

than 4π
3a3 + 96πa3

b2 + 3πb
4c . It is trivial to set values to a, b, and c so that the forbidden

volume is always less than 1.

In section 3.2 we establish a probabilistic construction which yields a better lower
bound for H3(n).

234 GILL BAREQUET

2.2. A comment on the construction. Schmidt has probably used a packing
argument (similar to the one we use for upper bounding the total volume of the
forbidden cylinders) for his incremental positioning of points in the planar version of
the problem. He mentions without proof (see [9, last line of p. 548 and first line of
p. 549]), as this seems trivial, that if dij ≥ 1

2
√
n

, then
∑

1≤i<j≤v
1
dij

< c
√
n v3/2 (for

some constant c > 0). This is easily obtained by a planar packing argument.
We have used this idea for obtaining an efficient upper bound for the total volume

of forbidden cylinders defined by triples of points. However, we were not able to
use a similar idea for bounding the total volume of the forbidden boxes defined by
quadruples of points. (This type of forbidden zone has no counterpart in the planar
version of the problem.)

3. A probabilistic construction in d ≥ 3 dimensions.
3.1. A probabilistic lemma. We generalize a probabilistic argument of Alon

and Spencer [1, p. 30]. Let H(P1, P2, . . . , Pd+1) be a mapping from (d+1)-tuples of
points P1, P2, . . . , Pd+1 ∈ [0, 1]d to
+ ∪ {0}.

Lemma 3.1. If there exist constants c1 > 0, c2 such that

Prob[H(P1, P2, . . . , Pd+1) ≤ ε] ≤ c1εc2 ,
where P1, P2, . . . , Pd+1 are chosen randomly, uniformly, and independently in [0, 1]d,
then there exists a set S of n points in [0, 1]d and a constant c3 > 0 such that

minPi1 ,Pi2 ,...,Pid+1
∈S H(Pi1 , Pi2 , . . . , Pid+1

) > c3n
− d

c2 .

Proof (see [1]). Let P1, P2, . . . , P2n be a set of 2n points selected randomly, uni-

formly, and independently in [0, 1]d. Set c3 = ((d+1)!
2d+1c1

)1/c2 . Let X denote the number

of (d+1)-tuples Pi1 , Pi2 , . . . , Pid+1
for which H(Pi1 , Pi2 , . . . , Pid+1

) ≤ c3n−
d
c2 . Then,

E[X] ≤
(

2n

d+ 1

)
c1(c3n

− d
c2)c2 <

(2n)d+1

(d+ 1)!
· (d+ 1)!

2d+1nd
= n.

Therefore there exists a specific set of 2n points with fewer than n (d+1)-tuples

Pi1 , Pi2 , . . . , Pid+1
for which H(Pi1 , Pi2 , . . . , Pid+1

) ≤ c3n−
d
c2 . Remove one point from

the set from each such (d+1)-tuple. (The same point may be deleted more than
once but this only helps.) This leaves at least n points and now all (d+1)-tuples

Pi1 , Pi2 , . . . , Pid+1
satisfy H(Pi1 , Pi2 , . . . , Pid+1

) > c3n
− d

c2 .
Alon and Spencer [1, p. 30] prove a special case of Lemma 3.1 in which c2 = 1

and d = 2 and use it for showing that H2(n) = Ω(1
n2). Note that the proof of the

lemma does not use the fact that the points are located in a d-dimensional space. The
parameter d plays a role only in the number of arguments of the function H.

3.2. The construction in three dimensions. We now show the following
theorem.

Theorem 3.2. H3(n) = Ω(1
n3).

Proof. Let H3(Pi1 , Pi2 , Pi3 , Pi4) be the volume of the tetrahedron defined by Pi1 ,
Pi2 , Pi3 , and Pi4 . We first bound Prob[H3(Pi1 , Pi2 , Pi3 , Pi4) ≤ ε] (generalizing the
method of [1, p. 30]). Let x be the distance from Pi1 to Pi2 . Then, Prob[b ≤ x ≤ b+ db]
≤ d(4

3πb
3) = 4πb2 db (the difference between the volumes of the corresponding balls).

Let y be the distance from Pi3 to the line �i1i2 that passes through Pi1 and Pi2 .
Then, Prob[c ≤ y ≤ c+ dc] ≤ d(πbc2) = 2πbc dc (the difference between the volumes
of the corresponding cylinders). Given Pi1 and Pi2 at distance b, and Pi3 at distance

HEILBRONN’S TRIANGLE PROBLEM IN d DIMENSIONS 235

c from �i1i2 , the altitude h from Pi4 to the plane defined by Pi1 , Pi2 , and Pi3 satisfies
bch
6 ≤ ε, i.e., h ≤ 6ε

bc . Thus Pi4 must lie within a box of height 12ε
bc and of base-

area at most 3. This occurs with probability at most 36ε
bc . Since 0 ≤ b, c ≤ √3,

Prob[H3(Pi1 , Pi2 , Pi3 , Pi4) ≤ ε] ≤ ∫√3

0

∫√3

0
(4πb2)(2πbc)(36ε

bc)dc db = 864π2ε. Now
apply Lemma 3.1 (with c1 = 864π2, c2 = 1, and d = 3) and conclude that there
exists a set S ⊂ [0, 1]3 of n points for which minPi1 ,Pi2

,Pi3
,Pi4
∈S H3(Pi1 , Pi2 , Pi3 , Pi4)

> 1
5685n3 .

3.3. The construction in d dimensions. Using the method of Theorem 3.2
we are able to show our main result.

Theorem 3.3. Hd(n) = Ω(1
nd).

Proof. We closely follow the previous proof. Let Hd(Pi1 , Pi2 , . . . , Pid+1
) be the

volume of the d-dimensional simplex defined by Pi1 , Pi2 , . . . , Pid+1
and let bk be the

distance from Pik to Ek−1, the (k− 2)-dimensional flat defined by Pi1 , Pi2 , . . . , Pik−1
.

In considering Pik (for 2 ≤ k ≤ d) and estimating the probability that its distance xk
from Ek−1 is in an infinitesimal range, we always have

Prob[bk ≤ xk ≤ bk + dbk] ≤ pk(b2, . . . , bk) dbk,

where pk(b2, . . . , bk) is a polynomial of the form c0,kb
c2,k
2 · · · bck,k

k (ci,k are all positive
constants, i = 0, 2, 3, . . . , k). We apply the condition Hd(Pi1 , Pi2 , . . . , Pid+1

) ≤ ε only
when we consider Pid+1

. Then we conclude that the respective event occurs with

probability at most Cd+1ε
b2···bk (Cd+1 is also a positive constant). Since 0 ≤ bk ≤

√
d (for

2 ≤ k ≤ d),
Prob[Hd(Pi1 , Pi2 , . . . , Pid+1

) ≤ ε]

≤
∫ √d

0

∫ √d
0

. . .

∫ √d
0︸ ︷︷ ︸

d− 1 integrations

p2(b2)p3(b2, b3) · · · pd(b2, b3, . . . , bd)
(
Cd+1ε

b2 · · · bk

)
dbk · · · db3 db2

= Cdε,
where the constant Cd > 0 depends only on d. Now apply Lemma 3.1 (with c1 = Cd
and c2 = 1) and the claim follows.

4. An alternative proof. In this section we give an alternative proof to Theo-
rem 3.3 by generalizing Erdős’s example [5, appendix] that shows thatH2(n) = Ω(1

n2).
Assume that n is prime. (This involves no loss of generality since the ratio of

consecutive primes is asymptotically 1.) Put n points on the d-dimensional moment
curve (modulo n), so that their coordinates are integer multiples of 1/n. That is, take
the ith point (for 0 ≤ i ≤ n − 1) to be Pi = (i/n, (i2 mod n)/n, . . . , (id mod n)/n).
Now choose any d + 1 points Pi1 , Pi2 , . . . , Pd+1. The volume of the d-dimensional
simplex defined by these points is a Vandermonde determinant of order d+ 1:

1

d!nd

∣∣∣∣∣∣∣∣∣∣∣∣

1 i1 i21 · · · id1
1 i2 i22 · · · id2
· · · · · · ·
· · · · · · ·
· · · · · · ·
1 id+1 i2d+1 · · · idd+1

∣∣∣∣∣∣∣∣∣∣∣∣
mod n

=
(
∏

1≤j<k≤d+1(ik − ij)) mod n

d!nd
.

This term cannot vanish; hence Hd(n) ≥ 1
d!nd .

236 GILL BAREQUET

Although the moment-curve example is much simpler than the probabilistic con-
struction given in the previous section, the latter is more general and can be applied
for other versions of the problem:

1. The probabilistic construction also holds for the more general case in which
one is asked to position n points in a nonconvex shape of unit volume, or, in fact, to
any shape, possibly not simply connected or not connected at all, of unit volume. The
moment-curve example can be applied (with the appropriate scaling) to any convex
unit-volume shape, since such shape always circumscribes a box of constant volume,2

but it cannot be used for concave shapes.
2. The probabilistic construction can be applied for other measures of d + 1

points in d dimensions in addition to the volume of the polytope defined by the
points. For example, let L3(Pi1 , Pi2 , Pi3 , Pi4) be the sum of lengths of the edges of
the tetrahedron defined by the points Pi1 , Pi2 , Pi3 , and Pi4 , and let L3(n) be the
minimum of L3 taken over all quadruples of points of S spread in the unit cube, in
the distribution of a set S of n points in which this value assumes its maximum.
The moment-curve example sets L3(n) = Ω(1

n). An easy calculation shows that
Prob[L3(Pi1 , Pi2 , Pi3 , Pi4) ≤ ε] = O(ε7); hence the application of Lemma 3.1 yields a
better lower bound of Ω(1

n3/7). In fact, spreading the points on the vertices of a full

regular grid gives the optimum distribution for this measure: L3(n) = Θ(1
n1/3). (The

matching upper bound is shown by a simple volume-counting argument: a full grid
whose step is (4

n)1/3 must have a cell that contains at least four points.)

5. Conclusion. In this paper we give a lower bound for the d-dimensional ver-
sion of Heilbronn’s triangle problem. We believe that as in the planar case the lower
bound can still be improved. We also show a constructive (but weaker) lower bound
in three dimensions.

Possible further research directions include the following:
1. obtaining an upper bound for Hd(n);
2. optimizing other measures of tetrahedra (or simplices) in d dimensions;
3. developing algorithms that, given values of n and d, and a specific measure of

a d-dimensional simplex, find an optimal positioning of n points in the d-dimensional
unit cube.

REFERENCES

[1] N. Alon and J. H. Spencer, The Probabilistic Method, John Wiley, New York, 1992.
[2] G. Barequet and S. Har-Peled, Efficiently approximating the minimum-volume bounding

box of a point set in three dimensions, J. Algorithms, 38 (2001), pp. 91–109.
[3] J. Komlós, J. Pintz, and E. Szemerédi, On Heilbronn’s triangle problem, J. London Math.

Soc. (2), 24 (1981), pp. 385–396.
[4] J. Komlós, J. Pintz, and E. Szemerédi, A lower bound for Heilbronn’s problem, J. London

Math. Soc. (2), 25 (1982), pp. 13–24.
[5] K. F. Roth, On a problem of Heilbronn, Proc. London Math. Soc., 26 (1951), pp. 198–204.
[6] K. F. Roth, On a problem of Heilbronn II, Proc. London Math. Soc. (3), 25 (1972), pp. 193–

212.
[7] K. F. Roth, On a problem of Heilbronn III, Proc. London Math. Soc. (3), 25 (1972), pp. 543–

549.
[8] K. F. Roth, Developments in Heilbronn’s triangle problem, Adv. Math., 22 (1976), pp. 364–

385.
[9] W. M. Schmidt, On a problem of Heilbronn, J. London Math. Soc. (2), 4 (1971), pp. 545–550.

2See, e.g., Lemma 3.4 of [2].

A NOTE ON ITERATING AN α-ARY GRAY CODE∗

CHI-JEN LU† AND SHI-CHUN TSAI‡

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 2, pp. 237–239

Abstract. In this note we consider the number of distinct α-ary codes produced by repeatedly
applying the Gray code mapping of Sharma and Khanna [Inform. Sci., 15 (1978), pp. 31–43]. This
number was derived before by Lichtner [SIAM J. Discrete Math., 11 (1998), pp. 381–386], and we
give an alternative proof here. Our key observation is a simple connection between this number and
the period of binomial coefficients modulo α. Then the result follows immediately from a known
periodic property of binomial coefficients modulo α [Fibonacci Quart., 27 (1989), pp. 64–79; SIAM
J. Discrete Math., 9 (1996), pp. 55–62; Ann. Univ. Mariae Curie-Sklodowska Sect. A, 10 (1956),
pp. 37–47].

Key words. gray code, binomial coefficient

AMS subject classifications. 68Q25, 68R01

PII. S0895480100367688

1. Introduction. Let � and α be positive integers greater than one. An α-ary
Gray code of dimension � is a sequence of α� distinct α-ary strings of length � such
that any two adjacent strings differ in exactly one position. Therefore a Gray code
corresponds to a bijection, mapping integers between 0 and α� − 1 to α-ary strings
of length �. When viewing such integers in base α with � digits, the mapping can
be seen as a permutation among α-ary strings of length �. Sharma and Khanna [4]
defined one such mapping, denoted by K, in the following way.

Definition 1.1 (see [4]). K(x1x2 · · ·x�) = g1g2 · · · g�, where

gi =

{
x1 if i = 1,
xi − xi−1 (mod α) 1 < i ≤ �.

Equivalently, K−1(g1g2 · · · g�) = x1x2 · · ·x�, where

xi =

{
g1 if i = 1,
gi + xi−1 (mod α) 1 < i ≤ �.

Culberson [1] and Lichtner [3] studied the number of distinct sets of codes that can
be generated by repeated applications of the mapping K. This is the same question
as determining the order of the mapping K, defined in the following.

Definition 1.2. Let K0 = I, the identity mapping, i.e., I(x) = x for all x. For
i ≥ 0, let Ki+1 = K ◦ Ki, i.e., Ki+1(x) = K(Ki(x)). The order of K is the smallest
positive integer m such that Km = I. Similarly, we can define K−(i+1) = K−1 ◦ K−i
for i ≥ 0.

Note that the order of K is the same as the order of K−1, and we will work on K−1

instead. Lichtner [3] derived an explicit formula for the order of K−1. In this note,

∗Received by the editors February 1, 2000; accepted for publication (in revised form) January 9,
2001; published electronically April 3, 2001.

http://www.siam.org/journals/sidma/14-2/36768.html
†Institute of Information Science, Academia Sinica, Nankang 11529, Taipei, Taiwan (cjlu@iis.

sinica.edu.tw).
‡Department of Information Management, National Chi-Nan University, 1 University Road, Pu-

Li, Nan-Tou 545, Taiwan (tsai@csie.ncnu.edu.tw). The work of this author was supported in part
by the National Science Council of Taiwan under contract NSC 89-2213-E-260-009.

237

238 CHI-JEN LU AND SHI-CHUN TSAI

we give an alternative proof for Lichtner’s result. The key idea is an observation on
a simple connection between the order of K−1 and the period of binomial coefficients
modulo α. Then the result follows immediately from a known periodic property of
binomial coefficients modulo α [2, 5, 6].

In section 2, we state some relevant results. In section 3, we prove our main
technical lemma. Finally, we conclude with some remarks in section 4.

2. Results. Let x = x1x2 · · ·x�. Define xi = K−i(x) for i ≥ 0 with x0 =
K0(x) = x. Let xij denote the jth digit of xi. Here are some simple facts.

Lemma 2.1 (see [3]).
1. xij ≡ xij−1 + xi−1

j (mod α), where i ≥ 1 and 1 < j ≤ �.
2. xij ≡

∑j
k=1

(
i+j−k−1
j−k

)
xk (mod α), where i ≥ 1 and 1 ≤ j ≤ �.

3. If
(
i+j−2
j−1

) ≡ 0 (mod α), for 2 ≤ j ≤ �, then xi = x.

4. Let x = x1x2 · · ·x� be an α-ary string such that x1 	≡ 0 (mod α) and
GCD(x1, α) = 1. If there is a j, 2 ≤ j ≤ �, such that

(
i+j−2
j−1

) 	≡ 0 (mod α),

then xi 	= x.
Lemma 2.1(1–2) follows from the definition of K and by induction. Lemma 2.1(3–

4) follows from Lemma 2.1(1–2).
From now on, we assume that α has the form of

α = pn1
1 · · · pnq

q ,

where pi’s are distinct primes and ni’s are positive integers. Lichtner generalized
Culberson’s result [1] and proved the following theorem.

Theorem 2.2 (see [3]). Let � > 1 and let ei =
logpi(�− 1)� for 1 ≤ i ≤ q. Then

the order of K−1 is exactly L =
∏q
i=1 p

ni+ei
i .

We will give a more straightforward proof of Lichtner’s theorem above, given the
following known result on the period of the function fα,k, defined as

fα,k(x) =

(
x

k

)
(mod α).

Lemma 2.3 (see [2, 5, 6]). Let k be a positive integer and let di =
logpi k� for

1 ≤ i ≤ q. Then the period of the function fα,k is exactly
∏q
i=1 p

ni+di
i .

Corollary 2.4. For any positive integers k1, k2 with k1 ≤ k2, the period of fα,k1
divides the period of fα,k2 .

Our main technical contribution is the following simple connection.
Lemma 2.5. The order of K−1 is the same as the period of the function fα,�−1.
Lemmas 2.3 and 2.5 together immediately imply Theorem 2.2. It remains to prove

Lemma 2.5.

3. Proof of Lemma 2.5. Let x = x1x2 · · ·x� be an arbitrary α-ary string and
let xi = K−i(x). Item 2 of Lemma 2.1 states that

xi1 ≡
(
i− 1

0

)
x1 (mod α),

xi2 ≡
(
i

1

)
x1 +

(
i− 1

0

)
x2 (mod α),

xi3 ≡
(
i+ 1

2

)
x1 +

(
i

1

)
x2 +

(
i− 1

0

)
x3 (mod α),

ITERATING GRAY CODE 239

...

xi� ≡
(
i+ �− 2

�− 1

)
x1 +

(
i+ �− 3

�− 2

)
x2 + · · ·+

(
i

1

)
x�−1 +

(
i− 1

0

)
x� (mod α).

Observe that there are � different binomial coefficients above, so K−i is completely
determined by the vector ci = ci1c

i
2 · · · ci�, where

cij =

(
i+ j − 2

j − 1

)
(mod α).

We use the convention that
(
a
0

)
= 1 for any integer a. Note that c0 = 100 · · · 0. As i

increases, the vector ci changes in a periodic fashion due to the periodic behavior of
its components. Recall that L =

∏q
i=1 p

ni+ei
i . We show that the period is L and the

cycle occurs exactly when the vector becomes 100 · · · 0 again.
Clearly cL1 = 1. From Lemma 2.3 and Corollary 2.4, we know that for 1 < j ≤ �,

cLj =
(
L+j−2
j−1

)
(mod α) =

(
0+j−2
j−1

)
(mod α) = 0. Therefore cL = 100 · · · 0 = c0.

Now, as ci1 = 1 and for j > 1,

cij = cij−1 + ci−1
j (mod α),

we see that the vector ci is completely determined by the vector ci−1. Therefore
the same pattern repeats again from cL. The cycle could not be shorter since ci� =
fα,�−1(i + � − 2), considered as a function of i, has a period of exactly L. Therefore
L is the smallest positive integer i such that ci = c0.

Since cL = 100 · · · 0, K−L is the identity mapping. On the other hand, for any
positive i < L, ci 	= 100 · · · 0. Item 4 of Lemma 2.1 tells us that K−ix 	= x for any x
with x1 = 1 and thus K−i 	= I. Therefore the order of K−1 is exactly L.

4. Conclusion and remarks. By using the periodic property of binomial co-
efficients, we give a proof on the order of the mapping K. Lichtner’s proof could have
been more straightforward if he had known the periodic property of binomial coef-
ficients. Such a periodic property has also been applied to results in computational
complexity [5]. We expect that this nice property should have more applications to
be discovered.

REFERENCES

[1] J. Culberson, Mutation-crossover isomorphisms and the construction of discriminating func-
tions, Evolutionary Comput., 2 (1995), pp. 279–311.

[2] Y.H. Kwong, Minimum periods of binomial coefficients modulo M, Fibonacci Quart., 27 (1989),
pp. 64–79.

[3] J. Lichtner, Iterating an α-ary Gray code, SIAM J. Discrete Math., 11 (1998), pp. 381–386.
[4] B.D. Sharma and R.K. Khanna, On m-ary Gray codes, Inform. Sci., 15 (1978), pp. 31–43.
[5] S-C. Tsai, Lower bounds on representing boolean functions as polynomials in Zm, SIAM J.

Discrete Math., 9 (1996), pp. 55–62.

[6] S. Zabek, Sur la periodicite modulo m des suits de nombres
(
n
k

)
, Ann. Univ. Mariae Curie-

Sklodowska Sect. A, 10 (1956), pp. 37–47.

THE NUMBER OF IRREDUCIBLE POLYNOMIALS AND LYNDON
WORDS WITH GIVEN TRACE∗

F. RUSKEY† , C. R. MIERS‡ , AND J. SAWADA†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 2, pp. 240–245

Abstract. The trace of a degree n polynomial f(x) over GF (q) is the coefficient of xn−1. Carlitz
[Proc. Amer. Math. Soc., 3 (1952), pp. 693–700] obtained an expression Iq(n, t) for the number
of monic irreducible polynomials over GF (q) of degree n and trace t. Using a different approach,
we derive a simple explicit expression for Iq(n, t). If t > 0, Iq(n, t) = (

∑
µ(d)qn/d)/(qn), where

the sum is over all divisors d of n which are relatively prime to q. This same approach is used to
count Lq(n, t), the number of q-ary Lyndon words whose characters sum to t mod q. This number is
given by Lq(n, t) = (

∑
gcd(d, q)µ(d)qn/d)/(qn), where the sum is over all divisors d of n for which

gcd(d, q)|t. Both results rely on a new form of Möbius inversion.

Key words. irreducible polynomial, trace, finite field, Lyndon word, Möbius inversion

AMS subject classifications. 05T06, 11T06

PII. S0895480100368050

1. Introduction. The trace of a degree n polynomial f(x) over GF (q) is the co-
efficient of xn−1. It is well known that the number of degree n irreducible polynomials
over GF (q) is given by

Iq(n) =
1

n

∑
d|n
µ(d)qn/d,(1.1)

where µ(d) is the Möbius function. Less well known is the formula

I2(n, 1) =
1

2n

∑
d|n

d odd

µ(d)2n/d,(1.2)

which is the number of degree n irreducible polynomials over GF (2) with trace 1 (this
can be inferred from results in Jungnickel [3, section 2.7]). One purpose of this paper
is to refine (1.1) and (1.2) by enumerating the irreducible degree n polynomials over
GF (q) with a given trace. Carlitz [1] also solved this problem, arriving via a different
technique at an expression that is different but equivalent to the one given below.
Our version of the result is stated in Theorem 1.1.

Theorem 1.1. Let q be a power of prime p. The number of irreducible polyno-
mials of degree n > 0 over GF (q) with a given nonzero trace t is

Iq(n, t) =
1

qn

∑
d|n
p�d

µ(d)qn/d.(1.3)

∗Received by the editors January 10, 2000; accepted for publication (in revised form) January 2,
2001; published electronically April 3, 2001.

http://www.siam.org/journals/sidma/14-2/36805.html
†Department of Computer Science, University of Victoria, EOW 348, 3800 Finnerty Road, P.O.

Box 3055–MS 7209, Victoria, BC V8W 3P6, Canada (fruskey@csr.uvic.ca, jsawada@csr.uvic.ca).
The research of these authors was supported in part by NSERC.

‡Department of Mathematics and Statistics, University of Victoria, Clearihue Building, Room
D268, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada (crmiers@math.uvic.ca).

240

POLYNOMIALS AND LYNDON WORDS WITH GIVEN TRACE 241

Note that the expression on the right-hand side of (1.3) is independent of t and that
Iq(n, 0) can be obtained by subtracting

Iq(n, 0) = Iq(n)− (q − 1)Iq(n, 1).
A Lyndon word is the lexicographically smallest rotation of an aperiodic string.

If Lq(n) denotes the number of q-ary Lyndon words of length n, then it is well known
that Lq(n) = Iq(n). The trace of a Lyndon word is the sum of its characters mod
q. Let Lq(n, t) denote the number of Lyndon words of trace t. The second purpose
of this paper is to obtain an explicit formula for Lq(n, t). This result is stated in
Theorem 1.2.

Theorem 1.2. For all integers n > 0, q > 1, and t ∈ {0, 1, . . . , q − 1},

Lq(n, t) =
1

qn

∑
d|n

gcd(d,q)|t

gcd(d, q)µ(d)qn/d.

Note that Iq(n, t) = Lq(n, s) whenever t �= 0 and gcd(n, s) = 1. In order to prove
Theorems 1.1 and 1.2 we need a new form of Möbius inversion. This is presented in
the next section.

2. A generalized Möbius inversion formula. The defining property of the
Möbius functions is ∑

d|n
µ(d) = [[n = 1]],(2.1)

where [[P]] for proposition P represents the “Iversonian convention”: [[P]] has value 1
if P is true and value 0 if P is false (see [4, p. 24]).

Definition 2.1. Let R be a set, N = {1, 2, 3, . . .}, and let {X(d, t)}t∈R,d∈N be a
family of subsets of R. We say that {X(d, t)}t∈R,d∈N is recombinant if

(i) X(1, t) = {t} for all t ∈ R and
(ii) {e′ ∈ X(d′, e) : e ∈ X(d, t)} = {e ∈ X(dd′, t)} for all d, d′ ∈ N, t ∈ R.
Theorem 2.2. Let {X(d, t)}t∈R,d∈N be a recombinant family of subsets of R.

Let A : N×R → C and B : N×R → C be functions, where C is a commutative ring
with identity. Then

A(n, t) =
∑
d|n

∑
e∈X(d,t)

B
(n
d
, e
)

for all n ∈ N and t ∈ R if and only if

B(n, t) =
∑
d|n
µ(d)

∑
e∈X(d,t)

A
(n
d
, e
)

for all n ∈ N and t ∈ R.
Proof. Consider the sum, call it S, on the right-hand side of the first equation

S =
∑
d|n

∑
e∈X(d,t)

B
(n
d
, e
)

=
∑
d|n

∑
e∈X(d,t)

∑
d′|(n/d)

∑
e′∈X(d′,e)

µ(d′)A
(n
dd′
, e′
)

=
∑
d|n

∑
dd′|n

µ(d′)
∑

e∈X(d,t)

∑
e′∈X(d′,e)

A
(n
dd′
, e′
)
.

242 F. RUSKEY, C. R. MIERS, AND J. SAWADA

Now substitute f = dd′ and use recombination to get

S =
∑
d|n

∑
f |n
[[f = dd′]]µ

(
f

d

) ∑
e∈X(d,t)

∑
e′∈X(d′,e)

A

(
n

f
, e′
)

=
∑
f |n

∑
d|f
µ

(
f

d

) ∑
e∈X(f,t)

A

(
n

f
, e

)

=
∑
f |n

∑
e∈X(f,t)

A

(
n

f
, e

)∑
d|f
µ

(
f

d

)

=
∑
f |n

∑
e∈X(f,t)

A

(
n

f
, e

)
[[f = 1]]

= A(n, t).

Verification in the other direction is similar and is omitted.
Lemma 2.3. Let d ∈ N and e, t be members of an additive monoid R. The sets

{e : de = t} form a recombinant family.
Proof. Here de means e+ e+ · · ·+ e (d terms). Suppose that de = t and d′e′ = e.

Clearly, dd′e′ = t. Conversely, if dd′e′ = t, then d′e′ is equal to some element of R,
call it e. Then d′e′ = e and de = t.

Corollary 2.4. For a fixed prime power q, the sets Xq(d, t) = {e ∈ GF (q) :
de = t} form a recombinant family of subsets of GF (q).

Corollary 2.5. For a fixed integer q, the sets Xq(d, t) = {e ∈ Zq : de ≡ t(q)}
form a recombinant family of subsets of Zq, where Zq are the integers mod q.

3. Irreducible polynomials with given trace. In this section, the irreducible
polynomials with a given trace are counted. We begin by introducing some notation
that will be used in the remainder of the paper. We use Jungnickel [3] as a reference
for terminology and basic results from finite field theory.
The trace of an element β ∈ GF (qn) over GF (q) is denoted Tr(β) and is given

by

Tr(β) = β + βq + βq
2

+ · · ·+ βqn−1

.

If β ∈ GF (qn) and d is the smallest positive integer for which βqd = 1, then f(x)
is the minimal polynomial of β, denoted Min(β), where

f(x) = (x− β)(x− βq) · · · (x− βqd−1

).

The value of d must be a divisor of n.
Let Irrq(n, t) denote the set of all monic irreducible polynomials over GF (q) of

degree n and trace t. By a · Irrq(n, t) we denote the multiset consisting of a copies of
Irrq(n, t). Classic results of finite field theory imply the following equality of multisets:

⋃
β∈GF(qn)

{Min(β)} =
⋃
d|n
d · Irrq(d) =

⋃
d|n

n

d
· Irrq

(n
d

)
,(3.1)

where Irrq(d) is the set of monic irreducible polynomials of degree d over GF (q).
From (3.1) it is easy to derive (1.1) via a standard application of Möbius inversion.

POLYNOMIALS AND LYNDON WORDS WITH GIVEN TRACE 243

Now we restrict the equality (3.1) to trace t field elements to obtain

⋃
β∈GF(qn)
Tr(β)=t

{Min(β)} =
⋃
d|n

n

d
·
{
f ∈ Irrq

(n
d

)
: Tr(fd) = t

}
(3.2)

=
⋃
d|n

n

d
·
{
f ∈ Irrq

(n
d

)
: d · Tr(f) = t

}
(3.3)

=
⋃
d|n

⋃
de=t

n

d
·
{
f ∈ Irrq

(n
d

)
: Tr(f) = e

}
(3.4)

=
⋃
d|n

⋃
de=t

n

d
·
{
f ∈ Irrq

(n
d
, e
)}
.(3.5)

Note that the equation de = t is asking whether the d-fold sum of e ∈ GF (q)
is equal to t ∈ GF (q). We use the notation GF (qn, t) for the set of elements in
GF (qn) with trace t, for t = 0, 1, . . . , q − 1, where q = pm and p is prime. Consider
the map ρ that sends α to α + γ, where γ ∈ GF (qn) has trace 1. We claim that
ρ(GF (qn, t)) = GF (qn, t + 1), and so the number of elements is the same for each
trace value. Thus

|GF (qn, t)| = qn−1.

Taking cardinalities in (3.5) gives

qn−1 =
∑
d|n

∑
de=t

n

d
Iq

(n
d
, e
)
.

From Theorem 2.2 and Corollary 2.4, we obtain

Iq(n, t) =
1

qn

∑
d|n

∑
de=t

µ(d)qn/d.

The equation de = t where d is an integer and e, t ∈ GF (q) has a unique solution
e if t �= 0 and p � d. If t = 0, then there is one solution e = 0 if p � d and there are q
solutions if p | d. Thus, if t �= 0, then

Iq(n, t) =
1

qn

∑
d|n
p�d

µ(d)qn/d,

thereby proving Theorem 1.1. Otherwise, if t = 0, then

Iq(n, 0) = Iq(n, 1) +
1

n

∑
d|n
p|d

µ(d)qn/d.

4. Lyndon words with given trace. If a = a1a2 · · · an is a word, then we
define its trace mod q, Trq(a), to be

∑
ai mod q. Let Lq(n, t) denote the number

of q-ary Lyndon words of length n and trace t mod q. Note that any q-ary string of
length n can be expressed as the concatenation of d copies of the rotation of some
Lyndon word of length n/d for some d | n. Note further that there are precisely qn−1

244 F. RUSKEY, C. R. MIERS, AND J. SAWADA

words of length n with trace t because any word of length n− 1 can have a final nth
character appended in only one way to have trace t. It therefore follows that

qn−1 =
∑
d|n

∑
de≡t(q)

n

d
Lq

(n
d
, e
)
.(4.1)

This can be solved using Theorem 2.2 and Corollary 2.5 to yield

nLq(n, t) =
∑
d|n
µ(d)

∑
de≡t(q)

qn/d−1.

Hence

Lq(n, t) =
1

qn

∑
d|n

gcd(q,d)|t

gcd(q, d)µ(d)qn/d.(4.2)

Equation (4.2) is true because de ≡ t(q) has a solution if and only if gcd(d, q) | t.
If a solution exists, then it has precisely gcd(d, q) solutions (e.g., [2, Corollary 33.22,
p. 821]). This proves Theorem 1.2.
We could also consider the more general question of computing Lq,r(n, t), the

number of q-ary Lyndon words with trace mod r, and derive similar but more compli-
cated formulae. If Mq(n, t) is the number of q-ary length n strings whose characters
sum to t, then clearly Mq(1, t) = [[0 ≤ t < q]] and for n > 1

Mq(n, t) =

q∑
i=0

Mq(n− 1, t− i).

If Tq,r(n, t) denotes the number of q-ary length n strings with trace mod r equal to t,
then

Tq,r(n, t) =
∑
s≡t(r)

Mq(n, s).

Using the same approach as before

Lq,r(n, t) =
1

n

∑
d|n
µ(d)

∑
de≡t(r)

Tq,r

(n
d
, e
)
.

The equation for Lq,r(n, t) seems to produce no particularly nice formulae, except
in the case seen previously where q = r or if q = 2. When q = 2, M2(n, t) =

(
n
t

)
and

T2,r(n, t) =
∑
s≡t(r)

(
n

s

)
.

However, in this case there is already a well-known formula for the number of Lyndon
words with k 1’s, namely,

P2(n, k) =
1

n

∑
d|gcd(n,k)

µ(d)

(
n/d

k/d

)
,

from which we obtain L2,r(n, t) =
∑
s≡t(2) P2(n, s).

POLYNOMIALS AND LYNDON WORDS WITH GIVEN TRACE 245

5. Final remarks. Our generalized Möbius inversion theorem can be extended
to a Möbius inversion theorem on posets. Background material on Möbius inversion
on posets may be found in Stanley [5]. We state here the modified definition of
recombinant and the inversion theorem but omit the proof.

Definition 5.1. Let P be a poset, let R be a set, and let {X(y, x, t)}x,y∈P,y
x,t∈R
be a family of subsets of R. The family {X(y, x, t)}x,y∈P,y
x,t∈R is recombinant if

(i) X(x, x, t) = {t} for all t ∈ R and
(ii) {e′ ∈ X(z, y, e) : e ∈ X(y, x, t)} = {e ∈ X(z, x, t)} for all z � y � x ∈

P, t ∈ R.
We note that if P is the divisor lattice and R is an additive monoid, then the

collection {X(x, y, t)}x,y∈P,x≤y,t∈R where X(x, y, t) = {e ∈ R : (y/x)e = t} is recom-
binant, as per Lemma 2.3.

Theorem 5.2. Let P be a poset, let R be a set, and let {X(y, x, t)}x,y∈P,y
x,t∈R
be a recombinant family. Let A : P ×R → C, and B : P ×R → C, be functions where
C is a commutative ring with identity. Then

A(x, t) =
∑
y
x

∑
e∈X(y,x,t)

B(y, e)

for all x ∈ P and t ∈ R if and only if

B(x, t) =
∑
y
x

µ(y, x)
∑

e∈X(y,x,t)

A(y, e)

for all x ∈ P and t ∈ R. (Here µ(y, x) is the Möbius function of the poset P.)
Tables of the numbers Iq(n, t) and Lq(n, t) for small values of q and nmay be found

on Frank Ruskey’s combinatorial object server (COS) at www.theory.csc.uvic.ca/

˜cos/inf/{lyndon.html,irreducible.html}. They also appear in Neil Sloane’s on-line
encyclopedia of integer sequences (at http://www.research.att.com/˜njas/sequences/)
as I2(n, 0) = L2(n, 0) = A051841, I2(n, 1) = L2(n, 1) = A000048, I3(n, 0) = L3(n, 0) =
A046209, I3(n, 1) = L3(n, 1) = A046211, L4(n, 0) = A054664, I4(n, 1) = L4(n, 1) =
A054660, L5(n, 0) = A054661, I5(n, 1) = L5(n, 1) = A054662, L6(n, 0) = A054665,
L6(n, 1) = A054666, L6(n, 2) = A054667, L6(n, 3) = A054700.

Acknowledgment. The authors wish to thank Aaron Gulliver for helpful dis-
cussions regarding this paper.

REFERENCES

[1] L. Carlitz, A theorem of Dickson on irreducible polynomials, Proc. Amer. Math. Soc., 3
(1952), pp. 693-700.

[2] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, McGraw-Hill,
New York, 1990.

[3] D. Jungnickel, Finite Fields: Structure and arithmetics, B.I. Wissenschaftsverlag, Mannheim,
Germany, 1993.

[4] D.E. Knuth, R.L. Graham, and O. Patashnik, Concrete Mathematics, Addison-Wesley,
Reading, MA, 1989.

[5] R.P. Stanley, Enumerative Combinatorics, Vol. I, Cambridge University Press, Cambridge,
UK, 1997.

A 0.5-APPROXIMATION ALGORITHM FOR MAX DICUT WITH
GIVEN SIZES OF PARTS∗

ALEXANDER AGEEV† , REFAEL HASSIN‡ , AND MAXIM SVIRIDENKO§

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 2, pp. 246–255

Abstract. Given a directed graph G and an arc weight function w : E(G)→ R+, the maximum
directed cut problem (max dicut) is that of finding a directed cut δ(X) with maximum total weight.
In this paper we consider a version of max dicut—max dicut with given sizes of parts or max
dicut with gsp—whose instance is that of max dicut plus a positive integer p, and it is required
to find a directed cut δ(X) having maximum weight over all cuts δ(X) with |X| = p. Our main
result is a 0.5-approximation algorithm for solving the problem. The algorithm is based on a tricky
application of the pipage rounding technique developed in some earlier papers by two of the authors
and a remarkable structural property of basic solutions to a linear relaxation. The property is that
each component of any basic solution is an element of a set {0, δ, 1/2, 1− δ, 1}, where δ is a constant
that satisfies 0 < δ < 1/2 and is the same for all components.

Key words. approximation algorithm, directed cut, linear relaxation, basic solution

AMS subject classifications. 68W25, 05C85, 90C27, 90C35

PII. S089548010036813X

1. Introduction. Let G be a directed graph. A directed cut in G is defined
to be the set of arcs leaving some vertex subset X (we denote it by δ(X)). Given a
directed graph G and an arc weight function w : E(G)→ R+, the maximum directed
cut problem (max dicut) is that of finding a directed cut δ(X) with maximum total
weight. In this paper we consider a version of max dicut (max dicut with given
sizes of parts or max dicut with gsp) whose instance is that of max dicut plus
a positive integer p, and it is required to find a directed cut δ(X) having maximum
weight over all cuts δ(X) with |X| = p. max dicut is well known to be NP-hard and
so is max dicut with gsp as the former evidently reduces to the latter.

The NP-hardness of max dicut follows from the observation that the well-known
undirected version of max dicut—the maximum cut problem (max cut), which is
on the original Karp’s list of NP-complete problems [Ka72]—reduces to max dicut
by substituting each edge for two oppositely oriented arcs. This means that for both
problems there is no choice but to develop approximation algorithms. Nevertheless,
this task turned out to be highly nontrivial, as for a long time it was an open problem
whether it is possible to design approximations with factors better than trivial 1/2
for max cut and 1/4 for max dicut. Only quite recently, using a novel technique
of rounding semidefinite relaxations, Goemans and Williamson [GW95] worked out
algorithms solving max cut and max dicut approximately within factors of 0.878
and 0.796, respectively. A bit later Feige and Goemans [FG95] developed an algorithm
for max dicut with a better approximation ratio of 0.859. Recently, using a new

∗Received by the editors February 18, 2000; accepted for publication (in revised form) January
10, 2001; published electronically April 3, 2001.

http://www.siam.org/journals/sidma/14-2/36813.html
†Sobolev Institute of Mathematics, pr. Koptyuga 4, Novosibirsk 630090, Russia (ageev@math.

nsc.ru). The research of this author was partially supported by the Russian Foundation for Basic
Research, grant 99-01-00601.

‡Department of Statistics and Operations Research, School of Mathematical Sciences, Tel Aviv
University, Tel Aviv 69978, Israel (hassin@math.tau.ac.il).

§IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (sviri@us.ibm.
com). The research of this author was partially supported by the Russian Foundation for Basic
Research, grant 99-01-00510.

246

AN APPROXIMATION ALGORITHM FOR MAX DICUT 247

method of rounding linear relaxations—the pipage rounding—Ageev and Sviridenko
[AS99] developed a 0.5-approximation algorithm for the version of max cut in which
the parts of a vertex set bipartition are constrained to have given sizes (max cut with
given sizes of parts or max cut with gsp). Later Hassin and Rubinstein [HR00]
presented a different 0.5-approximation with a better running time. The paper [AS00]
presents an extension of the algorithm in [AS99] to a hypergraph generalization of max
cut with gsp. Feige and Langberg [FL99] combined the method in [AS99] with the
semidefinite programming approach to design a 0.5 + ε-approximation for max cut
with gsp, where ε is some unspecified small positive number.

It is easy to see that max cut with gsp reduces to max dicut with gsp in
the same way as max dicut reduces to max cut. However, unlike max cut with
gsp, max dicut with gsp provides no possibilities for a straightforward application
of the pipage rounding since the F/L lower bound condition in the description of the
method (see section 2) does not, in general, hold.

Fortunately, the other main condition, ε-convexity, always holds. In the final
section of this paper, we show that the F/L lower bound condition is still satisfied
with C = 0.5 in the case when the arc weights form a circulation in the given graph
as well as when the parts of a cut are restricted to have the same size (the digraph
bisection problem). Thus, these cases can be approximated within a factor of 0.5
by the direct application of the pipage rounding method.

The main result of this paper is an algorithm that finds a feasible dicut of weight
within a factor of 0.5 in the case of arbitrary weights. It turns out that to construct
such an algorithm one needs to carry out a more profound study of the problem struc-
ture. A heaven-sent opportunity is provided by a remarkable structural property of
basic solutions to a linear relaxation (Theorem 4.1). At this point we should notice
the papers of Jain [Ja98] and Melkonian and Tardos [MT99], where exploiting struc-
tural properties of basic solutions was also crucial in designing better approximations
for some network design problems.

The resulting algorithm (DIRCUT) is of rounding type and as such consists of
two phases: the first phase is to find an optimal (fractional) solution to a linear
relaxation; the second (rounding) phase is to transform this solution to a feasible
(integral) solution. A special feature of the rounding phase is that it uses two different
rounding algorithms (ROUND1 and ROUND2) based on the pipage rounding method
and takes the best solution for the output. The worst-case analysis of the algorithm
relies heavily on Theorem 4.1.

2. Pipage rounding: A general scheme. In this section, to make the paper
self-contained, we give a general description of the pipage rounding method as it was
presented in [AS99].

Assume that a problem P can be formulated as the following nonlinear binary
program:

max F (x)(2.1)

subject to (s.t.)
n∑
i=1

xi = p,(2.2)

0 ≤ xi ≤ 1, i = 1, . . . , n,(2.3)

xi ∈ {0, 1}, i = 1, . . . , n,(2.4)

where p is a positive integer and F (x) is a function defined on the rational points
x = (xi) of the n-dimensional cube [0, 1]n and computable in polynomial time. Further

248 A. AGEEV, R. HASSIN, AND M. SVIRIDENKO

assume that one can associate with F (x) another function, L(x), which is defined on
the same set, coincides with F (x) on binary x satisfying (2.2), and the program

max L(x)(2.5)

s.t.

n∑
i=1

xi = p,(2.6)

0 ≤ xi ≤ 1, i = 1, . . . , n,(2.7)

which we call a nice relaxation, is polynomially solvable. Next assume that the fol-
lowing two main conditions hold:

F/L lower bound condition: there exists a constant C such that 0 < C ≤ 1 and
F (x) ≥ CL(x) for each rational point x in [0, 1]n;

ε-convexity condition: the function

ϕ(ε, x, i, j) = F (x1, . . . , xi + ε, . . . , xj − ε, . . . , xn)(2.8)

is convex with respect to ε ∈ [−min{xi, 1−xj}, min{1−xi, xj}] for each pair
of indices i and j and each x ∈ [0, 1]n.

We now describe the pipage rounding procedure. Its input is a fractional solution
x satisfying (2.2)–(2.3) and its output is an integral solution x satisfying (2.2)–(2.4)
and having the property that F (x) ≥ F (x̃). The pipage rounding consists of uniform
“pipage steps.” We describe the first step. If the solution x is not binary, then
due to (2.2) it has at least two different components xi and xj with values lying
strictly between 0 and 1. By ε-convexity condition, ϕ(ε, x, i, j) ≥ F (x) either for
ε = min{1 − xi, xj} or for ε = −min{xi, 1 − xj}. Thus we obtain a new feasible
solution x′ = (x1, . . . , xi+ ε, . . . , xj − ε, . . . , xn) with a smaller number of noninteger
components and such that F (x′) ≥ F (x). After repeating the “pipage” step at most
n − 1 times we arrive at a binary feasible solution x̃ with F (x̃) ≥ F (x). Since each
step can be performed in polynomial time, the overall running time of the described
procedure is polynomially bounded.

Now suppose that x is an optimal solution to (2.5)–(2.7), satisfying both the ε-
convexity and the F/L lower bound condition. Then F (x̃) ≥ F (x) ≥ CL(x) ≥ CF ∗,
where F ∗ is the optimal value of (2.1)–(2.4). Thus the algorithm consisting of a
polynomial-time procedure to solve the nice relaxation (2.5)–(2.7) and the pipage
rounding finds a feasible solution to (2.1)–(2.4) of weight within a factor of C of
the optimum. Note that if instead of a procedure for solving (2.5)–(2.7) we use any
polynomial-time procedure to find a solution x satisfying (2.2)–(2.3) and F (x) ≥ CF ∗,
then we also obtain a C-approximation algorithm.

3. Application: MAX DICUT WITH GSP. In this section, we show an imple-
mentation of the above scheme in the case of max dicut with gsp and, on the side,
specify the character of obstacles to the direct application of the pipage rounding
method.

In what follows, G = (V, A) stands for the graph in the input of max dicut with
gsp. Since assigning zero weights to missing arcs yields an equivalent problem, we
may assume that A contains all possible arcs. Let |V | = n.

First, note that max dicut with gsp can be formulated as the following non-

AN APPROXIMATION ALGORITHM FOR MAX DICUT 249

linear binary program:

max F (x) =
∑
ij∈A

wijxi(1− xj)

s.t.
∑
i∈V

xi = p,

xi ∈ {0, 1} for all i ∈ V.

Second, just like max cut with gsp in [AS99], max dicut with gsp can be
formulated as the following integer program:

max
∑
ij∈A

wijzij(3.1)

s.t. zij ≤ xi for all ij ∈ A,(3.2)

zij ≤ 1− xj for all ij ∈ A,(3.3) ∑
i

xi = p,(3.4)

0 ≤ xi ≤ 1 for all i ∈ V,(3.5)

xi, zkj ∈ {0, 1} for all i ∈ V, kj ∈ A.(3.6)

Now observe that the variables zij can be excluded from (3.1)–(3.5) by setting

zij = min{xi, (1− xj)} for all ij ∈ A.

Hence (3.1)–(3.5) is equivalent to maximizing

L(x) =
∑
ij∈A

wij min{xi, (1− xj)}(3.7)

subject to (3.4), (3.5).
Thus we have functions F and L that can be considered as those involved in the

description of the pipage rounding (see section 2). Notice now that for each pair of
indices i and j the function ϕ(ε, x, i, j) defined by (2.8) is the sum of wij(xi + ε)[1−
(xj − ε)] + wji(xj − ε)[1− (xi + ε)] and a term linear in ε. It follows that ϕ(ε, x, i, j)
is a quadratic polynomial in ε having a nonnegative leading coefficient for each pair
of indices i and j and each x ∈ [0, 1]n. Thus, the function F obeys the ε-convexity
condition. Unfortunately, the other, F/L lower bound condition, does not hold for
any C > 0. We present below an example showing that the ratio F (x)/L(x) may be
arbitrarily close to 0 even when the underlying graph is bipartite.

Example 1. Consider the following instance of max dicut with gsp. Let V =
V1 ∪ V2 ∪ V3, where |V1| = k, |V2| = |V3| = 2. Let A = A1 ∪ A2, where A1 is the set
of 2k arcs from V1 to V2 inducing a complete bipartite graph on (V1, V2) and A2 is
the set of 4 arcs from V2 to V3 inducing a complete bipartite graph on (V2, V3) (see
Figure 3.1). Assume the arc weights to be units and p ≤ k.

Then for any feasible solution x,

L(x) =
∑
ij∈A

min{xi, 1− xj} ≤
∑
ij∈A

xi

= 2
∑
i∈V1

xi + 2
∑
i∈V2

xi ≤ 2p.

250 A. AGEEV, R. HASSIN, AND M. SVIRIDENKO

1

2

k

V V V
1 2 3

Fig. 3.1. An example demonstrating that the ratio F (x)/L(x) may be arbitrarily close to 0.

In fact, 2p is the optimal value of the nice relaxation and it can be obtained in more
than one way. One way is to let xi = r = p−2

k−2 for i ∈ V1, xi = 1 − r for i ∈ V2, and

xi = 0 for i ∈ V3. Then F (x) = 2kr2 + 4(1− r). Now if p/k tends to 0 as p tends to
infinity (for example, set k = p2), F (x)/L(x) tends to 0.

Note that the same can be done with |V3| > 2 and then the above x will be the
unique optimal solution to the nice relaxation.

Thus straightforward application of the pipage rounding method does not provide
a constant-factor approximation.

Moreover, Example 1 shows that the greedy algorithm (at each step add a vertex
which increases most or decreases least the weight of the cut) also does not yield
any constant-factor approximation. For this instance the greedy algorithm may first
choose the vertices of V2 and then no more arcs can be added and a solution with
only four arcs will be the outcome (while the optimal one is to choose p vertices from
V1, which gives a cut of size 2p).

4. The structure of basic solutions. The following fact, which may be of in-
terest beyond the purposes of this paper, is crucial in constructing a 0.5-approximation
for max dicut with gsp in the general case.

Theorem 4.1. Let (x, z) be a basic feasible solution to the linear relaxation
(3.1)–(3.5). Then

xi ∈ {0, δ, 1/2, 1− δ, 1} for each i(4.1)

for some 0 < δ < 1/2.

Proof. Let (x, z) be a basic feasible solution. By definition, (x, z) is the unique
solution to the system of linear equations formed by those constraints in (3.2)–(3.5)
which hold with equality. First, observe that for any ij ∈ A, either both zij ≤ xi
and zij ≤ 1−xj hold with equalities or exactly one holds with equality and the other
with strict inequality. In the former case we exclude zij by replacing these equations
with the single equation xi + xj = 1. In the latter case we delete that equality from
the linear system. In either case the variable zij retires from the system while the
number of equations reduces by one and, moreover, the value of zij can be uniquely

AN APPROXIMATION ALGORITHM FOR MAX DICUT 251

determined by the values of xi and xj . After performing this operation for each
ij ∈ A, we arrive at a system that can be written in the following form:

yi + yj = 1 for ij ∈ A′ ⊆ A,(4.2) ∑
i

yi = p,(4.3)

yi = 0 for every i such that xi = 0,(4.4)

yi = 1 for every i such that xi = 1.(4.5)

Since the removed z can be uniquely restored from the vector x, x must be the unique
solution to this system. Remove all components of x equal to either 0 or 1 or 1/2
and denote the set of the remaining indices by I∗. Denote by x′ the subvector of
x consisting of the components with indices in I∗. Now consider the system that is
obtained from (4.2)–(4.5) by substituting yi = xi for each i such that xi ∈ {0, 1/2, 1}.
Since x is the unique solution to (4.2)–(4.5), x′ is the unique solution to the resulting
system, which can be written in the following form:

y′i + y′j = 1 for ij ∈ A′′ ⊆ A′,(4.6) ∑
i

y′i = p′,(4.7)

where p′ ≤ p. It follows that one can choose |I∗| independent equations from (4.6)–
(4.7). We claim that any subsystem of this sort must contain (4.7). Assume to the
contrary that |I∗| equations from the set (4.6) form an independent system. Consider
the (undirected) subgraph H of G (we ignore orientations) corresponding to these
equations. Note that |E(H)| = |I∗|. Since x′i �= 1/2 for all i ∈ I∗, H does not contain
odd cycles. Moreover, H cannot have even cycles as the subsystem corresponding to
such a cycle is clearly dependent. Thus H is acyclic. But then |E(H)| ≤ |I∗| − 1, a
contradiction.

Now fix |I∗| independent equations from (4.6)–(4.7). Then, by the above claim,
we obtain the following system:

y′i + y′j = 1 for ij ∈ A∗,(4.8) ∑
i∈I∗

y′i = p′,(4.9)

where A∗ ⊆ A′. Since all the equations in (4.8)–(4.9) are independent, |I∗| = |A∗|+1.
We have proved above that the subgraph spanned by A∗ is acyclic, which together
with |I∗| = |A∗|+1 implies that it is a tree. Recall also that x′ is the unique solution
to (4.8)–(4.9) and x′i = xi �= 0, 1, 1/2 for all i ∈ I∗. All these facts together with the
structure of equalities (4.8) imply that the components of x with indices in I∗ split
into two sets—those equal to some 0 < δ < 1/2 and those equal to 1− δ.

5. Algorithm DIRCUT. Section 3 demonstrates that max dicut with gsp
in the general setting does not admit a direct application of the pipage rounding
method. In this section we show that by using Theorem 4.1 and some tricks one is
able to design not only a constant factor but even a 0.5-approximation for solving max
dicut with gsp. Moreover, the performance bound of 0.5 cannot be improved using
different methods of rounding as the integrality gap of (3.1)–(3.5) can be arbitrarily
close to 1/2 (this can be shown exactly in the same way as it was done for max cut
with gsp in [AS99]).

252 A. AGEEV, R. HASSIN, AND M. SVIRIDENKO

For ij ∈ A, call the number wij min{xi, (1 − xj)} the contributed weight of the
arc ij. Observe that for any a, b ∈ [0, 1], ab = max{a, b}min{a, b}. It follows that

F (x) =
∑
ij∈A

wijxi(1− xj) =
∑
ij∈A

wij max{xi, 1− xj}min{xi, 1− xj}

=
∑
ij∈A

max{xi, 1− xj}(“ the contributed weight of ij ”).(5.1)

Algorithm DIRCUT consists of two phases: the first phase is to find an optimal
(fractional) basic solution to the linear relaxation (3.1)–(3.5); the second (rounding)
phase is to transform this solution to a feasible (integral) solution. The rounding
phase runs two different rounding algorithms based on the pipage rounding method
and takes the best solution for the output. Let (x, z) denote a basic optimal solution
to (3.1)–(3.5) obtained at the first phase. Recall that, by Theorem 4.1, the vector x
satisfies (4.1). Set V1 = {i : xi = δ}, V2 = {i : xi = 1 − δ}, V3 = {i : xi = 1/2},
V4 = {i : xi = 0 or 1}. Denote by lkl (k, l = 1, 2, 3, 4) the sum of contributed weights
over all arcs going from Vk to Vl. Set l0 = l11 + l21 + l22 + l23 + l31, l1 = l33 + l13 + l32,
l2 =

∑4
i=1(li4 + l4i) (Figure 5.1 might be helpful to the reader).

V V

V V

1 2

3 4

l

l

0

1

Fig. 5.1. l0 and l1 are the sums of contributed weights over the displayed collections of arcs.

The second phase of the algorithm successively calls two rounding algorithms—
ROUND1 and ROUND2—and takes a solution with maximum weight for the output.

ROUND1 is the pipage rounding applied to the optimal basic solution x. Let x̃
denote the output of ROUND1. Then by the description of pipage rounding, F (x̃) ≥
F (x). Since the number max{xi, 1−xj} remains unchanged for any ij ∈ A such that
i ∈ Vk and j ∈ Vl, and can be easily computed, (5.1) implies that

F (x̃) ≥ F (x) ≥ δl12 + (1− δ)l0 + l1/2 + l2.(5.2)

Algorithm ROUND2 is the pipage rounding applied to a different fractional solu-
tion x′ which is obtained by an alteration of x.

Algorithm ROUND2. Define a new vector x′ by the following formulas:

x′i =

min{1, δ + (1− δ)|V2|/|V1|} if i ∈ V1,
max{0, (1− δ)− (1− δ)|V1|/|V2|} if i ∈ V2,
xi if i ∈ V \ (V1 ∪ V2).

(5.3)

AN APPROXIMATION ALGORITHM FOR MAX DICUT 253

Apply the pipage rounding to x′.

Analysis. The vector x′ is obtained from x by redistributing uniformly the values
from the components in V2 to those in V1 and keeping the same the remaining ones.
It follows from the description of ROUND2 that x′ is feasible. Applying the pipage
rounding to x′ results in an integral feasible vector of weight at least F (x′). We
claim that F (x′) ≥ l12 + l1/2. Consider first the case when |V1| ≥ |V2|. Then by
(5.3), x′i = 0 for all i ∈ V2 and x′i ≥ δ for all i ∈ V1. Therefore, by (5.1) and
definitions of Vk it follows that F (x′) ≥ l32 + l12 + 1/2(l13 + l33). Now assume that
|V1| ≤ |V2|. Then by (5.3), x′i = 1 and x′i ≤ 1− δ for all i ∈ V1. Hence, again by (5.1),
F (x′) ≥ l13 + l12 + 1/2(l32 + l33). Therefore, in either case F (x′) ≥ l12 + l1/2. Thus
ROUND2 outputs a solution of weight at least l12 + l1/2. Together with (5.2) this
implies that the output of DIRCUT has weight at least

max{l12 + l1/2, δl12 + (1− δ)l0 + l1/2 + l2},
which is bounded from below by

q = max{l12, δl12 + (1− δ)l∗}+ l1/2,

where l∗ = l0 + l2. Now recall that 0 < δ < 1/2. Hence, if l12 ≥ l∗, then q =
l12 + l1/2 ≥ (l12 + l∗ + l1)/2 and if l12 < l∗, then q = δl12 + (1 − δ)l∗ + l1/2 >
(l12 + l∗)/2 + l1/2. Thus, in either case algorithm DIRCUT outputs a solution of
weight at least (l12 + l0 + l1 + l2)/2, which is at least half of the optimum.

6. Directly tractable special cases. In the final section we consider two spe-
cial cases of max dicut with gsp which admit direct application of the pipage
rounding method.

6.1. The circulation case. We first consider the case when the weight function
w is a circulation in the given graph. This means that the function w obeys the
condition ∑

j:ij∈A
wij =

∑
k:ki∈A

wki

for each vertex i ∈ V . We will show that the circulation case of max dicut with
gsp admits a 0.5-approximation algorithm which is a straightforward implementation
of the scheme described in section 2. In the next subsection we will show that it also
finds a cut of weight within a factor of 0.5 of the optimum in the case when the cuts
are constrained to have equal parts (the digraph bisection problem).

Note first that for any a and b between 0 and 1,

2a(1− b) = a(1− b) + b(1− a) + a− b,

2min{a, 1− b} = min{a + b, 2− a− b}+ a− b.

Using these identities we can rearrange the functions F and L in the following way:

F (x) = 1/2
∑
ij∈A

wij
[
xi(1− xj) + xj(1− xi) + xi − xj

]
,

L(x) = 1/2
∑
ij∈A

wij
[
min{xi + xj , 2− xi − xj}+ xi − xj

]
.

254 A. AGEEV, R. HASSIN, AND M. SVIRIDENKO

Since ∑
ij∈A

wij(xi − xj) =
∑
i∈V

qixi,

where qi is the difference between the sum of weights of arcs leaving the node i and
the sum of weights of arcs entering the node i, both functions can be expressed as the
sums of two summands

F (x) = 1/2
∑
ij∈A

wij
[
xi(1− xj) + xj(1− xi)

]
+ 1/2

∑
i∈V

qixi,(6.1)

L(x) = 1/2
∑
ij∈A

wij
[
min{xi + xj , 2− xi − xj}

]
+ 1/2

∑
i∈V

qixi.(6.2)

Ageev and Sviridenko [AS99] proved that for 0 ≤ xi, xj ≤ 1,

xi(1− xj) + xj(1− xi)

min{xi + xj , 2− xi − xj} ≥ 1/2.(6.3)

It follows that F (x)/L(x) ≥ 1/2 if
∑
i∈V qixi ≥ 0. In the case when the weights w

form a circulation in G, each qi is equal to zero. This proves the bound of 1/2 for this
case.

6.2. DIGRAPH BISECTION. The digraph bisection problem is the special
case of max dicut with gsp where n = 2p. Let (x, z) be an optimal solution to the
linear relaxation (3.1)–(3.5). We claim that in this case

∑
i∈V qixi ≥ 0, which means

by (6.1), (6.2), and (6.3) that the algorithm presented for the circulation case also
has an approximation ratio of 1/2 for digraph bisection. Indeed, assume to the
contrary that

∑
i∈V qixi < 0. Since n = 2p, the vector y defined by

yi = 1− xi for all i ∈ V

is also feasible for the nice relaxation (3.7), (3.4), (3.5). Moreover,∑
i∈V

qixi = −
∑
i∈V

qiyi

and

min{xi + xj , 2− xi − xj} = min{yi + yj , 2− yi − yj}
for every ij ∈ A. This means that L(y) > L(x), which contradicts the optimality of x.

REFERENCES

[AS99] A. A. Ageev and M.I. Sviridenko, Approximation algorithms for maximum coverage
and max cut with given sizes of parts, in Integer Programming and Combinatorial
Optimization, G. Cornuéjols, R. E. Burcard, and G. J. Woeginger, eds., Lecture Notes
in Comput. Sci. 1610, Springer-Verlag, New York, 1999, pp. 17–30.

[AS00] A. A. Ageev and M. I. Sviridenko, An approximation algorithm for hypergraph max
k-cut with given sizes of parts, in Proceedings of the 8th Annual European Sympo-
sium on Algorithms (ESA’00), M. Paterson, ed., Lecture Notes in Comput. Sci. 1879,
Springer-Verlag, New York, 2000, pp. 32–41.

AN APPROXIMATION ALGORITHM FOR MAX DICUT 255

[FG95] U. Feige and M.X. Goemans, Approximating the value of two prover proof systems,
with applications to MAX 2SAT and MAX DICUT, in Proceedings of the Third Israel
Symposium on Theory of Computing and Systems, Tel Aviv, Israel, 1995, pp. 182–189.

[FL99] U. Feige and M. Langberg, Approximation Algorithms for Maximization Problems Aris-
ing in Graph Partitioning, manuscript, 1999.

[GW95] M. X. Goemans and D. P. Williamson, Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming, J. ACM, 42
(1995), pp. 1115–1145.

[HR00] R. Hassin and S. Rubinstein, Approximation algorithms for maximum linear arrange-
ment, in Proceedings of the 7th Scandinavian Workshop on Algorithm Theory
(SWAT’00), M. M. Halldórsson, ed., Lecture Notes in Comput. Sci. 1851, Springer-
Verlag, New York, 2000, pp. 231–236.

[Ja98] K. Jain, A factor 2 approximation algorithm for the generalized Steiner network problem,
in Proceedings of the 39th Annual Symposium on Foundations of Computer Science
(FOCS’98), IEEE Computer Society, 1998, pp. 448–457.

[Ka72] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer
Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972,
pp. 85–103.

[MT99] V. Melkonian and É. Tardos, Approximation algorithms for a directed network design
problem, in Integer Programming and Combinatorial Optimization, G. Cornuéjols,
R. E. Burcard, and G. J. Woeginger, eds., Lecture Notes in Comput. Sci. 1610,
Springer-Verlag, New York, 1999, pp. 345–360.

OPTIMAL (9v, 4, 1) OPTICAL ORTHOGONAL CODES∗

RYOH FUJI-HARA† , YING MIAO† , AND JIANXING YIN‡

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 2, pp. 256–266

Abstract. Optimal (9p, 4, 1) optical orthogonal codes (OOCs) are constructed for all primes p
congruent to 1 modulo 4. Direct constructions with explicit codewords are presented for the case
p ≡ 13 mod 24, and Weil’s theorem on character sums is used to settle the cases p ≡ 1, 5, 17 mod 24.
By applying a known recursive construction, optimal (9v, 4, 1)-OOCs are obtained for all v, a product
of primes congruent to 1 modulo 4.

Key words. optical orthogonal code, optimal, cyclic packing, g-regular, direct construction,
Weil’s theorem

AMS subject classification. 94B60

PII. S0895480100377234

1. Introduction and preliminaries. The study of optical orthogonal codes
(OOCs) was first motivated by an application in a fiber-optic code-division multi-
ple access channel which requires binary sequences with good correlation properties.
Recent work has also been done on using optical orthogonal codes for multimedia
transmission in fiber-optic LANs and in multirate fiber-optic CDMA systems. For
general background on OOCs, the reader may refer to [3, 5, 10, 11, 12, 13]. In this
paper, we will not try to explore new applications of OOCs; instead, we will focus our
attention on the constructions of (v, k, λ)-OOCs, which are defined below.

Let v, k, and λ be positive integers. A (v, k, λ) optical orthogonal code, or briefly
(v, k, λ)-OOC, C, is a family of (0, 1)-sequences (called codewords) of length v and
weight k satisfying the following two properties:

(1) (the auto-correlation property)∑
0≤t≤v−1xtxt+i ≤ λ for any x = (x0, x1, . . . , xv−1) ∈ C and any integer

i �≡ 0 mod v;
(2) (the cross-correlation property)∑

0≤t≤v−1xtyt+i ≤ λ for any x = (x0, x1, . . . , xv−1)
∈ C, y = (y0, y1, . . . , yv−1) ∈ C with x �= y, and any integer i.

All subscripts here are reduced modulo v so that only periodic correlations are
considered.

Example 1.1. The following three codewords form a (45, 4, 1)-OOC:

100100000000000000000000000000000000100010000,

001100000000000000100000000000000000010000000,

000000000100000000000000000100000010000010000.

∗Received by the editors August 29, 2000; accepted for publication (in revised form) January 12,
2001; published electronically April 3, 2001.

http://www.siam.org/journals/sidma/14-2/37723.html
†Institute of Policy and Planning Sciences, University of Tsukuba, Tsukuba 305-8573, Japan

(fujihara@sk.tsukuba.ac.jp, miao@sk.tsukuba.ac.jp). The first and second authors were supported
by JSPS by Grant-in-Aid for Scientific Research (C) and Grant-in-Aid for Encouragement of Young
Scientists under contracts 11640099 and 12740054, respectively.

‡Department of Mathematics, Suzhou University, Suzhou 215006, People’s Republic of China
(jxyin@suda.edu.cn). The third author was supported in part by NSFC grant 10071056.

256

OPTICAL ORTHOGONAL CODES 257

Analogous to the Johnson bound [8] for constant-weight binary error-correcting
codes, the size |C| of a (v, k, λ)-OOC C is upper bounded (see [3]) by

(v − 1)(v − 2)· · ·(v − λ)
k(k − 1)· · ·(k − λ) .

When λ = 1, this reduces to (v−1)
k(k−1) . A (v, k, 1)-OOC with 	 v−1

k(k−1)
 codewords is said
to be optimal. The (45, 4, 1)-OOC in Example 1.1 is in fact optimal.

Optimal OOCs are closely related to combinatorial configurations (see, for exam-
ple, [3, 5, 6, 14]). For simplicity, we do not develop a general relationship but only
the one between optimal (v, k, 1)-OOCs and optimal (v, k, 1) cyclic packings to meet
the requirement of this paper.

A (v, k, 1) packing, denoted by P(k, 1; v), is a pair (X,B) where X is a v-set (of
points) and B is a collection of k-subsets (called blocks) of X such that every pair of
distinct points from X occurs in at most one block of B.

Consider a packing P(k, 1; v) (X,B). Let σ be a permutation on X. For any block
B = {b1, . . . , bk}, define Bσ = {bσ1 , . . . , bσk}. If Bσ = {Bσ : B ∈ B} = B, then σ is
called an automorphism of the packing P(k, 1; v). Any automorphism σ partitions B
into equivalence classes called the orbits of B under σ. A collection of base blocks is
a collection of representatives for these orbits of B. A P(k, 1; v) is said to be cyclic
if it admits an automorphism consisting of a single cycle of length v. In this case,
the point set X can be identified with Zv, the residue ring of integers modulo v. The
cyclic automorphism is then just the bijection σ : i −→ i + 1 mod v. Following [14],
we use notation CP(k, 1; v) to denote the collection of base blocks of a cyclic P(k, 1; v)
in which each of its block orbits under the cyclic automorphism contains exactly v
distinct blocks.

A convenient way of viewing a CP(k, 1; v) is from the difference family perspective.
A CP(k, 1; v) can be defined equivalently as a family B = {B1, B2, . . . , Bt} of t k-
subsets (called base blocks) of Zv such that the setwise stabilizer GBi of each Bi,
1 ≤ i ≤ t, is the identity {0}, and the differences ∆B from B,

∆B = {a− b : a, b ∈ B, a �= b,B ∈ B},

cover each nonzero residue of integers modulo v at most once. Obviously, we have
t ≤ 	 v−1

k(k−1)
. When t = 	 v−1
k(k−1)
, the CP(k, 1; v) is called optimal. A CP(k, 1; v) is

termed g-regular if the subset Zv −∆B forms an additive subgroup of Zv with order
g.

From each codeword of a (v, k, 1)-OOC, we can construct a k-set of integers
modulo v where the numbers in each k-set specify the nonzero bits of the code-
word. The corresponding 4-sets of integers modulo 45 of the codewords in the opti-
mal (45, 4, 1)-OOC in Example 1.1 are {0, 3, 36, 40}, {2, 3, 18, 37}, {9, 27, 34, 40}, which
form a CP(4, 1; 45). The setwise stabilizer of each base block is the identity {0}, and
the differences from these base blocks are Z45 − {0, 2, 17, 21, 22, 23, 24, 28, 43}. This
CP(4, 1; 45) is optimal but not 9-regular. In fact, by a computer search, we know that
no 9-regular CP(4, 1; 45) can exist.

The following results can be found in [14].
Lemma 1.2. An optimal (v, k, 1)-OOC is equivalent to an optimal CP(k, 1; v).
Lemma 1.3. If 1 ≤ g ≤ k(k − 1), then a g-regular CP(k, 1; v) is optimal.
Lemma 1.4. Suppose that p1 and p2 ≥ k are two odd primes. If both a g-

regular CP(k, 1; gp1) and an optimal CP(k, 1; gp2) exist, then so does an optimal

258 RYOH FUJI-HARA, YING MIAO, AND JIANXING YIN

CP(k, 1; gp1p2). Moreover, if the given CP(k, 1; gp1p2) is g-regular, then so is the
derived CP(k, 1; gp1p2).

In view of Lemmas 1.2–1.4, results on optimal or regular CP(k, 1; v)s can be used
directly to produce optimal (v, k, 1)-OOCs. One can then expect that many of the
constructions for optimal (v, k, 1)-OOCs are design theoretic in nature. This is indeed
the case (see, for example, [2, 6, 14, 15]).

In the remainder of this paper, we will show that an optimal (9p, 4, 1)-OOC
would exist for any prime p = 4f + 1 by way of a 9-regular CP(4, 1; 9p). In the
procedure, direct constructions with explicit codewords will be presented for the case
p ≡ 13 mod 24, and Weil’s theorem on character sums will be used to settle the other
cases p ≡ 1, 5, 17 mod 24. Employing Lemmas 1.2–1.4, we can obtain, among others,
new (9v, 4, 1)-OOC where v is a product of primes of form 4f + 1.

2. Constructions. Let p = 4f +1 be a prime and ω an arbitrary primitive root
modulo p. By C4

0 we denote the multiplicative subgroup of order f in Zp, which is
spanned by ω4. The notations C4

j for j = 0, 1, 2, 3 stand for the cosets ωjC4
0 . These

cosets are often referred to as the cyclotomic classes of index 4 of Zp. They evidently
partition Zp − {0}.

Now we are going to describe our constructions, which are split into three cases
depending on the values of p modulo 24.

2.1. The case p ≡ 5 mod 24. In this case, both 2 and 3 are quadratic non-
residue modulo p.

Lemma 2.1. Let p be a prime congruent to 5 modulo 24. If there exists an element
x of Zp such that x ∈ C4

1 ∪ C4
3 , 2(x − 1) ∈ C4

0 and x + 1 ∈ C4
2 , then there exists a

9-regular CP(4, 1; 9p).
Proof. The desired CP(4, 1; 9p) is obtained by taking the following 3(p − 1)/4

base blocks based on the additive group of Zp × Z9, which is isomorphic to Z9p:

{(0, 0), (2, 0), (1, 4), (−2, 3)}·(g, 1),
{(−2, 0), (2, 1), (−1, 2), (0, 3)}·(g, 1),
{(x, 0), (−x, 0), (0, 4), (−1, 7)}·(g, 1),

where g runs over C4
0 .

Note that the differences from these base blocks can be partitioned into the fol-
lowing five classes depending on the values of the second component:

1. {(±2, 0), (±2x, 0)}·(C4
0 , 1);

2. {(±3, 1), (4, 1), (1, 1)}·(C4
0 ,±1);

3. {(1, 2), (−2, 2), (x+ 1, 2), (−x+ 1, 2)}·(C4
0 ,±1);

4. {(±2, 3), (−4, 3), (−1, 3)}·(C4
0 ,±1);

5. {(±1, 4), (±x, 4)}·(C4
0 ,±1).

Since p ≡ 5 mod 24, we have −1 ∈ C4
2 . According to our choice of x, 2 ∈ C4

1

if and only if x − 1 ∈ C4
3 , and 2 ∈ C4

3 if and only if x − 1 ∈ C4
1 . Therefore, the

above differences do cover each element of Zp×Z9−{0}×Z9 exactly once, while any
element of the additive subgroup {0} × Z9 is not covered at all. The assertion then
follows.

We give an example to illustrate our construction.
Example 2.2. It is easy to see that 2 is a primitive root modulo 29 and

C4
0 = {1, 16, 24, 7, 25, 23, 20}, C4

1 = {2, 3, 19, 14, 21, 17, 11},
C4

2 = {4, 6, 9, 28, 13, 5, 22}, C4
3 = {8, 12, 18, 27, 26, 10, 15}

OPTICAL ORTHOGONAL CODES 259

are the cyclotomic classes of Z29 of index 4. Take x = 27. Then

{(0, 0), (2, 0), (1, 4), (27, 3)}, {(27, 0), (2, 1), (28, 2), (0, 3)},
{(0, 0), (3, 0), (16, 4), (26, 3)}, {(26, 0), (3, 1), (13, 2), (0, 3)},
{(0, 0), (19, 0), (24, 4), (10, 3)}, {(10, 0), (19, 1), (5, 2), (0, 3)},
{(0, 0), (14, 0), (7, 4), (15, 3)},{(15, 0), (14, 1), (22, 2), (0, 3)},
{(0, 0), (21, 0), (25, 4), (8, 3)}, {(8, 0), (21, 1), (4, 2), (0, 3)},
{(0, 0), (17, 0), (23, 4), (12, 3)}, {(12, 0), (17, 1), (6, 2), (0, 3)},
{(0, 0), (11, 0), (20, 4), (18, 3)}, {(18, 0), (11, 1), (9, 2), (0, 3)},
{(27, 0), (2, 0), (0, 4), (28, 7)}, {(26, 0), (3, 0), (0, 4), (13, 7)},
{(10, 0), (19, 0), (0, 4), (5, 7)},{(15, 0), (14, 0), (0, 4), (22, 7)},
{(8, 0), (21, 0), (0, 4), (4, 7)}, {(12, 0), (17, 0), (0, 4), (6, 7)},
{(18, 0), (11, 0), (0, 4), (9, 7)}

are the base blocks of a 9-regular CP(4, 1; 261).
As an immediate consequence of Lemma 2.1, we have the following result.
Corollary 2.3. Let p be a prime congruent to 5 modulo 24. If the set

T = {x ∈ C4
1 ∪ C4

3 : {2(x− 1), 4(x+ 1)} ⊆ C4
0}

is not empty, then there exists a 9-regular CP(4, 1; 9p).
Our main result of this subsection will be given by means of Corollary 2.3. We will

make use of Weil’s theorem on multiplicative character sums. This theorem has been
useful in dealing with existence of various combinatorial structures such as triplewhist
tournaments (see [1]).

A multiplicative character of a finite field GF (q) is a homomorphism from the
multiplicative group of GF (q) into the multiplicative group of complex numbers of
absolute value 1. The following is the statement of Weil’s theorem on multiplicative
character sums cited from Theorem 5.41 in [9]. In the theorem it is understood that
if χ is a multiplicative character of GF (q), then χ(0) = 0.

Theorem 2.4. Let χ be a multiplicative character of GF (q) of order m > 1 and
let f be a polynomial of GF (q)[x] which is not of the form kgm for some k ∈ GF (q)
and some g ∈ GF (q)[x]. Then we have∣∣∣∣∣∣

∑
x∈GF (q)

χ(f(x))

∣∣∣∣∣∣ ≤ (d− 1)
√
q,

where d is the number of distinct roots of f(x) in its splitting field over GF (q).
For the problem under consideration, we need only a nonprinciple quartic char-

acter of the prime field Zp with p ≡ 5 mod 24, which is a map from Zp − {0} into
{±1,±i} defined by

χ(x) =

1 if x ∈ C4
0 ,

i if x ∈ C4
1 ,

−1 if x ∈ C4
2 ,

−i if x ∈ C4
3 .

Consider the sum

A =
∑
x∈Zp

(1− χ(x2))
∏

1≤i≤2

(1 + χ(fi(x)) + χ(f2
i (x)) + χ(f3

i (x))),

260 RYOH FUJI-HARA, YING MIAO, AND JIANXING YIN

where f1(x) = 2(x− 1) and f2(x) = 4(x+ 1).
It can be easily calculated that

1− χ(x2) =

2 if x ∈ C4
1 ∪ C4

3 ,
0 if x ∈ C4

0 ∪ C4
2 ,

1 if x = 0;

and for i = 1, 2,

1 + χ(fi(x)) + χ(f2
i (x)) + χ(f3

i (x)) =

4 if fi(x) ∈ C4
0 ,

0 if fi(x) ∈ Zp − C4
0 ∪ {0},

1 if fi(x) = 0.

Therefore, the sum A = 32|T | + d where T is the subset of Zp defined in Corollary
2.3, and d is the contribution when either x or f1(x) or f2(x) is 0.

Now if x = 0, then f1(x) = −2 ∈ C4
1∪C4

3 and f2(x) = 4 ∈ C4
2 and the contribution

is 0. If f1(x) = 0, which could happen only when x = 1, then the contribution to A
is also 0. Similarly, if f2(x) = 0, then x = −1 and hence the contribution to A is 0.
Therefore we know that d = 0 and thus A = 32|T |.

To expand A, we define S = {0, 1} × {0, 1, 2, 3} × {0, 1, 2, 3}. For any triple
s = (i, j, k) ∈ S, we write

fs(x) = (−x2)if j1 (x)f
k
2 (x).

Obviously, for any s ∈ S − {(0, 0, 0)}, the polynomial fs(x) is not of form ag4 for
any a ∈ Zp and any g ∈ Zp[x]. When s = (0, 0, 0), we have fs(x) = 1, and hence∑
x∈Zp

χ(f(0,0,0)(x)) = p. Therefore we obtain

A = p+
∑

s∈S−{(0,0,0)}

∑
x∈Zp

χ(fs(x)),

which implies that

|A| ≥ p−
∑

s∈S−{(0,0,0)}

∣∣∣∣∣∣
∑
x∈Zp

χ(fs(x))

∣∣∣∣∣∣ .
Now for every s ∈ S − {(0, 0, 0)}, we apply Theorem 2.4 to produce an upper

bound. Suppose j = 0. If k = 0, then i = 1. In this case |∑x∈Zp
χ(fs(x))| = 0. If

k > 0, then fs(x) = (−1)i22kx2i(x + 1)k, which has one distinct root in its splitting
field if i = 0 and two distinct roots in its splitting field if i = 1. From Theorem 2.4,
we get

∑
i=0;j=0;k=1,2,3

∣∣∣∣∣∣
∑
x∈Zp

χ(fs(x))

∣∣∣∣∣∣+
∑

i=1;j=0;k=1,2,3

∣∣∣∣∣∣
∑
x∈Zp

χ(fs(x))

∣∣∣∣∣∣ ≤
√
p·3.

Suppose j > 0. If k = 0, then fs(x) = (−1)i2jx2i(x− 1)j , which has one distinct root
in its splitting field if i = 0 and two distinct roots in its splitting field if i = 1. From
Theorem 2.4, we get

∑
i=0;j=1,2,3;k=0

∣∣∣∣∣∣
∑
x∈Zp

χ(fs(x))

∣∣∣∣∣∣+
∑

i=1;j=1,2,3;k=0

∣∣∣∣∣∣
∑
x∈Zp

χ(fs(x))

∣∣∣∣∣∣ ≤
√
p·3.

OPTICAL ORTHOGONAL CODES 261

Table 2.1

(p, ω, x) (p, ω, x) (p, ω, x) (p, ω, x) (p, ω, x)
(29,2,27) (53,2,51) (101,2,29) (149,2,52) (173,2,129)
(197,2,46) (269,2,8) (293,2,291) (317,2,98) (389,2,132)
(461,2,38) (509,2,28) (557,2,189) (653,2,22) (677,2,448)
(701,2,699) (773,2,503) (797,2,481) (821,2,129) (941,2,129)
(1013,3,659) (1061,2,313)

If k �= 0, then fs(x) = (−1)i2j+2kx2i(x− 1)j(x+ 1)k, which has two distinct roots in
its splitting field if i = 0 and three distinct roots in its splitting field if i = 1. From
Theorem 2.4, we get

∑
i=0;j=1,2,3;k=1,2,3

∣∣∣∣∣∣
∑
x∈Zp

χ(fs(x))

∣∣∣∣∣∣+
∑

i=1;j=1,2,3;k=1,2,3

∣∣∣∣∣∣
∑
x∈Zp

χ(fs(x))

∣∣∣∣∣∣ ≤
√
p·3·3+2

√
p·3·3.

These inequalities yield that

|A| ≥ p− 33
√
p.

It follows that |A| > 0 whenever p > p0 = 1089 in the case when p ≡ 5 mod 24. This
means that the set T defined in Corollary 2.3 is not empty whenever p > p0 = 1089
and p ≡ 5 mod 24. With a computer search, we find the set T is also not empty for
any prime p ≡ 5 mod 24 not greater than p0 = 1089 with the only exception of p = 5.
We list p, ω, and x in Table 2.1, where ω is the primitive root modulo p used in our
computation. The results obtained above can be summarized into the main theorem
of this subsection.

Theorem 2.5. Let p be a prime satisfying p ≡ 5 mod 24 and p > 5. Then there
exists a 9-regular CP(4, 1; 9p).

We note that although there is no 9-regular CP(4, 1; 45), there does exist a 9-
regular CP(4, 1; 225). This was pointed out to us by Dr. Gennian Ge of Suzhou
University.

Example 2.6. The following 18 base blocks form a 9-regular CP(4, 1; 225) over
Z225:

{0, 110, 127, 205}, {0, 7, 76, 87},
{0, 174, 211, 223}, {0, 16, 19, 118},
{0, 139, 181, 185}, {0, 41, 79, 113},
{0, 96, 164, 220}, {0, 6, 27, 186},
{0, 105, 163, 216}, {0, 81, 82, 173},
{0, 22, 162, 177},{0, 122, 189, 212},
{0, 84, 161, 192}, {0, 73, 97, 132},
{0, 43, 71, 131},{0, 116, 142, 171},
{0, 8, 18, 65}, {0, 30, 104, 136}.

2.2. The case p ≡ 13 mod 24. We first note that when p ≡ 13 mod 24, 3 is
a quadratic residue and 2 is a quadratic nonresidue modulo p. In this case, we take a
primitive root ω modulo p so that 2 ∈ C4

1 .
The following theorem gives direct constructions for 9-regular CP(4, 1; 9p) with

p ≡ 13 mod 24.

262 RYOH FUJI-HARA, YING MIAO, AND JIANXING YIN

Theorem 2.7. For every prime p ≡ 13 mod 24, there exists a 9-regular CP(4, 1; 9p).
Proof. Let Zp × Z9 be the point set. If 3 is a quartic residue modulo p, then we

construct the following 3(p− 1)/4 base blocks A over the additive group of Zp × Z9:

{(−3, 0), (−1, 2), (1, 3), (−2, 7)}·(g, 1),
{(0, 0), (3, 0), (2, 7), (4, 1)}·(g, 1),
{(1, 0), (−1, 0), (7, 5), (5, 6)}·(g, 1),

where g runs over C4
0 .

Simple calculations in the additive group of Zp × Z9 show that the differences
from these base blocks are

∆A = {(±2, 0), (±3, 0), (±2, 1), (4, 1), (1, 1), (±2, 2), (±1, 2), (±4, 3),
(2, 3), (−6, 3), (−3, 4), (1, 4), (−6, 4), (−8, 4)}·(C4

0 ,±1).
Noting that 3 ∈ C4

0 , 2 ∈ C4
1 , and −1 ∈ C4

2 , we can easily see that ∆A = Zp × Z9 −
{0}×Z9. Therefore the above construction gives a 9-regular CP(4, 1; 9p) for the case
when 3 is a quartic residue modulo p where p ≡ 13 mod 24.

For the case when 3 is a quadratic residue but not a quartic residue, the con-
struction is similar. In this case, the desired 3(p − 1)/4 base blocks over Zp × Z9

are

{(0, 0), (−2, 1), (2, 2), (4, 3)}·(g, 1),
{(2, 0), (−2, 0), (0, 3), (−4, 4)}·(g, 1),
{(−3, 0), (3, 0), (−6, 4), (6, 7)}·(g, 1),

where g ∈ C4
0 .

Example 2.8. Consider the case p = 13. It is easily seen that 2 is a primitive
root modulo 13 and 3 is a quartic residue modulo 13. The multiplicative subgroup of
Z13 with order 3 is C4

0 = {1, 3, 9}. Then the following nine base blocks constitute a
9-regular CP(4, 1; 117):

{(10, 0), (12, 2), (1, 3), (11, 7)},{(4, 0), (10, 2), (3, 3), (7, 7)},
{(12, 0), (4, 2), (9, 3), (8, 7)}, {(0, 0), (3, 0), (2, 7), (4, 1)},
{(0, 0), (9, 0), (6, 7), (12, 1)},{(0, 0), (1, 0), (5, 7), (10, 1)},
{(1, 0), (12, 0), (7, 5), (5, 6)},{(3, 0), (10, 0), (8, 5), (2, 6)},
{(9, 0), (4, 0), (11, 5), (6, 6)}.

Example 2.9. We now provide an example over the additive group of Z37 ×Z9,
where 3 is a quadratic residue but not a quartic residue modulo 37. 2 is a prim-
itive root modulo 37. The multiplicative subgroup of Z37 with order 9 is C4

0 =
{1, 16, 34, 26, 9, 33, 10, 12, 7}. The following 27 base blocks constitute a 9-regular CP
(4, 1; 333):

{(0, 0), (−2, 1), (2, 2), (4, 3)}, {(2, 0), (−2, 0), (0, 3), (−4, 4)},
{(0, 0), (5, 1), (32, 2), (27, 3)}, {(32, 0), (5, 0), (0, 3), (10, 4)},
{(0, 0), (6, 1), (31, 2), (25, 3)}, {(31, 0), (6, 0), (0, 3), (12, 4)},
{(0, 0), (22, 1), (15, 2), (30, 3)}, {(15, 0), (22, 0), (0, 3), (7, 4)},
{(0, 0), (19, 1), (18, 2), (36, 3)}, {(18, 0), (19, 0), (0, 3), (1, 4)},

OPTICAL ORTHOGONAL CODES 263

{(0, 0), (8, 1), (29, 2), (21, 3)}, {(29, 0), (8, 0), (0, 3), (16, 4)},
{(0, 0), (17, 1), (20, 2), (3, 3)}, {(20, 0), (17, 0), (0, 3), (34, 4)},
{(0, 0), (13, 1), (24, 2), (11, 3)}, {(24, 0), (13, 0), (0, 3), (26, 4)},
{(0, 0), (23, 1), (14, 2), (28, 3)}, {(14, 0), (23, 0), (0, 3), (9, 4)},
{(−3, 0), (3, 0), (−6, 4), (6, 7)},{(26, 0), (11, 0), (15, 4), (22, 7)},
{(9, 0), (28, 0), (18, 4), (19, 7)}, {(33, 0), (4, 0), (29, 4), (8, 7)},
{(10, 0), (27, 0), (20, 4), (17, 7)},{(12, 0), (25, 0), (24, 4), (13, 7)},
{(7, 0), (30, 0), (14, 4), (23, 7)}, {(1, 0), (36, 0), (2, 4), (35, 7)},
{(16, 0), (21, 0), (32, 4), (5, 7)}.

2.3. The case p ≡ 1 or 17 mod 24. We turn to the case where p is a prime
such that p ≡ 1 or 17 mod 24, namely, p ≡ 1 mod 8.

First we note that there exists an explicit formula for
∑

x∈GF (q)χ(f(x)) when q

is odd and both χ and f are quadratic (see Theorem 5.48 of [9]).
Theorem 2.10. Let χ be the quadratic character of GF (q) and let f(x) =

a2x
2 + a1x+ a0 ∈ GF (q)[x] with q odd and a2 �= 0. Then

∑
x∈GF (q)

χ(f(x)) =

{ −χ(a2) if a2
1 − 4a0a2 �= 0,

(q − 1)χ(a2) otherwise.

For our purpose, we need only quadratic characters of prime fields Zp with p ≡
1 mod 8. Recall that the quadratic character of Zp is the map from Zp − {0} into
{1,−1} defined by

χ(x) =

{
1 if x ∈ C4

0 ∪ C4
2 ,

−1 if x ∈ C4
1 ∪ C4

3 .

As is usually done, we adopt the convention that χ(0) = 0.
The following lemma gives us the construction for 9-regular CP(4, 1; 9p) with

p ≡ 1 mod 8.
Lemma 2.11. Let p be a prime and p ≡ 1 mod 8. If there exists an element

x ∈ C4
1 ∪ C4

3 such that x2 − 1 ∈ C4
1 ∪ C4

3 and x2 + 1 ∈ C4
0 ∪ C4

2 , then there exists a
9-regular CP(4, 1; 9p).

Proof. Let p = 8s + 1. Take Zp × Z9 as our point set. Let R = {1, ω4, . . . , ωt},
where ω is a primitive root modulo p and t = 4(s− 1). Now form the following base
block families over Zp × Z9:

A1 = {{(x, 0), (x−1, 0), (x+ x−1, 5), (0, 5)}·(r, 1) : r ∈ R},
A2 = {{(xω2, 0), (x−1ω2, 0), ((x+ x−1)ω2, 3), (0, 3)}·(r, 1) : r ∈ R},
A3 = {{(−x2, 0), (x2, 1), (1, 3), (−1, 8)}·(r, 1) : r ∈ R},
A4 = {A·(ω2, 1) : A ∈ A3},
A5 = {A·(−1, 1) : A ∈ A3},
A6 = {A·(−ω2, 1) : A ∈ A3}.

The differences from the above base block families are

∆(A1 ∪ · · · ∪ A6)

264 RYOH FUJI-HARA, YING MIAO, AND JIANXING YIN

= {{(x− x−1, 0), (x+ x−1, 0), (ω2(x− x−1), 0), (ω2(x+ x−1), 0),

(2x2,±1), (x2 − 1,±1), (2ω2x2,±1), (ω2(x2 − 1),±1),
(x2 − 1,±2), (x2 + 1,±2), (ω2(x2 − 1),±2), (ω2(x2 + 1),±2),
(ω2x−1,±3), (ω2x,±3), (x2 + 1,±3), (ω2(x2 + 1),±3),
(x−1,±4), (x,±4), (2,±4), (2ω2,±4)}·(±r, 1) : r ∈ R}.

Since {x, x2−1} ⊆ C4
1∪C4

3 and x2+1 ∈ C4
0∪C4

2 , we have x−x−1 = (x2−1)/x ∈ C4
0∪C4

2

and x + x−1 = (x2 + 1)/x ∈ C4
1 ∪ C4

3 . Also, 2 is a quadratic residue modulo p as
p ≡ 1 mod 8. According to the definition of R, we also have R∪ (−R) = C4

0 . Further,
it is obvious that x ∈ C4

1 if and only if x−1 ∈ C4
3 and x ∈ C4

3 if and only if x−1 ∈ C4
1 .

From these observations, we can know that the above 6s = 3(p − 1)/4 base blocks
yield the desired 9-regular CP(4, 1; 9p).

Example 2.12. In the case p = 17, 3 is a primitive root modulo 17, and R =
{1, 13}. The following 12 base blocks form a 9-regular CP(4, 1; 153):

{(10, 0), (12, 0), (5, 5), (0, 5)},{(11, 0), (3, 0), (14, 5), (0, 5)},
{(5, 0), (6, 0), (11, 3), (0, 3)},{(14, 0), (10, 0), (7, 3), (0, 3)},
{(2, 0), (15, 1), (1, 3), (16, 8)}, {(9, 0), (8, 1), (13, 3), (4, 8)},
{(1, 0), (16, 1), (9, 3), (8, 8)},{(13, 0), (4, 1), (15, 3), (2, 8)},
{(15, 0), (2, 1), (16, 3), (1, 8)}, {(8, 0), (9, 1), (4, 3), (13, 8)},
{(16, 0), (1, 1), (8, 3), (9, 8)},{(4, 0), (13, 1), (2, 3), (15, 8)}.

What we need to do at this moment is to show that there exists at least one such
element x which satisfies the conditions stated in Lemma 2.11.

Let us consider the sum

B =
∑
x∈Zp

(1− χ(x))(1− χ(x2 − 1))(1 + χ(x2 + 1)).

We have

1− χ(x) =

2 if x ∈ C4
1 ∪ C4

3 ,
0 if x ∈ C4

0 ∪ C4
2 ,

1 if x = 0;

1− χ(x2 − 1) =

2 if x2 − 1 ∈ C4
1 ∪ C4

3 ,
0 if x2 − 1 ∈ C4

0 ∪ C4
2 ,

1 if x2 − 1 = 0;

1 + χ(x2 + 1) =

2 if x2 + 1 ∈ C4
0 ∪ C4

2 ,
0 if x2 + 1 ∈ C4

1 ∪ C4
3 ,

1 if x2 + 1 = 0.

Similarly to section 2.1, it is easily calculated that B = 8e, where e is the number of
elements x in Zp which satisfies the conditions in Lemma 2.11.

Expanding B we obtain

B =
∑
x∈Zp

1−
∑
x∈Zp

χ(x)−
∑
x∈Zp

χ(x2 − 1) +
∑
x∈Zp

χ(x2 + 1)

+
∑
x∈Zp

χ(x3 − x)−
∑
x∈Zp

χ(x3 + x)−
∑
x∈Zp

χ(x4 − 1) +
∑
x∈Zp

χ(x5 − x).

OPTICAL ORTHOGONAL CODES 265

Table 2.2

(p, ω, x) (p, ω, x) (p, ω, x) (p, ω, x) (p, ω, x)
(17,3,10) (41,6,6) (73,5,45) (89,3,51) (97,5,28)
(113,3,76)

Clearly,
∑
x∈Zp

1 = p and
∑
x∈Zp

χ(x) = 0.
By Theorem 2.10, we have ∑

x∈Zp

χ(x2±1) = −1.

By Theorem 2.4, we also have ∣∣∣∣∣∣
∑
x∈Zp

χ(x3 − x)
∣∣∣∣∣∣ ≤ 2

√
p,

∣∣∣∣∣∣
∑
x∈Zp

χ(x3 + x)

∣∣∣∣∣∣ ≤ 2
√
p,

∣∣∣∣∣∣
∑
x∈Zp

χ(x4 − 1)

∣∣∣∣∣∣ ≤ 3
√
p,

∣∣∣∣∣∣
∑
x∈Zp

χ(x5 − x)
∣∣∣∣∣∣ ≤ 4

√
p.

It follows that |B| ≥ p − 11
√
p which implies that |B| > 0 if p > 121. This means

that there exists at least one element x in Zp which satisfies the conditions stated in
Lemma 2.11 whenever p > p1 = 121 and p ≡ 1 mod 8.

The only primes congruent to 1 modulo 8 which are not greater than 121 are 17,
41, 73, 89, 97, and 113. For each of these six primes, an element x satisfying the
conditions in Lemma 2.11 can be easily found by hand, which we list in Table 2.2.
The results obtained above can be summarized into the following theorem.

Theorem 2.13. For every prime p ≡ 1 mod 8, there exists a 9-regular CP(4, 1; 9p).

3. New optimal optical orthogonal codes. The results contained in Theo-
rems 2.5, 2.7, and 2.13 can be summarized into the following theorem.

Theorem 3.1. There exists a 9-regular CP(4, 1; 9p) for any prime p ≡ 1 mod 4
and p > 5.

Using Theorem 3.1 in conjunction with Lemma 1.4, we have the following result.
Theorem 3.2. There exists a 9-regular CP(4, 1; 9v) for any positive integer v

whose prime factors are all congruent to 1 modulo 4 and greater than 5.
Combining Examples 1.1 and 2.6, Lemmas 1.2 and 1.3, and Theorem 3.2, we can

obtain new optimal (v, 4, 1)-OOCs. In particular, we have the following main result
of this paper.

Theorem 3.3. Let v be a positive integer whose prime factors are all congruent
to 1 modulo 4. Then there exists an optimal (9v, 4, 1)-OOC.

266 RYOH FUJI-HARA, YING MIAO, AND JIANXING YIN

Acknowledgments. A portion of this research was carried out while the third
author was visiting the University of Tsukuba. He wishes to express many thanks to
the Institute of Policy and Planning Sciences for their hospitality. The authors would
also like to thank Dr. Gennian Ge of Suzhou University for providing them with a
9-regular CP(4, 1; 225).

REFERENCES

[1] M. Buratti, Existence of Z-cyclic triplewhist tournaments for a prime number of players, J.
Combin. Theory Ser. A, 90 (2000), pp. 315–325.

[2] K. Chen, G. Ge, and L. Zhu, Starters and their related codes, J. Statist. Plann. Inference,
86 (2000), pp. 379–395.

[3] F. R. K. Chung, J. A. Salehi, and V. K. Wei, Optical orthogonal codes: Design, analysis,
and applications, IEEE Trans. Inform. Theory, 35 (1989), pp. 595–604; Erratum: IEEE
Trans. Inform. Theory, 38 (1992), p. 1429.

[4] C. J. Colbourn and J. H. Dinitz, eds., The CRC Handbook of Combinatorial Designs, CRC
Press, Boca Raton, FL, 1996.

[5] C. J. Colbourn, J. H. Dinitz, and D. R. Stinson, Applications of Combinatorial Designs to
Communications, Cryptography, and Networking, London Math. Soc. Lecture Note Ser.
267, Cambridge University Press, Cambridge, UK, 1999, pp. 37–100.

[6] R. Fuji-Hara and Y. Miao, Optical orthogonal codes: Their bounds and new optimal con-
structions, IEEE Trans. Inform. Theory, 46 (2000), pp. 2396–2406.

[7] M. Hall, Jr., Combinatorial Theory, 2nd ed., Wiley, New York, 1986.
[8] S. M. Johnson, A new upper bound for error-correcting codes, IEEE Trans. Inform. Theory,

8 (1962), pp. 203–207.
[9] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, Cambridge, UK,

1997.
[10] S. V. Maric and V. K. N. Lau, Multirate fiber-optic CDMA: System design and performance

analysis, J. Lightwave Technol., 16 (1998), pp. 9–17.
[11] S. V. Maric, O. Moreno, and C. Corrada, Multimedia transmission in fiber-optic LANs

using optical CDMA, J. Lightwave Technol., 14 (1996), pp. 2149–2153.
[12] J. A. Salehi, Code division multiple-access techniques in optical fiber networks – part I: Fun-

damental principles, IEEE Trans. Commun., 37 (1989), pp. 824–833.
[13] J. A. Salehi and C. A. Brackett, Code division multiple access techniques in optical fiber

networks – part II: Systems performance analysis, IEEE Trans. Commun., 37 (1989), pp.
834–842.

[14] J. Yin, Some combinatorial constructions for optical orthogonal codes, Discrete Math., 185
(1998), pp. 201–219.

[15] J. Yin, A direct construction for optimal (12p, 4, 1) optical orthogonal codes, submitted, 2000.

ON THE OPTIMALITY OF GENERAL LOWER BOUNDS FOR
BROADCASTING AND GOSSIPING ∗

MICHELE FLAMMINI† AND STÉPHANE PÉRENNÈS‡

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 2, pp. 267–282

Abstract. In this paper we show that many general lower bounds on the broadcasting and
gossiping time are optimal. In particular, let b(G) be the broadcasting time of a network G under
the basic one-port model. The only lower bound on b(G) holding for every n vertices graph G is
max(log2 n,Diam(G)), but the log2 n factor cannot be achieved in bounded degree networks. In fact,
let the parameter d be defined in undirected graphs as the maximum degree minus one and for directed
graphs as the maximum out-degree. Then, in [SIAM J. Discrete Math., 1 (1998), pp. 531–540; SIAM
J. Discrete Math., 5 (1992), pp. 10–24] it has been proved that, for any graph G of parameter d,

b(G) ≥ log2 n
log2 ξ

, where ξ is the largest real number such that ξd − ξd−1 − ξd−2 − · · · − ξ − 1 = 0.

Since then many papers have proposed constructions of bounded degree networks having a small
broadcast time [Proceedings of the 2nd International Euro-Par Conference (EUROPAR), Lecture
Notes in Comput. Sci. 1123, Springer-Verlag, New York, 1996, pp. 313–324; IEEE Trans. Comput.,
33 (1984), pp. 190–194], but so far the optimality of [SIAM J. Discrete Math., 1 (1998), pp. 531–540;
SIAM J. Discrete Math., 5 (1992), pp. 10–24] was still an open question.

In this paper we prove that the above lower bound is tight, improving all the existing upper
bounds by means of probabilistic methods. Namely, we show that for n arbitrarily large there exist
families of n vertices graphs in which a uniformly drawn graph has broadcasting time as predicted by
[SIAM J. Discrete Math., 1 (1998), pp. 531–540; SIAM J. Discrete Math., 5 (1992), pp. 10–24] with
probability converging to 1. Moreover, we show that [SIAM J. Discrete Math., 1 (1998), pp. 531–540;
SIAM J. Discrete Math., 5 (1992), pp. 10–24] is attained even in the case of gossiping and systolic
gossiping in the full-duplex mode.

Finally, new upper bounds on bounded-degree and systolic gossiping are also determined in the
directed and half-duplex modes. While the systolic construction is tight and matches the lower
bound of [Inform and Comput., to appear], we strongly conjecture that the bounded-degree result is
optimal and that a corresponding matching lower bound is still to be proven.

Key words. broadcasting, gossiping, bounded-degree, systolic, optimal probabilistic construc-
tions

AMS subject classifications. 68M10, 05C80, 68R10, 68R05

PII. S0895480199365397

1. Introduction. Broadcasting (one-to-all) and gossiping (all-to-all) primitives
for disseminating information in communication networks have been extensively in-
vestigated in recent years for many different topologies and under a large variety of
models [11, 1, 10, 6, 14, 12, 13, 2].

In this paper we consider the basic model, called one-port or whispering, where
at each communication round each processor can have only one active incident link,
i.e., the set of the active links forms a matching. Active links are used at the corre-
sponding processors to deliver the items known until that communication round to
their neighbors. If the network can be modeled as an undirected graph, for gossiping

∗Received by the editors November 30, 1999; accepted for publication (in revised form) Jan-
uary 10, 2001; published electronically April 6, 2001. This work was supported by the IST Pro-
gramme of the EU under contract IST-1999-14186 (ALCOM-FT), by the SLOOP project I3S-
CNRS/INRIA/Université de Nice-Sophia Antipolis and by the Italian “Progetto Cofinanziato: Re-
source Allocation in Computer Networks.”

http://www.siam.org/journals/sidma/14-2/36539.html
†Dipartimento di Matematica Pura ed Applicata, Università di L’Aquila, via Vetoio Loc. Coppito,

I-67010 L’Aquila, Italy (flammini@univaq.it).
‡SLOOP I3S-CNRS/INRIA/Université de Nice-Sophia Antipolis, 2004 Route des Lucioles, BP 93,

F-06902 Sophia-Antipolis Cedex, France (speren@sophia.inria.fr).

267

268 MICHELE FLAMMINI AND STÉPHANE PÉRENNÈS

it is possible to further distinguish between two different cases: the half-duplex mode,
in which active links allow the transmission of messages only in one direction, and
the full-duplex mode, in which messages can travel in both directions simultaneously.
Clearly such a distinction is meaningless for broadcasting, as there is always a single
item traveling around and it traverses each link only once and in one direction.

There are many positive and negative results for specific networks under the one-
port model (see, for instance, [6, 10, 15, 17, 14, 26, 25, 2, 8, 9]).

The only lower bound on the broadcasting time holding for every topology is
max(log n,Diam(G)) (from now on all logarithms are assumed in base 2), but it can
be improved for bounded-degree networks. In fact, let the parameter d be defined
for undirected graphs as the maximum degree minus one and for directed graphs as
the maximum out-degree. Then, in [22, 3] it has been proved that b(G) in a graph
G of n vertices and parameter d satisfies b(G) ≥ e(d) log n, where e(d) = 1

log ξ and ξ

is the largest real number such that ξd − ξd−1 − ξd−2 − · · · − ξ − 1 = 0. This yields
e(2) = 1.4404, e(3) = 1.1374, e(4) = 1.0562, and for large d e(d) ≈ (1 + (log e)/2d).

Concerning upper bounds, in graphs of parameter 2 there is protocol terminating
in about 1.444 log n steps for directed de Bruijn networks [4] and 1.47 log n steps for
undirected cubic graphs [16]. For higher values of the parameter d the known upper
bounds differ significantly from the lower bounds in [22, 3] and until this paper the
optimality of [22, 3] was an open question.

For gossiping, in the half-duplex mode there is a general lower bound of
1.4404 log n holding for all graphs of n vertices [7, 21, 19, 27]. Such a lower bound
has been generalized in [8], where it has been shown that any s-systolic (i.e., peri-
odic with period s) gossip protocol in the directed and half-duplex modes for any
graph takes at least g(s)(log n) time steps, where g(s) = 1/(log 1/λ) and λ is the
unique real number such that 0 < λ < 1 and

√
p�s/2�(λ) ·

√
p�s/2�(λ) = 1, with

pj(λ) = λ+ λ3 + · · ·+ λ2j−1 for any integer j > 0. Thus, for instance g(4) = 1.8133,
g(5) = 1.6502, g(6) = 1.5363, g(7) = 1.5021, g(8) = 1.4721, and g(∞) = 1.4404,
i.e., for nonsystolic protocols (infinite period) coincides with [7, 21, 19, 27]. Fi-
nally, in [9] it has been proved that in the directed and half-duplex modes gossip-
ing in any graph G of parameter d requires at least g(d) log n time steps, where
g(d) = 1/(log 1/λ) and λ is the unique real number such that 0 < λ < 1 and√
p∞(λ) ·√pd(λ) = 1, again with pj(λ) = λ+ λ3 + · · ·+ λ2j−1 for any integer j > 0

and p∞(λ) = limj→∞ pj(λ) = λ/(1 − λ2). This gives g(2) = 1.5728, g(3) = 1.4829,
g(4) = 1.4555, and so forth with g(∞) = 1.4404 as in [7, 21, 19, 27]. Besides the cases
mentioned above, the other general lower bounds are those that can be inferred from
broadcasting.

Concerning upper bounds, the general lower bound of 1.4404 log n in the half-
duplex mode proved in [7, 21, 19, 27] is attained for complete graphs [7]. All the
other known upper bounds for specific networks do not match [8, 9].

In this paper we first prove that the broadcasting lower bound of [22, 3] is tight.
Namely, we show that, for n arbitrarily large, there exist families of n vertices graphs
such that a graph drawn uniformly in the family with probability converging to 1 has a
broadcasting time matching [22, 3]. Moreover, by carefully selecting the dissemination
protocol, we show that the same time holds even in the case of gossiping and systolic
gossiping in the full-duplex mode.

Finally, in the directed and half-duplex modes, we provide efficient probabilistic
constructions also for bounded-degree and systolic gossiping. While the systolic upper
bound is tight and matches the lower bound of [8], we also strongly conjecture that

OPTIMALITY OF GENERAL LOWER BOUNDS FOR BROADCAST 269

the bounded-degree result is optimal and that a corresponding matching lower bound
improving [9] is still to be proven.

The paper is organized as follows. In the next section we introduce the notation
and necessary definitions. In section 3 we show our tight upper bounds for broad-
casting in bounded-degree networks. In section 4 we provide the new upper bounds
for directed and half-duplex gossiping and we show that they are tight for systolic
protocols. Finally, in section 5, we give some conclusive remarks and discuss some
open questions.

2. Notation and definitions. Let us first introduce some useful notation and
definitions.

We model the network as a digraph G = (V,A) in which vertices represent proces-
sors and arcs communication links. The parameter d of G is the maximum out-degree
of a vertex if G is not symmetric and the maximum degree minus one if G is symmetric
(or undirected).

Definition 2.1. A broadcast (resp., gossip) protocol of length t for G = (V,A) is
a sequence 〈A1, . . . , At〉 of t subsets A1, . . . , At ⊆ A subject to the following conditions:

1. each Ai, 1 ≤ i ≤ t, is a matching in G (i.e., no two arcs in Ai have a common
endpoint);

2. for a given root vertex x ∈ V (resp., for any vertex x ∈ V) and for any
other vertex y ∈ V , there exists a directed path 〈x0, x1, . . . , xl〉 with l ≤ t,
x0 = x, and xl = y, and a sequence of positive integers j1, . . . , jl such that
1 ≤ j1 < · · · < jl ≤ t and for every i, 1 ≤ i ≤ l, (xi−1, xi) belongs to Aji .

Informally, each Ai represents the set of arcs that are active at the communication
round i. If an arc (x, y) is active at a step i, then at the beginning of step i+1 vertex
y knows all the items known by x at the beginning of step i. Then, in order for the
sequence of the subsets Ai to be a broadcast (resp., gossip) procedure, starting from
the chosen root x (from any vertex x), for any other vertex y there must exist a direct
path from x to y whose arcs are activated in a proper sequence so that at the end of
the protocol y knows the item of x.

Definition 2.2. The broadcasting time b(G, x) of G = (V,A) from a root vertex
x ∈ V is the minimum length of a broadcast protocol in G from x; the broadcasting
time of G is b(G) = maxx∈V b(G, x).

The gossiping time g(G) of G is the minimum length of a gossiping protocol for
G.

If we restrict our attention to symmetric digraphs, then the above definitions
corresponds to half-duplex protocols. In order to obtain the full-duplex case, it is
sufficient to weaken the condition on active arcs by saying that at every communication
round any two active arcs (x, y) and (x′, y′) are such that either {x, y} ∩ {x′, y′} = ∅
or x = y′ and y = x′; that is, either they don’t have a common endpoint or they
are opposite. Clearly such a distinction is meaningless for broadcasting, as there is
always a single item traveling around and it traverses each link only once and in one
direction.

Periodic or “systolic” protocols have received particular attention in the past years
because of their cheap realization due to a very regular, synchronized periodic behavior
of all processors during the dissemination of information (see [23, 24, 15, 18, 20]). In
a systolic protocol communication rounds are repeated in a periodic fashion.

Definition 2.3 (see [15]). A protocol 〈A1, . . . , At〉 for G = (V,A) is s-systolic if
for any i, 1 ≤ i ≤ t− s, Ai ≡ Ai+s.

A definition analogous to Definition 2.2 can also be given in the systolic case.

270 MICHELE FLAMMINI AND STÉPHANE PÉRENNÈS

Definition 2.4. The systolic broadcasting time bs(G, x) of G = (V,A) from a
root vertex x ∈ V is the minimum length of an s-systolic broadcast protocol in G from
x; the systolic broadcasting time of G is bs(G) = maxx∈V bs(G, x).

The systolic gossiping time gs(G) of G is the minimum length of an s-systolic
gossiping protocol for G.

While broadcasting protocols can be systolized at no cost when the parameter d of
G is such that s ≥ d+1 [15], i.e., bs(G) = b(G), in general for gossiping gs(G) ≥ g(G).

3. Upper bounds for broadcasting. In this section we show the existence of
fixed parameter networks whose broadcasting time matches the lower bound of [22,
3], thus proving that it is optimal. Namely, by means of probabilistic arguments,
for n arbitrarily large we provide a family of n vertices graphs such that a graph
drawn uniformly in the family with probability converging to 1 has broadcasting time
matching [22, 3]. Before going through the details of our construction, let us first
briefly recall the basic idea leading to the lower bound of [22, 3] when the parameter
of the graph G is d = 2.

Given any broadcast protocol for G and a root r ∈ V , let us denote as s(r, i)
the number of new vertices that receive the item of r during round i. Then, s(r, i)
obeys the recurrence s(r, i) ≤ s(r, i− 1) + s(r, i− 2) with s(r, 0) = 1 and s(r, 1) = 1,
which naturally arises by observing that every vertex, upon receiving the item of r
from one of its neighbors, in the best case can inform two other neighbors in the next
two rounds. Solving the above recurrence we have that s(r, i) = O(ξi), where ξ is the
largest root of the equation γ2 − γ − 1 = 0 (i.e., ξ = (1 +

√
5)/2 is the golden ratio),

and thus s(r, i) is at most proportional to ξi up to a constant factor depending on the
initial conditions. Moreover, the total number of vertices knowing the item of r at the
end of round i is also c(r, i) =

∑i
j=0 s(r, j) = O(ξi), since

∑i
j=0 ξ

j = (ξi+1−1)/(ξ−1).
The lower bound on the broadcasting time t is then inferred by observing that it must
be c(r, t) ≥ n, thus yielding b(G) ≥ (logξ n)−O(1) = (1.4404 log n)−O(1).

In order to determine a matching upper bound one should find a graph and a
protocol such that, whenever a vertex is informed by a neighbor, two other neighbors
have not yet been informed and are informed in the next two rounds. In fact this
would give s(r, i) = s(r, i−1)+s(r, i−2) and in other words it is equivalent to say that
during the broadcast protocol, if every vertex exploits its full dissemination capability
by always sending the known item of information to two neighbors in the successive
two steps, then no vertex is informed twice (or more) and thus the optimal growth
behavior is maintained.

We now provide a class of graphs with the property that a randomly chosen
graph in the class has a broadcast protocol that satisfies the recurrence s(r, i) ≈
s(r, i − 1) + s(r, i − 2) with probability converging to 1 as n increases, which means
that very few vertices are informed twice during the protocol. As a consequence,
almost all the graphs in the family have a broadcasting time matching the lower
bound of [22, 3].

In order to deal with all the cases, we consider separately undirected (or directed
symmetric) graphs and directed graphs.

3.1. Undirected graphs. In this section we consider undirected graphs or sym-
metric digraphs where every edge corresponds to a pair of symmetric directed arcs
between its two endpoints. In order to simplify matters, we first give a simpler proof
for the case of cubic graphs, that is, when each vertex has degree at most 3 (and thus
parameter 2), and then we show how to extend it to any fixed parameter d.

OPTIMALITY OF GENERAL LOWER BOUNDS FOR BROADCAST 271

Our construction exploits ideas in [5] and uses a cycle of n vertices with n even plus
a random matching. In the family obtained by the graphs with all possible matchings,
uniformly extracting a graph corresponds to choosing any possible matching with
equal probability.

In any graph thus constructed it is possible to identify three disjoint matchings.
Two matchings M1 and M2 are given by the (alternate) edges along the cycle, while
the third matchingM3 is the randomly chosen one (see Figure 3.1). It is then possible
to fix the following protocol: M1, M2 and M3 are activated cyclically in the order;
that is, the protocol 〈A1, . . . , At〉 is such that A1 = M1, A2 = M2, A3 = M3, and
Ai+3 = Ai for each 1 ≤ i ≤ t− 3.

M1

M2

M2

M1

M3

M1

M2

M1

M2

dist2

dist1

essential ≡ dist1 and dist2 ≥ 3 logξ n

≡ not informed

≡ informed

Fig. 3.1. The cubic random graph and essential chords.

Let S(r, i) be the subset of the new vertices informed during round i, C(r, i)
the subset of all the vertices informed at the end of round i, and s(r, i) and c(r, i)
their respective cardinalities. By the lower bound considerations at the beginning of
this section, for any chosen root vertex r in G, s(r, i) = O(ξi) and c(r, i) = O(ξi),
1 ≤ i ≤ t.

In order to get the claim we now prove that the following events hold with prob-
ability 1− o(1/n):

[E1] s(r, i) ≥ s(r, i− 1) + s(r, i− 2)− 1 for every i ≤ 1
4 (logξ

n
(logξ n)3);

[E2] s(r, i)(1+ 1
logξ n

) ≥ s(r, i−1)+s(r, i−2) for every i such that 1
4 (logξ

n
(logξ n)3) <

i ≤ (logξ
n

(logξ n)3);

[E3] after step �logξ n
(logξ n)3 � any uninformed vertex in G is informed in at most

O(log log n) additional rounds.
As we will see, these events together guarantee that the claimed upper bound

holds with probability 1 − o(1). Notice that the distinction between events E1 and
E2 is needed to avoid the collapsing of the recurrences, as at every step the number
of vertices informed twice must be a small fraction of all the informed ones.

Following the approach used by Chung and Bollobás in [5], we want to avoid a
priori counting vertices twice. If we call chords the edges belonging to the random
matching M3, then this is accomplished by “removing” the unessential chords which
can lead to informing a vertex more than once. Unessential chords can be identified
as follows. Assume that the chords of M3 are chosen step by step during the rounds
in which M3 is activated, starting the process from the root r with a graph consisting

272 MICHELE FLAMMINI AND STÉPHANE PÉRENNÈS

in a cycle. An informed vertex is involved in the process during the activation of
M3 when it is not yet adjacent to a chord; in this case it chooses randomly (and
equiprobably) among the vertices of degree 2 one target y and then the chord {x, y}
is added to the graph. Since many vertices are involved in the process at the same
round, their adjacent chords are added to the cycle in any sequential order. This
probabilistic space is clearly equivalent to the random matching one, as it consists of
drawing the matching sequentially instead of in a single parallel step.

A chord {x, y} ∈M3 added during round i is unessential at round i if there exists
a vertex y′ at distance less than 3 logξ n from y along the cycle such that y′ is either
an already informed vertex or {x′, y′} is a previously added chord during the round
(according to the chosen sequential order used to add chords). Since before time logξ n
a vertex using the matchings M1 and M2 can inform only the vertices at distance less
than logξ n along the cycle, if we perform an auxiliary estimation in which we count
only the vertices informed using only essential chords, then all the vertices that are
informed before time logξ n cannot be counted twice (see Figure 3.1).

Let SE(r, i) be defined as the subset of the new informed vertices during round i
if only essential chords are used, CE(r, i) as the subset of all the vertices informed at
the end of round i again using only essential chords, and se(r, i) and ce(r, i) be their
respective cardinalities. Clearly, s(r, i) ≥ se(r, i) and c(r, i) ≥ ce(r, i), 1 ≤ i ≤ t.

By the considerations above, if i < logξ n and round i corresponds to the ac-
tivation of M1, then all the vertices of SE(r, i − 2) (informed at round i − 2 us-
ing M2) and of SE(r, i − 1) (informed at round i − 1 using essential chords of M3)
are such that their neighbors reached through M1 are not informed. Moreover, the
neighbors along M1 of all the vertices informed before round i − 2 are all informed.
Therefore, se(r, i) = se(r, i − 1) + se(r, i − 2). Similarly, if round i corresponds to
the activation of M2, se(r, i) = se(r, i − 1) + se(r, i − 2), while if it corresponds to
the activation of M3 and un(i) is the number of unessential chords during round i,
se(r, i) = se(r, i− 1) + se(r, i− 2)− un(i).

Hence, in order to determine the growth rate of se(r, i), it is sufficient to properly
bound un(i) in any given round i.

Lemma 3.1. With probability 1− o(1/n), se(r, i) ≥ se(r, i− 1) + se(r, i− 2)− 1
for every i ≤ 1

4 (logξ
n

(logξ n)3).

Proof. It is sufficient to show that the probability that there is more than one
unessential chord in any round i ≤ 1

4 (logξ
n

(logξ n)3) is o(1/n).

A particular chord added during round i is unessential with probability at most
6(logξ n)c(r,i)

n−c(r,i) . In fact, let U be the set of all the vertices informed at the end of the

previous round, that is, in CE(r, i − 1), or informed by the previously added chords
during the round (according to the chosen sequential order used to add chords).
Clearly, U ⊆ CE(r, i) and thus |U | ≤ ce(r, i) ≤ c(r, i) (recall that c(r, i) is the number
of all the informed vertices at the end of round i, even using unessential chords).
As stated above, starting from an informed vertex x, the chord is obtained choosing
randomly and equiprobably among the vertices not in U one target y. This gives
rise to at least n− |U | ≥ n− c(r, i) possible choices, of which at most 6(logξ n)c(r, i)
corresponding to unessential chords. In fact, the target vertices yielding unessential
chords are those at distance less than 3 logξ n from the vertices in U along the cycle,
that is, at most (6(logξ n)− 1)|U | < 6(logξ n)c(r, i).

Since we add at most ce(r, i) ≤ c(r, i) chords at round i, the probability of finding

at least one unessential chord at round i is at most c(r, i)
6(logξ n)c(r,i)

n−c(r,i) . In the same

OPTIMALITY OF GENERAL LOWER BOUNDS FOR BROADCAST 273

way, the probability that at least two chords are unessential at round i is

pi ≤
(
c(r, i)

2

)(
6(logξ n)c(r, i)

n− c(r, i)
)2

= O

(
c(r, i)4(logξ n)

2

n2

)
= O

(
ξ4i

(logξ n)
2

n2

)
,

as long as i ≤ 1
4 (logξ

n
(logξ n)3).

Hence, the probability that at least two chords are unessential in any round
i ≤ 1

4 (logξ
n

(logξ n)3) is at most

1
4 (logξ

n
(logξ n)3

)∑
i=1

pi = O

1
4 (logξ

n
(logξ n)3

)∑
i=1

ξ4i
(logξ n)

2

n2

= O

(
ξ
4(1

4 logξ
n

(logξ n)3
) (logξ n)

2

n2

)
= O

(
1

n logξ n

)
= o

(
1

n

)
.

According to the previous lemma, with probability 1−o(1/n) the growth of se(r, i)
for i ≤ 1

4 (logξ
n

(logξ n)3) is fast and proportional to the powers of ξ. In fact, since in

steps 1 and 2 the matchings M1 and M2 are activated, it results that se(r, 1) = 1 and
se(r, 2) = 2. Then, se(r, i) ≥ fib(i− 1) + 1 for every i ≥ 2, where fib(1) = fib(2) =
1 and fib(i) is the ith Fibonacci’s number (actually se(r, i) is even more, as this
estimation does not take into account the fact that the root r also chooses a chord at
round 3). This can be shown inductively by observing that se(r, 2) = 2 = fib(1) + 1,
se(r, 3) ≥ 2 = fib(2) + 1, and assuming that the claim holds until a given i ≥ 3,
se(r, i+1) ≥ se(r, i)+ se(r, i− 1)− 1 ≥ fib(i− 1)+1+ fib(i− 2)+1− 1 = fib(i)+1.
Thus, se(r, i) = Ω(ξi) and ce(r, i) = Ω(ξi).

Let E1 be the event associated with Lemma 3.1, i.e., that there is at most one
unessential chord in every round i ≤ 1

4 (logξ
n

(logξ n)3) or analogously se(r, i) ≥ se(r, i−
1) + se(r, i− 2)− 1.

As i becomes larger and se(r, i) and ce(r, i) increase, the probability of having
at least two unessential chords per round is no longer sufficiently low. However, an
optimal growth rate can still be maintained even if we allow a number of unessential
chords which is a logarithmic fraction of all the chosen ones. Namely, assume that

un(i) ≤ se(r,i−1)+se(r,i−2)
1+logξ n

for every i such that 1
4 (logξ

n
(logξ n)3) < i ≤ (logξ

n
(logξ n)3).

Then se(r, i) ≥ se(r, i− 1) + se(r, i− 2)− se(r,i−1)+se(r,i−2)
1+logξ n

= (se(r, i− 1) + se(r, i−
2))(1 − 1

1+logξ n
), i.e., se(r, i)(1 + 1

logξ n
) ≥ se(r, i − 1) + se(r, i − 2). Thus, for any i

between 1
4 (logξ

n
(logξ n)3) and (logξ

n
(logξ n)3), we have that se(r, i) = Ω(ξin), where ξn

is the largest root of the equation γ2 · (1 + 1
logξ n

) − γ − 1 = 0. Clearly ξn ≤ ξ and

as a limit for n going to infinity ξn = ξ = (1 +
√
5)/2. The following lemma allows a

more exact estimation of ξn.

274 MICHELE FLAMMINI AND STÉPHANE PÉRENNÈS

Lemma 3.2. For any integer d ≥ 2 and positive real ε suitably small, let ξ(ε)
be the largest root of the equation γd(1 + ε) − γd−1 − γd−2 − · · · − γ − 1 = 0. Then
ξ(ε) = ξ(0)−Θ(ε).

Proof. ξ(ε) is an implicit function defined by the equation f(ε, γ) = 0 with
f(ε, γ) = γd(1 + ε)− γd−1 − γd−2 − · · · − γ − 1.

f(ε, γ) is continuous and has continuous partial derivatives fγ(ε, γ) = dγd−1(1 +
ε)− (d− 1)γd−2 − (d− 2)γd−3 − · · · − 2γ − 1 with respect to γ and fε(ε, γ) = γd with
respect to ε.

Moreover, fγ(0, ξ(0)) > 0 since

dξ(0)d−1 − (d− 1)ξ(0)d−2 − (d− 2)ξ(0)d−3 − · · · − 2ξ(0)− 1

=

(
d−1∑
i=2

ξ(0)d−i−1
(
ξ(0)i − ξ(0)i−1 − ξ(0)i−2 − · · · − ξ(0)− 1

))

+ ξ(0)d−3
(
2ξ(0)2 − ξ(0)) > 0.

In fact, the largest root of the equation γi−γi−1−γi−2−· · ·−γ−1 = 0 increases
as i increases from the golden ratio (i = 2) toward 2. Moreover, since the polynomial
γi − γi−1 − γi−2 − · · · − γ − 1 is monotonic increasing for γ > 1 and ξ(0) is the
root of γd − γd−1 − · · · − γ − 1, for any integer i such that 2 ≤ i < d it results that
ξ(0)i − ξ(0)i−1 − · · · − ξ(0) − 1 > 0. The last term ξ(0)d−3

(
2ξ(0)2 − ξ(0)) is clearly

greater than 0 as 2ξ(0)2 − ξ(0) > 1.
By the classical theorem of implicit functions, the derivative ξ′(ε) of ξ(ε) evaluated

in the point ε = 0 is equal to ξ′(0) = − fε(0,ξ(0))
fγ(0,ξ(0)) and approximating ξ(ε) by means of

the Taylor series it results that

ξ(ε) = ξ(0) + ξ′(0)ε+ o(ε) = ξ(0)−Θ(ε).

According to Lemma 3.2, for 1
4 (logξ

n
(logξ n)3) < i ≤ (logξ

n
(logξ n)3), if se(r, i)(1 +

1
logξ n

) ≥ se(r, i− 1) + se(r, i− 2), then the growth of se(r, i) is still optimal. In fact

ξin = (ξ(1−Θ(1/ log n)))
i
= Θ(ξi), since for δ converging to 0 it is 1 − δ ≤ e−δ ≤

1 − δ/2 and thus (1 − Θ(1/ log n))i = e−Θ(i/ logn) = Θ(1) if i = O(log n). Hence,
se(r, i) = Ω(ξi), 1 ≤ i ≤ (logξ

n
(logξ n)3).

Let us now show that this holds with high probability.
Lemma 3.3. If event E1 holds, then with probability 1−o(1/n) se(r, i)(1+ 1

logξ n
) ≥

se(r, i− 1) + se(r, i− 2) for every i such that 1
4 (logξ

n
(logξ n)3) < i ≤ (logξ

n
(logξ n)3).

Proof. As in Lemma 3.1, given a round i with 1
4 (logξ

n
(logξ n)3) < i ≤

(logξ
n

(logξ n)3), assuming that E1 holds and that for any i′, 1
4 (logξ

n
(logξ n)3) ≤ i′ < i,

se(r, i′)(1+ 1
logξ n

) ≥ se(r, i′−1)+se(r, i′−2), it is sufficient to show that the probabil-

ity that there are at least se(r,i−1)+se(r,i−2)
1+logξ n

unessential chords is o(1/n2). In fact, this

implies that se(r, i)(1+ 1
logξ n

) ≥ se(r, i−1)+se(r, i−2) with probability 1−o(1/n2),

and thus the probability that this holds for all rounds i between 1
4 (logξ

n
(logξ n)3) and

(logξ
n

(logξ n)3) is (1− o(1/n2))logξ n = 1− o(1/n).
By hypothesis, se(r,i−1)+se(r,i−2)

1+logξ n
= Ω(ξi/ logξ n). Therefore, the probability that

at least se(r,i−1)+se(r,i−2)
1+logξ n

chords are unessential at round i is

OPTIMALITY OF GENERAL LOWER BOUNDS FOR BROADCAST 275

pi ≤
(

c(r, i)
se(r,i−1)+se(r,i−2)

1+logξ n

)(
6(logξ n)c(r, i)

n− c(r, i)
) se(r,i−1)+se(r,i−2)

1+logξ n

≤

 e · c(r, i)

se(r,i−1)+se(r,i−2)
1+logξ n

se(r,i−1)+se(r,i−2)
1+logξ n (

6(logξ n)c(r, i)

n− c(r, i)
) se(r,i−1)+se(r,i−2)

1+logξ n

=

(
(logξ n)

2ξi

n

)Ω(ξi

logξ n)

= o(1/n2)

as 1
4 (logξ

n
(logξ n)3) < i ≤ (logξ

n
(logξ n)3), where we have used the inequality

(
a
b

) ≤(
e·a
b

)b
.

Notice that a logarithmic fraction of unessential chords is the maximum that we
can allow in order to maintain the optimal growth behavior. This allows us to reach
the highest possible order of round for which the successive phase begins.

Let E2 be the event associated with the previous lemma, that is, that se(r, i)(1+
1

logξ n
) ≥ se(r, i − 1) + se(r, i − 2) for every i such that 1

4 (logξ
n

(logξ n)3) < i ≤
(logξ

n
(logξ n)3).

We are now left with the last phase, i.e., that starting from round �logξ n
(logξ n)3 �

only O(log log n) additional rounds are needed with high probability to inform the
remaining vertices.

Lemma 3.4. If E1 and E2 hold, then with probability 1 − o(1/n) after
step �logξ n

(logξ n)3 � any uninformed vertex in G receives the item of r in at most

O(log log n) additional rounds.
Proof. Given any vertex x in G, as for r, with probability 1 − o(1/n)

se(x, �5 logξ log n�) = Ω(ξ5 logξ logn) = Ω((log n)5). Routing the information paths
in the opposite way, this implies that there are at least Ω((logn)5) different vertices
that when informed can communicate the item of r to x in O(log log n) rounds.

We now prove a slightly stronger statement, i.e., that this event holds with prob-
ability 1 − o(1/n2), so that it is verified for all possible vertices x with probability
1− o(1/n).

This is accomplished by observing that, starting from x, the probability of having
at least three unessential chords in any round i ≤ 5 logξ log n is at most

5 logξ logn∑
i=1

pi ≤
5 logξ logn∑

i=1

(
c(r, i)

3

)(
6(logξ n)c(r, i)

n− c(r, i)
)3

= O

5 logξ logn∑

i=1

ξ6i
(logξ n)

3

n3

 = o

(
1

n2

)
.

276 MICHELE FLAMMINI AND STÉPHANE PÉRENNÈS

Hence, se(x, i) ≥ se(x, i − 1) + se(x, i − 2) − 2 holds with probability at least
1 − o(1/n2). Unfortunately, with the initial conditions se(x, 1) = 1 and se(x, 2) =
2, such recurrence collapses, as it establishes decreasing lower bounds for se(r, i).
However, this problem is avoided by showing that the probability that se(x, 3) ≤ 2
is o(1/n2). In fact, se(x, 3) ≤ 2 if and only if all the chords chosen in round 3
(corresponding toM3) are unessential. Each chord can be chosen in at most n different
ways, of which at most O(logξ n) corresponding to unessential chords. Therefore,
since there are four informed vertices at the beginning of round 3, the probability
that se(x, 3) ≤ 2 is proportional to ((logξ n)/n)

4 = o(1/n2). If se(x, 3) ≥ 3, the
recurrence produces the right growth behavior proportional to the powers of ξ. In
fact, a trivial induction shows that se(x, i) ≥ fib(i− 3) + 2 for i ≥ 4.

Therefore, se(x, �5 logξ log n�) = Ω((logn)5) with probability 1− o(1/n2). Let us
assume that se(x, �5 logξ log n�) = Ω((logn)5). Since by hypothesis events E1 and E2

hold, se(r, �logξ n
(logξ n)3 �) = Ω(ξ

(logξ
n

(logξ n)3
)
) = Ω(n

(logξ n)3). If SE(x, �5 logξ log n�)∩
SE(r, �logξ n

(logξ n)3 �) �= ∅, i.e., x is at distance O(log log n) from at least one vertex

informed at round �logξ n
(logξ n)3 �, then x can be informed in O(log log n) additional

rounds (following the information path from x to a vertex in the intersection in the
opposite direction); otherwise let us estimate the probability that there is not any
chord connecting two vertices in the two sets.

Given any two subsets of vertices S1 and S2 of cardinality s1 and s2, respectively,
if a partial random matching has already been constructed in which chords do not
have endpoints in S1 or S2 and if s1 ≤ s2, then the probability that in the whole
random matching there is not any edge between them is at most

n− s2
n

· n− s2 − 2

n− 2
· · · n− s2 − 2(s1 − 1)

n− 2(s1 − 1)

≤
(
1− s2

n

)s1 ≤ e−
s2
n s1 ,

where we have used the inequality (1− δ) ≤ e−δ for any 0 ≤ δ ≤ 1.
In our case, assuming that rounds �5 logξ log n� and �logξ n

(logξ n)3 � do not corre-

spond to the activation of M3 (otherwise the argument works in the same way con-
sidering the successive rounds), SE(x, �5 logξ log n�) and SE(r, �logξ n

(logξ n)3 �) satisfy
the conditions of S1 and S2 and the probability that there is not any chord between
the two sets is at most

e−
se(r,�logξ n

(logξ n)3
�)

n se(x,�5 logξ logn�) = e
−Ω

(n
(logξ n)3

n (log n)5

)
= e−Ω((log n)2) = o(1/n2).

Hence, by the above arguments the probability that there is not an informing
path from SE(r, �logξ n

(logξ n)3 �) to x taking O(log log n) rounds is at most o(1/n2).

Summing up over all possible uninformed vertices, the probability that there
exists x that cannot be informed in additional O(log log n) rounds is o(1/n); hence
the lemma.

Let E3 be the event corresponding to the previous lemma, i.e., that after step
�logξ n

(logξ n)3 � any uninformed vertex inG receives the item of r in at most O(log log n)

additional rounds.

OPTIMALITY OF GENERAL LOWER BOUNDS FOR BROADCAST 277

Theorem 3.5. With probability 1− o(1), b(G) ≤ (logξ n) +O(log log n).
Proof. The theorem follows simply by observing that for a fixed root r events

E1, E2, and E3 hold with probability 1 − o(1/n), i.e., they hold with probability
1 − o(1) for every possible r. Therefore, b(G) ≤ (logξ

n
(logξ n)3) + O(log log n) =

(logξ n) +O(log log n) with probability 1− o(1).
Let us now extend our upper bound to any fixed parameter d ≥ 2, i.e., to graphs

with vertices of degree at most d+ 1.
In this case the lower bound in [22, 3] for graphs G with parameter d generalizes

simply by observing that s(r, i) obeys the recurrence s(r, i) ≤ s(r, i− 1)+ s(r, i− 2)+
· · ·+ s(r, i− d), which gives s(r, i) = O(ξi) and c(r, i) = O(ξi), where ξ is the largest
root of the equation γd−γd−1−γd−2−· · ·−γ−1 = 0. Therefore, b(G) ≥ (logξ n)−O(1).

Our construction is again based on a cycle of n vertices with n even, where we can
still identify the two matchings M1 and M2. Then we add d − 1 random matchings
M3, . . . ,Md+1 and the protocol activates M1, . . . ,Md+1 cyclically in the order.

The definition of unessential chords is exactly the same, and we basically show
that se(r, i) grows quickly.

Lemmas 3.1, 3.3, and Lemma 3.4 apply without any modification, even if in the
proof of Lemma 3.4 the probability that there is not any edge between the two sets
S1 and S2 is even lower, as there is more than one random matching to be considered.
However, considering only one does not affect the correctness of the proof.

Hence, if G is the graph with parameter d obtained from the cycle by adding the
d− 1 random matchings, the following theorem holds.

Theorem 3.6. With probability 1− o(1), b(G) ≤ (logξ n) +O(log log n), where ξ

is the largest root of the equation γd − γd−1 − γd−2 − · · · − γ − 1 = 0.

3.2. Directed graphs. In this section we prove an analogous broadcasting lower
bound for directed graphs of fixed parameter d ≥ 2, i.e., with vertices of out-degree at
most d. We don’t give a detailed proof, but we just point out the few basic differences
from the undirected case.

Clearly, again by [22, 3] it is s(r, i) = O(ξi) and c(r, i) = O(ξi), where ξ is the
largest root of the equation γd − γd−1 − γd−2 − · · · − γ − 1 = 0.

The construction of the random graph is slightly different from the undirected
case. In fact, we have a clockwise directed cycle of n vertices with n even, where we
can still identify the two matchings M1 and M2, both directed clockwise.

Let us denote as V1 (resp., V2) the subset of the n/2 vertices whose outgoing
arcs belong to M1 (resp., M2). Following the cycle, vertices belong alternatively to
V1 and to V2 and every arc of M1 (resp., M2) goes from V1 to V2 (resp., from V2 to
V1). We add another 2d − 2 random directed matchings M3, . . . ,M2d such that Mi,
3 ≤ i ≤ 2d, goes from V1 to V2 if i is odd, otherwise from V2 to V1. Hence, every
vertex has in-degree and out-degree equal to d.

The protocol is slightly different: as soon as a new vertex v is informed, it tries
to inform its d neighbors reachable through its outgoing arcs in the next d rounds
using in the order the d outgoing matchings M1, M3, . . ., M2d−1 if v ∈ V1, and M2,
M4, . . ., M2d if v ∈ V2. The main difference from the undirected case is that here
each round does not correspond to the activation of a single matching Mi, but arcs
belonging to different matchings can be activated. Moreover, the protocol is different
for every fixed root vertex r.

The definition of unessential chords is exactly the same and again Lemmas 3.1, 3.3,
and 3.4 apply as in the undirected case. The only difference is in the initial conditions
of the recurrences, that must be properly set in order to avoid collapsing.

278 MICHELE FLAMMINI AND STÉPHANE PÉRENNÈS

To this aim, observe that se(r, i), i ≥ 1, is at least equal to 1 plus the total number
of essential chords generated until round i included (or analogously se(r, i+1) is equal
to se(r, i) plus the number of essential chords in round i+ 1). In fact, from the root
or from any new vertex informed along an essential chord, there is a thread of vertices
following it along the directed cycle that are informed one by one in the successive
rounds. Hence, the probability that se(r, 5) < 3 corresponds to the probability of
at most 1 essential chord until round 5, that is, the probability of at least m − 1
unessential chords among the m ones drawn until round 5. Therefore, since m ≥ 4
(at least one chord drawn for the root and one for each vertex at distance at most 3
from the root along the directed cycle), the probability of at most 1 essential chord
until round 5 is O(((logξ n)/n)

3) = o(1/n2)
This means that both the recurrences se(r, i) ≥ se(r, i− 1) + se(r, i− 2) + · · ·+

se(r, i− d)− 1 generalizing the one of Lemma 3.1 and se(r, i) ≥ se(r, i− 1)+ se(r, i−
2) + · · · + se(r, i − d) − 2 generalizing the one inside the proof of Lemma 3.4 do not
collapse with probability 1 − o(1/n2) and thus they grow with the powers of ξ; in
fact, a simple induction shows that there is a suitable constant c such that se(r, i) ≥
fib(i − c, d) = Ω(ξi), where fib(i, d) = fib(i − 1, d) + fib(i − 2, d) + · · · fib(i − d, d)
with initial conditions fib(1, d) = fib(2, d) = · · · = fib(d, d) = 1.

Hence, ifG is the graph with parameter d obtained as above, the following theorem
holds.

Theorem 3.7. With probability 1− o(1), b(G) ≤ (logξ n) +O(log log n), where ξ

is the largest root of the equation γd − γd−1 − γd−2 − · · · − γ − 1 = 0.

4. Upper bounds for gossiping. We now provide upper bounds on the gos-
siping time in graphs with fixed parameter and for systolic protocols. In order to
avoid unnecessarily long proofs, as for broadcasting in directed graphs, we just point
out the basic differences from the previous constructions. The remaining details are
completely analogous.

In the full-duplex case, we observe that in the construction of the undirected
broadcasting upper bound the protocol does not depend on the particular root vertex
chosen, and thus it is also a gossiping protocol. Hence, as a direct consequence of
Theorem 3.6, we get the following theorem.

Theorem 4.1. With probability 1− o(1), g(G) ≤ (logξ n) +O(log log n), where ξ

is the largest root of the equation γd − γd−1 − γd−2 − · · · − γ − 1 = 0.
Clearly this result is optimal, as it matches the lower bound of [22, 3]. Since by

construction the protocol is s-systolic with s = d + 1 and gs(G) ≥ g(G), a matching
upper bound is determined also for systolic full-duplex gossiping.

Theorem 4.2. With probability 1− o(1), gs(G) ≤ (logξ n) +O(log log n), where
ξ is the largest root of the equation γs−1 − γs−2 − γs−3 − · · · − γ − 1 = 0.

For gossiping in directed graphs we use the same corresponding construction of
broadcasting with the only difference that the protocol is now modified to be the same
for every root vertex. Namely, it consists of activating cyclically in a periodic fashion
the 2d matchings M1, . . . ,M2d. The definition of essential chords is exactly the same.

All the considerations for directed broadcasting apply with the difference that,
since if at a certain round a matching from V1 to V2 is activated then the next matching
is from V2 to V1 and vice versa, for any chosen vertex r ∈ V1 now se(r, i) follows the
recurrence se(r, i) ≥ se(r, i−1)+ se(r, i−3)+ · · · se(r, i−2d+1)−un(i). In fact, the
vertices informed at times i−2, i−4, . . . , i−2d cannot inform any new vertex during
round i because incoming matchings are activated, and thus se(r, i) is at least equal to
the sum of the number of new informed vertices during rounds i−1, i−3, . . . , i−2d+1,

OPTIMALITY OF GENERAL LOWER BOUNDS FOR BROADCAST 279

minus the unessential chords during round i.
Concerning the setting of the initial conditions that avoid collapsing, given any

j ≥ 2, consider the new informed vertices during rounds 2jd+1 and 2jd+2, i.e., the
first two rounds of the (j + 1)st period corresponding to the activations of M1 and
M2, respectively. Generalizing the corresponding argument for directed broadcasting,
se(r, 2jd + 1) and se(r, 2jd + 2) are at least equal to 1 plus the total number of
essential chords generated until round 2(j − 1)d, i.e., the last round of the (j − 1)st
period activating M2d. In fact, from the root or from any new vertex informed along
an essential chord, there is a thread of vertices following it along the directed cycle
that are informed one by one during the rounds in which M1 and M2 are activated.
In particular, if the unessential chord is from V1 to V2, such a thread starts with a
vertex in V2 and during the next period is extended only by the activation of M2

(thus contributing 1 to se(r, 2(j − 1)d+ 2) and not to se(r, 2(j − 1)d+ 1)). However,
starting from the (j + 1)st period, the thread is extended both by the activation of
M1 and of M2, thus increasing of 1 both se(r, 2jd+ 1) and se(r, 2jd+ 2). Similarly,
if the unessential chord is from V2 to V1, the thread is extended both by M1 and M2

already in the jth period, and in every case it contributes 1 both to se(r, 2jd + 1)
and se(r, 2jd + 2). Hence, taking j = 4, the probability that se(r, 8d + 1) < 4 or
se(r, 8d + 2) < 4 is smaller than the probability of at most 2 essential chords until
round 6d, that is, the probability of at least m − 2 unessential chords among the m
ones drawn until round 6d. Therefore, since m ≥ 6 (at least 1 chord drawn for the
root and for the 5 vertices at distance at most 5 from the root along the directed
cycle, i.e., informed during the first 3 periods), the probability of at most 2 essential
chords until round 6d is O(((logξ n)/n)

4) = o(1/n2).
With the initial conditions se(r, 8d+1) ≥ 4 and se(r, 8d+2) ≥ 4, the recurrences

se(r, i) ≥ se(r, i − 1) + se(r, i − 3) + · · · + se(r, i − 2d + 1) − 1 corresponding to the
one of Lemma 3.1 and se(r, i) ≥ se(r, i − 1) + se(r, i − 3) + · · · se(r, i − 2d + 1) − 2
corresponding the one inside the proof of Lemma 3.4 do not collapse. Thus, with
probability 1− o(1/n2) they grow asymptotically as se(r, i) ≥ se(r, i − 2) + se(r, i −
4) + · · ·+ se(r, i− 2d).

Finally, concerning the recurrence se(r, i)(1 + 1
logξ n

) ≥ se(r, i − 1) + se(r, i −
3) + · · · se(r, i − 2d + 1) − 2 corresponding to Lemma 3.3, a simple modification of
Lemma 3.2 shows that for any integer d ≥ 2 and positive real ε suitably small, if ξ(ε)
is the largest root of the equation γ2d−1(1 + ε) − γ2d−2 − γ2d−4 − · · · − γ2 − 1 = 0,
then ξ(ε) = ξ(0)−Θ(ε).

All these facts together imply that, with probability 1− o(1/n), se(r, i) = Ω(ξi)
for every i ≤ logξ

n
(logξ n)3 and after round logξ

n
(logξ n)3 only O(log log n) rounds are

sufficient to deliver the item of r with ξ the largest root of γ2d−1 − γ2d−2 − γ2d−4 −
· · · − γ2 − 1 = 0.

Hence, since the protocol does not depend on the particular chosen root r, the
following theorem holds.

Theorem 4.3. With probability 1− o(1), g(G) ≤ (logξ n) +O(log log n), where ξ

is the largest root of the equation γ2d−1 − γ2d−2 − γ2d−4 − · · · − γ2 − 1 = 0.
Since 1 < ξ < 2, plugging λ = 1/ξ in the above theorem, g(G) ≤

(log n)/(log 1/λ)+O(log log n) with 0 < λ < 1 and (1/λ)2d−1−(1/λ)2d−2−(1/λ)2d−4−
· · · − 1/λ2 − 1 = 0, i.e., λ + λ3 + · · ·λ2d−1 =

√
pd(λ) ·

√
pd(λ) = 1, where

pj(λ) = λ + λ3 + · · · + λ2j−1 for any integer j > 0. This is slightly different

from the lower bound proved in [9], where λ satisfies
√
p∞(λ) ·√pd(λ) = 1, with

p∞(λ) = limj→∞ pj(λ) = λ/(1− λ2).

280 MICHELE FLAMMINI AND STÉPHANE PÉRENNÈS

Similarly as for broadcasting, the above protocol is also s-systolic with s = 2d.
Hence the following theorem holds.

Theorem 4.4. With probability 1− o(1), gs(G) ≤ (logξ n) +O(log log n), where
ξ is the largest root of the equation γs−1 − γs−2 − γs−4 − · · · − γ2 − 1 = 0.

Again, plugging λ = 1/ξ in the above theorem, gs(G) ≤ (log n)/(log 1/λ) +
O(log log n) with 0 < λ < 1 and λ + λ3 + · · ·λs−1 =

√
p�s/2�(λ) ·

√
p�s/2�(λ) = 1.

Moreover, ξ is the unique root greater than 1 of γs−1− γs−2− γs−4−· · ·− γ2− 1 = 0
and λ is the unique real between 0 and 1 that satisfies λ+ λ3 + · · ·λs−1 = 1. Hence,
for systolic protocols our result is tight, as it matches the lower bound of [8].

Let us conclude the section considering undirected (or directed symmetric) graphs.
The construction for half-duplex gossiping is essentially the same, with the difference
that, since the digraph G is undirected, there are two undirected matchings M1 and
M2 between V1 and V2 along the cycle, plus d + 1 undirected random matchings
M3, . . . ,Md+1, still between V1 and V2. Each undirected matching Mi, 1 ≤ i ≤ d+1,

can be seen as two opposite directed matchings
→
M i and

←
M i, respectively, from V1 to

V2 and from V2 to V1.

If d is even, the protocol consists of activating cyclically in the order the 2d + 2

directed matchings
→
M1,

←
M2, . . . ,

←
Md,

→
Md+1,

←
M1,

→
M2, . . . ,

→
Md,

←
Md+1, while if d is odd

the 2d + 2 directed matchings
→
M1,

←
M2, . . . ,

←
Md,

→
Md+1,

←
M2,

→
M1,

←
M4,

→
M3, . . . ,

→
Md+1,←

Md.

Although the proof from now on is equivalent to the directed gossiping case, the
recurrence is slightly different. In fact, if d is even, se(r, i) ≥ se(r, i−1)+se(r, i−3)+
· · ·+ se(r, i− d+1)+ se(r, i− d− 3)+ · · ·+ se(r, i− 2d− 1)−un(i), since besides the
vertices informed during rounds i− 2, i− 4, . . . , i− 2d− 2, also the vertices informed
during round i− d− 1 cannot inform any new vertex during step i, as they are using
the reverse of the arcs activated at time i − d − 1 (through which they have been
informed).

Similarly, it is easy to check that if d is odd, either the vertices informed during
round i− d− 2 or during round i− d− 4 cannot inform any new vertex during step i.
Since the first case is worse, in every case se(r, i) ≥ se(r, i − 1) + se(r, i − 3) + · · · +
se(r, i− d+ 2) + se(r, i− d− 2) + · · ·+ se(r, i− 2d− 1)− un(i).

Therefore, the following theorem holds.

Theorem 4.5. With probability 1− o(1), g(G) ≤ (logξ n) +O(log log n), where ξ

is the largest root of the equation γ2d+1−γ2d−γ2d−2−· · ·−γd−γd−4−· · ·−γ2−1 = 0
if d is even, and γ2d+1 − γ2d − γ2d−2 − · · · − γd+1 − γd−3 − · · · − γ2 − 1 = 0 if d is
odd.

The above half-duplex protocol is (2d+ 2)-systolic and does not give a matching
upper bound for systolic half-duplex protocols on general topologies. This holds
because the protocol has at the same time a restriction due to the fact that the graph
has fixed parameter and one deriving from the fact that it is systolic. In fact, if every
incident arc is activated in some round, for every incoming arc activated there is a
successive round in which the reverse of the same arc is activated, and in such a round
the information communicated by the incoming arc cannot be forwarded to any new
vertex. However, if we don’t care about the vertex degree and consider the symmetric
digraph obtained by the construction of gossiping in directed graphs by adding for
each directed matching a reverse matching (never activated), we get a half-duplex
s-systolic protocol on an undirected graph with s = 2d and with the same optimal
gossiping time of Theorem 4.4. Hence, even if we don’t put a separate claim, again

OPTIMALITY OF GENERAL LOWER BOUNDS FOR BROADCAST 281

we have a matching upper bound for systolic half-duplex protocols.

5. Concluding remarks. In this paper we have proved the optimality of the
general lower bounds known for bounded-degree broadcasting, bounded-degree gossip-
ing (only full-duplex) and systolic gossiping (full-duplex, directed, and half-duplex).
This has been accomplished by showing the existence of networks with a matching
broadcasting or gossiping time.

Similar results have been proved also for bounded-degree gossiping in the directed
and half-duplex modes, but they don’t match the corresponding lower bounds of [9].
However, we strongly conjecture that even in this case our bounds are optimal and
there do not exist networks with a lower gossiping time, so that the gap can be
eliminated only by improving [9].

Finally, our proofs are only existential and the effective construction of graphs
attaining such lower bounds is another research direction worthy of consideration.

REFERENCES

[1] A. Bar-Noy and S. Kipnis, Designing broadcasting algorithms in the postal model for message
passing systems, Math. Systems Theory, 27 (1994), pp. 431–452.

[2] J.-C. Bermond, L. Gargano, A. A. Rescigno, and U. Vaccaro, Fast gossiping by short
messages, SIAM J. Comput., 27 (1998), pp. 917–941.

[3] J.-C. Bermond, P. Hell, A. Liestman, and J. G. Peters, Broadcasting in bounded degree
graphs, SIAM J. Discrete Math., 5 (1992), pp. 10–24.

[4] J. Bermond, X. Munoz, and A. Marchetti-Spaccamela, Induced broadcasting algorithms
in iterated line digraphs, in Proceedings of the 2nd International Euro-Par Conference,
Lecture Notes in Comput. Sci. 1123, Springer-Verlag, Berlin, 1996, pp. 313–324.

[5] B. Bollobás and F. R. K. Chung, The diameter of a cycle plus a random matching, SIAM
J. Discrete Math., 1 (1988), pp. 328–333.

[6] J. de Rumeur, Communication dans les réseaux de processeurs, Collection Etudes et
Recherches en Informatique, Masson, Paris, 1994.

[7] S. Even and B. Monien, On the number of rounds necessary to disseminate information, in
Proceedings of the 1st ACM Symposium on Parallel Algorithms and Architectures (SPAA),
Santa Fe, NM, 1989, pp. 318–327.

[8] M. Flammini and S. Pérennès, Lower bounds on systolic gossip, Inform. and Comput., to
appear.

[9] M. Flammini and S. Pérennès, Lower Bounds on the Broadcasting and Gossiping Time of
Restricted Protocols, Tech. Report 3612, INRIA Sophia-Antipolis, France, 1999.

[10] P. Fraigniaud and E. Lazard, Methods and problems of communication in usual networks,
Discrete Appl. Math., 53 (1994), pp. 79–133.

[11] S. T. Hedetniemi, S. M. Hedetniemi, and A. Liestman, A survey of gossiping and broad-
casting in communication networks, Networks, 18 (1986), pp. 319–349.

[12] J. Hromkovič, R. Klasing, E. Stohr, and H. Wagener, Gossiping in vertex-disjoint paths
mode in d-dimensional grids and planar graphs, Inform. Comput., 123 (1995), pp. 17–28.

[13] J. Hromkovič, R. Klasing, W. Unger, and H. Wagener, Optimal algorithms for broadcast
and gossip in the edge-disjoint path modes, Inform. Comput., 133 (1997), pp. 1–33.

[14] J. Hromkovič, R. Klasing, B. Monien, and R. Peine, Dissemination of information in
interconnection networks (broadcasting and gossiping), in Combinatorial Network The-
ory, Ding-Zhu Du and D. Frank Hsu, eds., Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1995, pp. 125–212.

[15] J. Hromkovič, R. Klasing, D. Pardubská, W. Unger, and H. Wagener, The complexity of
systolic dissemination of information in interconnection networks, RAIRO Inform. Théor.
Appl., 28 (1994), pp. 303–342.

[16] M. Jerrum and S. Skyum, Families of fixed degree graphs for processor interconnection, IEEE
Trans. Comput., 33 (1984), pp. 190–194.

[17] R. Klasing, B. Monien, R. Peine, and E. Stohr, Broadcasting in butterfly and de Bruijn
networks, Discrete Appl. Math., 53 (1994), pp. 183–197.

[18] G. Kortsarz and D. Peleg, Traffic-light scheduling on the grid, Discrete Appl. Math., 53
(1994), pp. 211–234.

282 MICHELE FLAMMINI AND STÉPHANE PÉRENNÈS

[19] D. W. Krumme, G. Cybenko, and K. N. Venkataraman, Gossiping in minimal time, SIAM
J. Comput., 21 (1992), pp. 111–139.

[20] R. Labahn, S. Hedetniemi, and R. Laskar, Periodic gossiping on trees, Discrete Appl. Math.,
53 (1994), pp. 235–246.

[21] R. Labahn and I. Warnke, Quick gossiping by multi-telegraphs, in Topics in Combinatorics
and Graph Theory, Physica, Heidelberg, Germany, 1990, pp. 451–458.

[22] A. L. Liestman and J. G. Peters, Broadcast networks of bounded degree, SIAM J. Discrete
Math., 1 (1988), pp. 531–540.

[23] A. Liestman and D. Richards, Network communication in edge-colored graphs: Gossiping,
IEEE Trans. Par. Distr. Syst., 4 (1993), pp. 438–445.

[24] A. Liestman and D. Richards, Perpetual gossiping, Parallel Process. Lett., 3 (1993), pp. 347–
355.

[25] S. Pérennès, Communications dans les réseaux d’interconnexion, Ph.D. thesis, Université de
Nice-Sophia Antipolis, Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipo-
lis CNRS URA 1376, 1996.

[26] S. Pérennès, Lower bounds on broadcasting time of de Bruijn networks, in Proceedings of
the 2nd International Euro-Par Conference, Lecture Notes in Comput. Sci. 1123, Springer-
Verlag, Berlin, 1996, pp. 325–332.

[27] V. Sunderam and P. Winkler, Fast information sharing in a complete network, Discrete
Appl. Math., 42 (1993), pp. 75–86.

CONSTRUCTION OF FERRERO PAIRS OF ALL POSSIBLE ORDERS∗

TIM BOYKETT†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 3, pp. 283–285

Abstract. The structure of Ferrero pairs in terms of the sizes of the groups involved is inves-
tigated and an explicit condition is obtained. For every pair of numbers satisfying this criterion, a
Ferrero pair is constructed explicitly. Thus the determination of interesting Ferrero pairs cannot be
determined from their direct numerical properties.

Key words. Ferrero pairs, construction, nearrings

AMS subject classifications. 16Y30, 20B25, 20D45

PII. S0895480198338736

1. Introduction. The use of planar nearrings to construct balanced incomplete
block designs (BIBDs) dates back to Ferrero’s initial paper [2]. One can say that the
complete structure of the planar nearring and the BIBD is held within the structure
of the Ferrero pair.

We look at the class of Ferrero pairs that can be constructed, characterizing them
by a simple parameter pair, and we see that all possible parameter pairs can be
constructed explicitly using the field generated Ferrero pairs as building blocks.

A Ferrero pair (N,Φ) is an additively written (but not necessarily abelian) group
N and a group Φ of fixed point free (also known as regular or semiregular) automor-
phisms of N . We consider only finite N . The parameters of a Ferrero pair are n = |N |
and t = |Φ|. Ferrero pairs are closely related to planar nearrings [1].

Ferrero pairs can be constructed from finite fields in a rather elementary manner.
This construction dates back to Ferrero’s original construction. Given a finite field
K and some multiplicative subgroup Φ ≤ K∗, we see that Φ acts upon the additive
group K as a group of fixed point free automorphisms. Thus we obtain a Ferrero pair
(K,Φ). Such Ferrero pairs are known as field generated Ferrero pairs.

The main result of this paper is the following.

Theorem 1. Let n, t be positive integers, n = Πip
ei
i the prime factorization of n;

then there exists a Ferrero pair (N,Φ) with n = |N | and t = |Φ| iff t divides peii − 1
for all i.

We will go about obtaining this result by looking at what numbers n, t can exist,
then explicitly constructing examples where these numbers are realized.

2. Obtaining Ferrero pairs. It would be of interest to be able to find suitable
Φ for a given additive group N such that (N,Φ) is a Ferrero pair. In particular, we
would like to know, for a given n = |N |, which values of t = |Φ| are theoretically
possible and which can be explicitly constructed.

In this section we will see that a Ferrero pair can be decomposed into a collection
of Ferrero pairs with n a prime power. We obtain some simple restrictions upon the

∗Received by the editors May 13, 1998; accepted for publication (in revised form) March 6, 2001;
published electronically May 22, 2001. This research was funded by FWF Project P11486-TEC, the
Johannes–Kepler Hochschulefonds, and the scientific research funding of the government of Upper
Austria.

http://www.siam.org/journals/sidma/14-3/33873.html
†Time’s Up, Industriezeile 33b, A-4020 Linz, Austria; also, Mathematik, Uni Linz, A-4040 Linz,

Austria (tim@timesup.org).

283

284 TIM BOYKETT

values of t that are feasible. Then we will see an explicit construction for all pairs
(n, t) that satisfy these constraints.

Proposition 2 (see 1.3 in [3]). If (N,Φ) is a Ferrero pair with N = N1 ⊕ N2

and Φ fixing the subgroups N1 and N2 as sets, then there are Φ1
∼= Φ2

∼= Φ such that
(N1,Φ1) and (N2,Φ2) are Ferrero pairs.

Proof. Let Φi := Φ|Ni . For φ ∈ Φ, write φi := φ|Ni . Suppose Φ1 was not isomor-
phic to Φ. Then since Φ1 is a homomorphic image of Φ, there is some nonidentity
φ ∈ Φ such that φ1 is the identity on N1. Then φ(n1, 0) = (φ1n1, φ20) = (n1, 0) so
(n1, 0) is a fixed point of φ. However, φ is fixed point free, so Φi ∼= Φ for all i.

Suppose there is some φ1 ∈ Φ1 with a fixed point n1 ∈ N1, i.e., φ1n1 = n1. Take
φ the isomorph to φ1 in Φ, φ2 the isomorph to φ in Φ2. Then φ(n1, 0) = (φ1n1, φ20) =
(n1, 0), so (n1, 0) is a fixed point of φ. However, (N,Φ) is a Ferrero pair, so this is not
possible; thus there are no fixed points for any φ1 ∈ Φ1. The proof applies similarly
for Φ2 and we see that (Ni,Φi) is a Ferrero pair for each i.

The restriction to two summands in the above is of course unnecessary; the re-
sult can easily be extended to many summands. The distinction of the Φi is also
unnecessary since they are all isomorphic.

Corollary 3. If (N,Φ) is a Ferrero pair and N =
⊕

iNi with each Ni Φ-
invariant, then (Ni,Φ) is a Ferrero pair for each summand Ni.

This becomes most interesting when we consider a Ferrero pair (N,Φ) and notice
that because N is nilpotent by Thompson’s theorem (see, e.g., [4, p. 306]), then it can
be expressed as a direct product of its Sylow p-subgroups. Since an automorphism
cannot take an element outside of its p-group, each Sylow subgroup is closed with
respect to Φ. Thus Corollary 3 applies, and we can split the Ferrero pair up into a
collection of noninteracting pairs.

Corollary 4. A Ferrero pair is a direct sum of prime power Ferrero pairs with
isomorphic automorphism groups.

What is even more interesting is that the reverse construction also works.
Proposition 5 (see Theorem 5.42 in [1]). Given a family (Ni,Φi) of Ferrero

pairs with Φi ∼= Φj for all i, j = 1, . . . , k, then (N,Φ) is also a Ferrero pair, where
N :=

⊕
iNi and Φ ∼= Φi.

The following two results form the proof of Theorem 1.
Corollary 6. Given a Ferrero pair (N,Φ), with n = |N | =∏i p

ei
i as the prime

factorization, then t = |Φ| divides peii − 1 for each i.
Proof. Take one of the direct summands Ni of N as a sum of its Sylow subgroups

and note that every orbit of Φ upon Ni except the 0-orbit has order t. No orbit can
be larger, and if some orbit is smaller, then some φ ∈ Φ has a fixed point in the orbit.
Thus t divides |Ni| − 1 = peii − 1 for each i and we are done.

Proposition 7. Given a number n =
∏
i p
ei
i and some number t such that t

divides peii − 1 for all i, there is a Ferrero pair (N,Φ) with |N | = n and |Φ| = t.
Proof. Let Ki := GF (peii) and Ni := (Ki,+). Let ωi be a generator of the

multiplicative group K∗i . Since t divides p
ei
i − 1, let mi be the number such that

mit = peii − 1. Then let Φi :=< ωmi
i >, a cyclic subgroup of the multiplicative group

K∗i of order t. Then (Ni,Φi) is a field generated Ferrero pair.
Take N :=

⊕
iNi, Φ the cyclic group of order t and by Proposition 5, (N,Φ) is

a Ferrero pair with parameters (n, t).
Thus we obtain Theorem 1.

3. Conclusion. In this note we have seen that there is an explicit construc-
tion method for Ferrero pairs of all possible orders. Thus the determination of the

CONSTRUCTION OF FERRERO PAIRS 285

“interesting” Ferrero pairs cannot be based upon their numerical properties.
It is unknown whether the construction presented here of glueing Ferrero pairs

together via their automorphism groups has a parallel in design theory.

Acknowledgments. I am grateful for resources offered by the Mathematics De-
partment at the University of Western Australia and funding from the Johannes–
Kepler University Hochschulefonds financing, as well as support from the scientific
research funding of the government of Upper Austria.

REFERENCES

[1] J. R. Clay, Nearrings: Geneses and Applications, Oxford University Press, Oxford, UK, 1992.
[2] G. Ferrero, Stems planari e BIB-desegni, Riv. Math. Univ. Parma (2), 11 (1970), pp. 79–96.
[3] W.-F. Ke and H. Keichle, Automorphisms of certain design groups, J. Algebra, 167 (1994),

pp. 488–500.
[4] D. J. S. Robinson, A Course in the Theory of Groups, Springer, New York, 1996.

MONOCHROMATIC PARTITIONS OF COMPLETE UNIFORM
HYPERGRAPHS∗

KRZYSZTOF BRYŚ† AND ZBIGNIEW LONC†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 3, pp. 286–290

Abstract. Let H be a complete n-uniform hypergraph, the edges of which are colored with
c colors. A subhypergraph of H is called monochromatic if all its edges are colored with the same
color. We prove that, for fixed n, c, and k, the problem of deciding whether H admits a partition
of its vertex set into subsets inducing complete monochromatic subhypergraphs of order at least k
is polynomial.

Key words. complete uniform hypergraph, vertex partition, computational complexity, Ramsey
theorem

AMS subject classifications. 05C65, 05D10

PII. S0895480199357716

1. Introduction. Let n, c, and k be positive integers. In this paper we deal
with partitions of the vertex set of a complete n-uniform hypergraph whose edges are
colored with c colors into subsets inducing complete monochromatic subhypergraphs
of order at least k. (A subhypergraph is monochromatic if all its edges have the same
color.)

Denote by Pn(X) the set of n-element subsets of a finite set X. Let H = (X, E),
E ⊆ Pn(X), be an n-uniform hypergraph and let Y ⊆ X. By a hypergraph induced
in H by the set Y we mean a hypergraph (Y, {E ∈ E : E ⊆ Y }). Define Km

n =
(X,Pn(X)), |X| = m, to be a complete n-uniform hypergraph.

Let us consider the following problem.

Problem Pn,c,k.
Instance. A complete n-uniform hypergraph H, the edges of which are colored

with c colors.

Question. Can the vertex set of H be partitioned into subsets inducing monochro-
matic complete subhypergraphs of order at least k?

The following theorem is the main result of this paper.

Theorem 1. Let c, k, and n be any fixed positive integers. The problem Pn,c,k
is polynomial time solvable.

The above problem has already been considered mainly in the case of n = c = 2,
i.e., for graphs whose edges are colored with two colors. Notice that in this case our
problem can be reformulated as follows.

Problem P2,2,k.

Instance. A graph G.

Question. Can the vertex set of G be partitioned into subsets inducing complete
subgraphs and/or their complements of order at least k?

A variation (say, P ′2,2,k) of this problem, which can be obtained from P2,2,k by
substituting the words “at least k” by the words “exactly k,” has been considered
earlier.

∗Received by the editors June 1, 1999; accepted for publication (in revised form) January 29,
2001; published electronically May 22, 2001.

http://www.siam.org/journals/sidma/14-3/35771.html
†Institute of Mathematics, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw,

Poland (brys@alpha.mini.pw.edu.pl, zblonc@alpha.mini.pw.edu.pl).

286

MONOCHROMATIC PARTITIONS OF HYPERGRAPHS 287

Favaron, Lonc, and Truszczyński [4] proved a result which immediately implies
polynomiality of the problem P ′2,2,3 if the instance graph G is a line graph. Lonc [7]
showed that P ′2,2,k is polynomial time solvable for any fixed k if the instance graph G
is a line graph. Finally, Bryś and Lonc [1] gave a proof that P ′2,2,k is polynomial time
solvable for any k and an arbitrary instance graph G. Clearly Theorem 1 contains all
of these results as special cases.

It has to be mentioned here that for a fixed k ≥ 3, the problem of existence of a
partition of the vertex set of an instance graph into k-element sets inducing complete
subgraphs is NP-complete (see Garey and Johnson [3]). Hell and Kirkpatrick [6]
proved that the problem of existence of a partition of a vertex set into subsets inducing
complete subgraphs of order at least k, for a fixed k ≥ 3, is NP-complete. Note that
for k = 2 this problem is equivalent to the problem of existence of a partition of the
vertex set of a graph into subsets inducing complete subgraphs of order 2 and/or 3.
Hell and Kirkpatrick [6] showed that this problem is polynomial time solvable. They
gave a characterization of graphs admitting partition of the vertex set into subsets
inducing graphs isomorphic to K2 and/or K3.

Let X be an m-element set and let a be a fixed element in X. Define Lmn =
(X,Pn(X \ {a})). For an n-uniform hypergraph H = (X, E), by H we mean the
complement of H, i.e., the hypergraph (X,Pn(X) \ E).

Clearly, partitions of the vertex set of a complete n-uniform hypergraph Kn
m

whose edges are colored with two colors are equivalent to partitions of the vertex set
of an arbitrary hypergraph H into subsets inducing complete subhypergraphs and/or
their complements. Clearly not all hypergraphs admit such partitions; however, the
following theorem by Lonc and Truszczyński [8] (which was one of the motivations of
our research) holds.

Theorem. There is an integer S(n, k) such that if an n-uniform hypergraph H
has at least S(n, k) vertices, then the vertex set of H can be partitioned into subsets
inducing subhypergraphs isomorphic to one of the following hypergraphs:

Km
n ,K

m

n , L
m
n , L

m

n ,

where m ≥ k.
For a hypergraph H we denote by V (H) its vertex set.

2. Results. Since our problem Pn,c,k is trivial for n = 1, c = 1, or k = 1, we
shall assume in what follows that n > 1, c > 1, and k > 1.

Let H be a complete n-uniform hypergraph, the edges of which are colored with
c colors. Define an (n, c, k)-partition of H to be a partition of the vertex set of H into
subsets inducing monochromatic complete subhypergraphs of order at least k.

By an (n, c, k)-covering of a vertex set R ⊆ V (H) we mean an (n, c, k)-partition
of any set T such that R ⊆ T ⊆ V (H) and each member of the partition has at least
one vertex in R.

Let rn,c(k) be the smallest integer such that any complete n-uniform hypergraph
of order at least rn,c(k) whose edges are colored with c colors contains a monochro-
matic subhypergraph of order k. Existence of rn,c(k) follows from the Ramsey theorem
for uniform hypergraphs (see [5]).

For i = 1, 2, 3, . . ., we define the following sequence rin,c(k). Let r
1
n,c(k) = rn,c(k)

and rin,c(k) = rn,c(r
i−1
n,c (k)) for i > 1.

For a graph G and A ⊆ V (G) denote by NG(A) the set of neighbors in G of
vertices of A.

288 KRZYSZTOF BRYŚ AND ZBIGNIEW LONC

Lemma 2. Let H be a complete n-uniform hypergraph, the edges of which are
colored with c colors. If a set S ⊆ V (H) has an (n, c, k)-covering, then there exists
an (n, c, k)-covering π of S such that

∣∣∣∣∣
(⋃
F∈π

F

)
− S

∣∣∣∣∣ < (k − 1)2
k−1∑
i=1

rin,c(k).

Proof. Let π be an (n, c, k)-covering of S which minimizes the number |(⋃F∈π F)−
S|.

Define

πi = {F ∈ π : |F ∩ S| = i}

for i = 1, 2, . . . , k − 1. By minimality of π, we can assume that |F | = k for every
F ∈ πi. Let

S1 = S ∩
⋃
F∈π1

F.

Clearly there is exactly one vertex from each member of π1 in S1. Notice that if
|S1| ≥ rn,c(k), then S1 contains a set F1 of k vertices inducing a monochromatic
complete hypergraph. There are exactly k members G1, G2, . . . , Gk of π1 such that
F1 ∩Gj �= ∅ for j = 1, . . . , k. The set π′ = (π − {G1, . . . , Gk}) ∪ {F1} is an (n, c, k)-
covering of S such that∣∣∣∣∣

(⋃
F∈π′

F

)
− S

∣∣∣∣∣ ≤
∣∣∣∣∣
(⋃
F∈π

F

)
− S

∣∣∣∣∣− k(k − 1) <

∣∣∣∣∣
(⋃
F∈π

F

)
− S

∣∣∣∣∣ ,
a contradiction with the minimality of π. We have shown that |S1| < rn,c(k).

For i = 2, 3, . . . , k − 1, define

Si = S ∩
⋃
F∈πi

F.

There are exactly i vertices of each member of πi in Si. Divide Si into sets
A1, . . . , Ai by choosing to each of them one vertex from each member of πi. Let Gi be
an i-partite graph with vertex classes A1, . . . , Ai. Two vertices are joined by an edge
in Gi if and only if they belong to the same member of πi. Clearly, Gi is isomorphic
to the disjoint union of |πi| copies of complete graphs on i vertices, |A1| = |A2| =
· · · = |Ai| = |πi| = |Si|

i , and each vertex from Aj (for j = 1, . . . , i) is joined in Gi
with exactly one vertex from Ah for h �= j. If |Ai| = |Si|

i ≥ rin,c(k), then Ai contains

a set of vertices, Li, say, of order r
i−1
n,c (k) which induces a complete monochromatic

subhypergraph of H. The set NGi(Li) ∩ Ai−1 contains a set Li−1 of order ri−2
n,c (k)

inducing a complete monochromatic subhypergraph of H. Similarly we construct the
sets Lj of order r

j
n,c(k) for j = i − 2, . . . , 2. Finally, |NGi(L2) ∩ A1| = rn,c(k) since

|L2| = rn,c(k), so NGi(L2) ∩ A1 contains a k-element set L1 inducing a complete
monochromatic subhypergraph of H.

Note that the sets B1 = L1 and Bj = NGi(L1) ∩ Aj , for j = 2, . . . , i, induce
complete monochromatic subhypergraphs of H of order k.

MONOCHROMATIC PARTITIONS OF HYPERGRAPHS 289

Let H1, H2, . . . , Hk be the members of πi whose vertex sets intersect B1. Clearly,
they also intersect Bj for j = 2, 3, . . . , i. Hence π′ = (π−{H1, . . . , Hk})∪{B1, . . . , Bi}
is an (n, c, k)-covering of S such that∣∣∣∣∣

(⋃
F∈π′

F

)
− S

∣∣∣∣∣ ≤
∣∣∣∣∣
(⋃
F∈π

F

)
− S

∣∣∣∣∣− k2 + ki <

∣∣∣∣∣
(⋃
F∈π

F

)
− S

∣∣∣∣∣ ,
a contradiction with the minimality of π. Hence

|Ai| = |Si|
i

< rin,c(k),

for i = 2, 3, . . . , k − 1, so |Si| < irin,c(k) ≤ (k − 1)rin,c(k). Consequently,∣∣∣∣∣
(⋃
F∈π

F

)
− S

∣∣∣∣∣ =
k−1∑
i=1

(k − i)|Si| ≤
k−1∑
i=1

(k − 1)|Si| < (k − 1)2
k−1∑
i=1

rin,c(k).

Define r(n, c, k) = (k − 1)2
∑k−1
i=1 r

i
n,c(k) and t(n, c, k) = rn,c(r(n, c, k) + k). In

the proof of the next theorem we follow some ideas of Erdös, Tuza, and Valtr [2].
Theorem 3. For any complete n-uniform hypergraph H whose edges are colored

with c colors, H admits an (n, c, k)-partition if and only if for every subset S ⊆ V (H),
|S| < t(n, c, k), there exists in H an (n, c, k)-covering of S.

Proof. Since the “only if” part of the theorem is trivial, we pass on to the proof of
the “if” part. LetM = r(n, c, k)+k. By the Ramsey theorem for uniform hypergraphs
(see [5]) we can partition the set of vertices ofH into subsets S(H) and T (H) such that
|S(H)| < t(n, c, k) = rn,c(M) and the set T (H) induces a hypergraph H ′ admitting an
(n, c,M)-partition. (Just delete from V (H) subsets inducing complete monochromatic
subhypergraphs of order at least M as many times as possible. Denote by S(H) the
set of vertices that remain and by T (H) the set of deleted vertices.) Let us consider
any (n, c,M)-partition of H ′ and denote it by α. By our assumptions, there is an
(n, c, k)-covering of S(H). It follows from Lemma 2 that there exists such an (n, c, k)-
covering of S(H), say, π, that the set |(⋃F∈π F)−S(H)| consists of less than r(n, c, k)
elements. After deleting from the vertex set of H all subsets belonging to π, we obtain
a hypergraph H ′′ which is a subhypergraph of H − S(H). Since M = r(n, c, k) + k,
for every G ∈ α,∣∣∣∣∣G−

⋃
F∈π

F

∣∣∣∣∣ ≥M −
∣∣∣∣∣
(⋃
F∈π

F

)
− S(H)

∣∣∣∣∣ > M − r(n, c, k) = k,

so H ′′ admits an (n, c, k)-partition, β, say, consisting of subsets of elements of α. The
set β ∪ π is an (n, c, k)-partition of H.

Proof of Theorem 1. We claim that the following algorithm solves the problem
Pn,c,k in polynomially many steps.

Algorithm.
1. Delete from the vertex set of H subsets inducing complete monochromatic

subhypergraphs of order at leastM = r(n, c, k)+k as many times as possible.
Denote the set of remaining vertices by S(H).

2. Check if there exists a subset T of V (H)\S(H) of order smaller than r(n, c, k)
such that the subhypergraph induced by S(H) ∪ T in H has an (n, c, k)-
partition. If the answer is YES, then STOP (H admits an (n, c, k)-partition);
otherwise STOP (H does not admit an (n, c, k)-partition).

290 KRZYSZTOF BRYŚ AND ZBIGNIEW LONC

Denote by π the set of subsets deleted in part 1 of the algorithm. Clearly π is an
(n, c,M)-partition of the hypergraph H − S(H).

If the answer to the question in part 2 is YES, then denote by π′ an (n, c, k)-
partition of S(H) ∪ T . For an arbitrary set F ∈ π, we get

|F − (S(H) ∪ T)| = |F − T | > M − r(n, c, k) = k,

so the family π′ ∪ {F − (S(H) ∪ T) : F ∈ π} is an (n, c, k)-partition of H.
If the answer to the question in part 2 is NO, then by Lemma 2, S(H) does

not admit an (n, c, k)-covering, and, consequently, by Theorem 3 (since |S(H)| <
rn,c(M) = t(n, c, k)) H does not admit an (n, c, k)-partition. We have shown the
correctness of the algorithm.

To prove polynomiality of the algorithm observe first that both deciding if H
contains a complete monochromatic subhypergraph of cardinalityM and finding such
a subhypergraph, if it exists, can be done in a constant time (with respect to the order
of H). Indeed, if |V (H)| < rn,c(M), then we just check all possibleM -element subsets
of V (H). If |V (H)| ≥ rn,c(M), then by Ramsey’s theorem in any rn,c(M)-element
subset Y of V (H) there is a complete monochromatic subgraph of cardinality M . We
find it again by checking all M -element subsets of Y . Therefore we need only linear
with respect to the order of H number of steps to complete part 1 of the algorithm.

Since the cardinalities of the sets S(H) ∪ T appearing in part 2 of the algorithm
are smaller than t(n, c, k)+r(n, c, k) (a constant with respect to the order of H again),
by a brute force method of checking all possibilities we are able to complete part 2 of
the algorithm in time polynomial with respect to the order of H.

REFERENCES

[1] K. Bryś and Z. Lonc, Clique and anticlique partition of graphs, Discrete Math., 185 (1998),
pp. 41–49.

[2] P. Erdös, Z. Tuza, and P. Valtr, Ramsey-remainder, European J. Combin., 17 (1996),
pp. 519–532.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.

[4] O. Favaron, Z. Lonc, and M. Truszczyński, Decomposition of graphs into graphs with three
edges, Ars Combin., 20 (1985), pp. 125–146.

[5] R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey Theory, Wiley, New York,
1990.

[6] D. G. Kirkpatrick and P. Hell, On the complexity of general graph factor problems, SIAM J.
Comput., 12 (1983), pp. 601–609.

[7] Z. Lonc, Delta-system decompositions of graphs, Discrete Appl. Math., 164 (1997), pp. 221–224.
[8] Z. Lonc and M. Truszczyński, Decomposition of large uniform hypergraphs, Order, 1 (1985),

pp. 345–350.

AN EFFICIENT ALGORITHM FOR THE RING LOADING
PROBLEM WITH INTEGER DEMAND SPLITTING∗

YOUNG-SOO MYUNG†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 3, pp. 291–298

Abstract. In the ring loading problem, traffic demands are given for each pair of nodes in an
undirected ring network and a flow is routed in either of two directions, clockwise and counterclock-
wise. The load of an edge is the sum of the flows routed through the edge and the objective of the
problem is to minimize the maximum load on the ring. Myung [J. Korean OR and MS Society, 23
(1998), pp. 49–62 (in Korean)] has presented an efficient algorithm for solving a problem where flow
is restricted to integers. However, the proof for the validity of the algorithm in their paper is long
and complicated and as the paper is written in Korean, its accessibility is very limited. In this paper,
we slightly modify their algorithm and provide a simple proof for the correctness of the proposed
algorithm.

Key words. ring loading problem, integer programming, polynomial algorithm

AMS subject classifications. 90B10, 90C27

PII. S0895480199358709

1. Introduction. The ring loading problem (RLP) is defined on an undirected
ring network R = (V,L) with a node set V = {1, 2, . . . , n} and an edge set L =
{(1, 2), (2, 3), . . . , (n − 1, n), (n, 1)}. We will also refer to edge (i, i + 1) as edge i
except that (n, 1) is referred to as edge n. LetK be the index set of the selected origin-
destination pairs of nodes. For each k ∈ K, we are given rk units of flow requirements
(demands) and let o(k) and d(k), where o(k) < d(k), denote its origin and destination
nodes, respectively. The demand between o(k) and d(k) can be routed in either of
the two directions, clockwise and counterclockwise. We say that a flow is routed in
the clockwise (counterclockwise) direction if a flow passes through the node sequence
{o(k), o(k)+1, . . . , d(k)− 1, d(k)} ({o(k), o(k)− 1, . . . , 1, n, . . . , d(k)+1, d(k)}). Since
all the constituent edges of a ring must have the same capacity, the capacity of a ring
is determined by the maximum of the traffic loads imposed on its edges. Therefore,
the ring capacity depends on how to route each flow requirement on the ring. The
objective of the RLP is then to find an optimal routing which minimizes the maximum
edge load.
The RLP arises when designing synchronous optical network (SONET) bidirec-

tional self-healing rings (SHRs). For more details on SONET SHRs, we refer to Wu
[11] and Cosares et al. [1]. In a bidirectional SHR, demands may or may not be
allowed to be split between both directions. We thus have two kinds of the RLP: with
and without demand splitting. For example, in the RLP without demand splitting
(RLPWO), each demand must be entirely routed in either of the two directions, while
in the RLP with demand splitting (RLPW), each demand can be split between the
two directions. In some cases of the RLPW, the flow of each demand in each direc-
tion may be restricted to integers. For example, the capacity of an edge is usually
determined as the multiples of unit capacity. We will refer to the RLP with integer
demand splitting (RLPWI) as this integer version of the RLPW while the RLPW is

∗Received by the editors July 12, 1999; accepted for publication (in revised form) February 2,
2001; published electronically May 22, 2001.

http://www.siam.org/journals/sidma/14-3/35870.html
†Department of Business Administration, Dankook University, Cheonan, Chungnam 330-714,

Korea (myung@dankook.ac.kr).

291

292 YOUNG-SOO MYUNG

referred to as the problem which allows fractional flow. To avoid a trivial case, we
assume integer demands in the RLPWI. Even when the demands are integers, the
optimal solution of the RLPWI, in general, may have noninteger (but half-integer)
components [4, 9].

Due to its practical significance, the RLP has been considered in many researches.
Cosares and Saniee [2] have presented several heuristics for the RLPWO. Myung,
Kim, and Tcha [5] have developed an O(n|K|) algorithm for the RLPW and an
efficient approximation procedure for the RLPWO. Shyur, Wu, and Chen [8] have
dealt with the RLPWI and tested a heuristic. Lee and Chang [4] have developed
an approximation algorithm for the RLPWI which produces an approximate solution
whose objective value is at most one unit higher than the optimal value. Vachani,
Shulman, and Kubat [10] have developed two O(n3) algorithms: one for solving the
RLPW and the other for the RLPWI. Schrijver, Seymour, and Winkler [9] have also
developed an O(n2|K|) algorithm which solves the RLPW and an approximation
heuristic for the RLPWO. They also noted that their heuristic for the RLPWO can
be applied to finding an integer optimal solution for the RLPWI if all demands are
equal to 1 and multiple demands are allowed to the same origin-destination pair.
A direct application of their heuristic results in a pseudopolynomial algorithm for a
general instance of the RLPWI. Myung [6] has developed an O(n|K|) algorithm for
solving the RLPWI. Although this algorithm is efficient, their proof for showing the
validity of the algorithm is rather long and complicated. Moreover, the accessibility
of the paper is quite limited since it has been written in Korean.

The main contribution of this paper is to provide a simple proof for the correctness
of the modified version of Myung’s algorithm in [6]. The paper is organized as follows.
Section 2 introduces the notation and develops theorems which simplify the proof
of validity of the modified algorithm. In section 3, we present the modified solution
procedure for the RLPWI and show its validity. Finally, section 4 provides concluding
remarks.

2. Notation and theorems. For each k ∈ K, let L+
k = {(i, i + 1) ∈ L|o(k) ≤

i < d(k)} and L−k = L \ L+
k . Then L

+
k (L

−
k) denotes the set of edges contained in the

clockwise (counterclockwise) direction path from o(k) to d(k). Note that edge n is
contained in L−k for all k ∈ K. For each l ∈ L, let K+

l = {k ∈ K|l ∈ L+
k } and K−l =

{k ∈ K|l ∈ L−k }. Then K+
l (K

−
l) is the index set of origin-destination pairs whose

clockwise (counterclockwise) direction path contains l. Note that K−l = K \K+
l .

For each k ∈ K, let’s define variable xk which denotes the amount of the total
demand between o(k) and d(k) routed in the clockwise direction. Let X = {x ∈
R|K||0 ≤ xk ≤ rk for each k ∈ K} and for a given x ∈ X, let

g(x, l) =
∑
k∈K+

l

xk +
∑
k∈K−

l

(rk − xk) for each l ∈ L.

Then g(x, l) denotes the sum of the flows routed through edge l. Let F (x) =
maxl∈L g(x, l). For a given x ∈ X, we will call an edge l ∈ L the maximum load
edge (with respect to x) if g(x, l) = F (x) and we let L(x) denote the set of the max-
imum load edges, i.e., L(x) = {l ∈ L|g(x, l) = maxi∈L g(x, i)}. The RLPW can be
represented as follows:

(P̄) zLP = min
x∈X

F (x).

RING LOADING PROBLEM 293

Let XI = X ∩ Z|K|; then the RLPWI can be represented as follows:

(P) zI = min
x∈XI

F (x).

Any pair of distinct edges i and j constitute a cut and we define Dij for each cut
{i, j} as

Dij =
∑
{rk : i ∈ L+

k and j ∈ L−k , or i ∈ L−k and j ∈ L+
k }.

Dij can be interpreted as the total demand across the cut {i, j} and can be expressed
with respect to a given x ∈ X as follows.

Remark 1. For any x ∈ X and two distinct edges i and j,

Dij = g(x, i) + g(x, j)− 2
∑

k∈K+
i
∩K+

j

xk − 2
∑

k∈K−
i
∩K−

j

(rk − xk).(2.1)

Therefore, for any pair of two distinct edges i and j, g(x, i) + g(x, j) ≥ Dij and
Dij = g(x, i) + g(x, j) if and only if i and j satisfy the following two conditions:

(C1) xk = 0 for each k ∈ K+
i ∩K+

j and

(C2) xk = rk for each k ∈ K−i ∩K−j .

Let Dmax be the maximum value of Dij for all cuts. We say that a cut {i, j} is
tight if Dij = Dmax. Remark 1 indicates that F (x) ≥ Dmax/2 for any x ∈ X. On
the other hand, there exists a feasible solution x ∈ X such that F (x) ≤ Dmax/2.
This fact can be shown as a special case of Okamura and Seymour’s theorem [7] and
the proofs of this specialized version were also provided by Vachani, Shulman, and
Kubat [10] and Schrijver, Seymour, and Winkler [9] independently. Therefore, x ∈ X
is an optimal solution of (P̄) if and only if F (x) = Dmax/2. Therefore, the following
statement is straightforward.

Lemma 1. For any x ∈ X, if g(x, i) = g(x, j) = F (x) for some cut {i, j} and
x satisfies (C1) and (C2), then x is an optimal solution of (P̄) and the cut {i, j} is
tight.
Myung, Kim, and Tcha [5] have developed an algorithm which is called EXACT

and finds an optimal solution of the RLPW in O(n|K|) time. For later use, we briefly
explain the algorithm EXACT and the properties of the solutions produced by the
algorithm.

Algorithm EXACT.
(Step 1) Reorder the indices of K as follows: if o(k1) < o(k2), then k1 < k2, and if

o(k1) = o(k2) and d(k1) > d(k2), then k1 < k2.
(Step 2) Initially, all demands are routed in the clockwise direction.
(Step 3) For each k ∈ K according to the increasing order of K, reroute all or a part

of demand k in the counterclockwise direction if rerouting would decrease the
ring capacity.

In Step 1, the ordering of the origin-destination pairs of |K| can be done within
O(|K| log |K|) time and the sequence of the indices in K plays an important role in
constructing an optimal solution. The rerouting procedure in Step 3 is very simple
and requires O(n|K|) time. For any k ∈ K, if maxl∈L+

k
g(x, l) > maxl∈L−

k
g(x, l),

that is, L(x) ⊆ L+
k , rerouting demand k in the counterclockwise direction decreases

294 YOUNG-SOO MYUNG

the resulting ring capacity. Since demand k is examined at the kth iteration of the
rerouting procedure, we use the same index k for indicating both an origin-destination
pair and an iteration step. Let xk denote the solution obtained after the rerouting
step is performed for k ∈ K and x0 = {r1, . . . , r|K|}. Then x|K| is the solution which
EXACT finally produces. At iteration k, demand k is rerouted until either all the
demand is routed in the counterclockwise direction or the resulting solution satisfies
maxl∈L+

k
g(xk, l) = maxl∈L−

k
g(xk, l).

Now, we introduce our two main theorems on the properties of x|K|, based on
which we develop the algorithm for the RLPWI which we will present in the next
section. Before presenting the theorems, we introduce some preliminary results that

have appeared in Myung, Kim, and Tcha [5]. Let K0 = {k ∈ K : x
|K|
k = 0},

Kr = {k ∈ K : x|K|k = rk}, and Kb = {k ∈ K : 0 < x
|K|
k < rk}. Then the following

lemma is straightforward.

Lemma 2 (Myung, Kim, and Tcha [5]). For each k = 1, 2, . . . , |K|, the following
relations hold:

(i) L(xk−1) ⊆ L(xk);
(ii) L(xk−1) ⊆ L+

k if and only if k ∈ K0 ∪Kb; and

(iii) if k ∈ Kr ∪Kb, then L(xk) \ L+
k �= ∅.

Let l0 = minL(x
0) and lmax = maxL(x

|K|). In other words, l0 is the edge having
the smallest index among the maximum load edges with respect to the solution before
rerouting starts, and lmax is the edge having the largest index among maximum load
edges with respect to the solution obtained after rerouting is completed. Note that
l0 remains as a maximum load edge with respect to x

|K| but may or may not be the
one with the smallest index among the maximum load edges with respect to x|K|.

Theorem 3. For any maximum load edge l1 with respect to x|K| such that l1 < l0,
there exists a maximum load edge with respect to x|K| corresponding to l1, say, l2, such
that l2 ≥ l0 and g(x|K|, l1) + g(x|K|, l2) = Dl1,l2 , i.e., {l1, l2} constitutes a tight cut.

Proof. We will show that the following selection of l2 corresponding to l1 sat-
isfies the condition described in the theorem. If K+

l1
= ∅, then set l2 = maxL(x0);

otherwise, set l2 = max{l ∈ L|l ∈ L(xk) for some k such that k ∈ K+
l1
}. Obviously,

l0 ≤ l2. Now, we show that x|K| and {l1, l2} satisfy (C1) and (C2) in Remark 1 which
means that g(x|K|, l1) + g(x|K|, l2) = Dl1,l2 . We first prove that l1 and l2 satisfy
(C1). Suppose that k ∈ K+

l1
∩K+

l2
for some k ∈ K, i.e., {l1, l2} ⊆ L+

k . We claim that

L(xk) ⊆ L+
k . If our claim is true, (C1) holds because k ∈ K0 by Lemma 2. To prove

our assertion, we first show that l1 ≤ minL(xk) ≤ maxL(xk) ≤ l2. Note thatK+
l1
�= ∅.

By the definition of l2, maxL(x
k) ≤ l2. Since l1 < minL(x0), l1 must have become a

maximum load edge after at least one rerouting iteration was performed. Therefore,
there must exist k′ > 0 such that minL(xk

′
) ≤ l1 < minL(x

k′−1) and l1 < minL
+
k′ .

Since l1 ∈ L+
k , o(k) < o(k′) which means that k < k′. Therefore, l1 < minL(xk)

since L(xk) ⊆ L(xk
′−1). From the fact that l1 ≤ minL(xk) ≤ maxL(xk) ≤ l2 and

{l1, l2} ⊆ L+
k , L(x

k) ⊆ L+
k .

Second, we prove that l1 and l2 satisfy (C2). Suppose that k ∈ K−l1 ∩ K−l2 , i.e.,
{l1, l2} ⊆ L−k , and also suppose that x|K|k < rk, i.e., k ∈ K0 ∪Kb. Since k ∈ K0 ∪Kb,
l0 ∈ L+

k by Lemma 2. Therefore, l1 < minL
+
k ≤ maxL+

k < l2. By our definition of l2,

there is a k′ ∈ K+
l1
such that l2 ∈ L(xk′). Therefore, k′ < k, and hence l2 ∈ L(xk−1).

Therefore, L(xk−1) �⊆ L+
k which contradicts our assumption that x

|K|
k < rk by (ii) of

Lemma 2.

RING LOADING PROBLEM 295

Theorem 3 implies the correctness of algorithm EXACT and has also appeared
in Myung [6]. However, here we have provided a slightly simplified proof for com-
pleteness. Along with Theorem 3, Theorem 4 is useful to prove the validity of the
algorithm for the RLPWI which will be presented in the next section.

Theorem 4. If l0 �= lmax and there exists no k ∈ K+
l0
∩K+

lmax
such that x

|K|
k > 0,

then {l0, lmax} is a tight cut.

Proof. Suppose that l0 �= lmax. By definition of l0 and lmax, g(x
|K|, l0) =

g(x|K|, lmax) = F (x|K|). Since l0 ∈ L+
k for all k ∈ K0 ∪Kb, we know that x

|K|
k = rk

for all k ∈ K−l0 ∩K−lmax
. Therefore, {l0, lmax} is a tight cut by Lemma 1.

3. An O(n|K|) algorithm for the RLPWI. In this section, we present an
O(n|K|) algorithm which solves the RLPWI. This algorithm is similar to the one
presented in Myung [6]. However, here we give a simple proof for the validity of the
proposed algorithm using the theorems developed in section 2. Our algorithm starts
from x|K|, an optimal solution of (P̄) produced by EXACT. If x|K| is integral, it
is also an optimal solution of the RLPWI. Suppose that x|K| is not integral. Let
Kf = {k1, . . . , ks} be the index set of the origin-destination pairs in K for which x|K|k

has a fractional value. Then, Kf ⊆ Kb and by our assumption on the ordering of the
indices of K and (iii) of Lemma 2, o(k1) < o(k2) < · · · < o(ks) < d(k1) < · · · < d(ks).
Let’s partition L into the following 2s + 1 subsets as follows: L0 = {l ∈ L : 1 ≤ l <
o(k1)}, L1 = {l ∈ L : o(k1) ≤ l < o(k2)}, . . ., Ls = {l ∈ L : o(ks) ≤ l < d(k1)},
. . ., L2s = {l ∈ L : d(ks) ≤ l ≤ n}. Note that L0 may be an empty set and that
L(x0) ⊆ Ls because L(x0) ⊆ L+

k for all k ∈ Kf . So l0 ∈ Ls.
If we consider the rerouting procedure of EXACT, it is not difficult to know

that the fractional part of x
|K|
k for each k ∈ Kf is equal to 0.5. So, if we reroute

each demand k ∈ Kf by 0.5 in either a clockwise or a counterclockwise direction,
we can obtain an integer solution. Moreover, we will show that if rerouting is done
carefully, an integer optimal solution of the RLPWI can be obtained. As we already
mentioned, our algorithm starts from x|K| produced by EXACT. If x|K| is not integral,
i.e., Kf �= ∅, we reroute each demand k ∈ Kf by 0.5 in either a clockwise or a
counterclockwise direction. We define the two different rerouting methods, method A
and method B. Both methods reroute each demand k ∈ Kf by the amount of 0.5, in
the increasing order of k ∈ Kf and in either of the two directions alternatingly, one
after another. The difference of the two methods is that method A starts iteration by
rerouting the first flow in the clockwise direction while method B starts rerouting in
the counterclockwise direction. More precisely, let x∗ be the integer solution obtained
by rerouting the fractional flows of x|K| using either method A or B. Let zkt =
x∗kt −x

|K|
kt
for each kt ∈ Kf . If x∗ is the result of method A, then zkt = 0.5 if t is odd

and zkt = −0.5 if t is even. If x∗ is the result of method B, then zkt = −0.5 if t is
odd and zkt = 0.5 otherwise. Note that for each l ∈ L

g(x∗, l) = g(x|K|, l) +
∑

k∈K+
l
∩Kf

zk −
∑

k∈K−
l
∩Kf

zk.

Now we present an algorithm which produces an optimal integral solution.

Algorithm INTEGER.

(Step 1) Implement EXACT. If Kf �= ∅, go to Step 2.
(Step 2) If |Kf | is odd, reroute x|K| using either method A or B. Otherwise, go to

Step 3.

296 YOUNG-SOO MYUNG

(Step 3) If no maximum load edge belongs to L1∪L3∪· · ·∪Ls−1, reroute x
|K| using

method A. Otherwise, go to Step 4.
(Step 4) Reroute x|K| using method B. If lmax �∈ L2s, reroute one unit of demand

ks in the counterclockwise direction. If lmax ∈ L2s and there exists some
k ∈ K+

l0
∩ K+

lmax
such that x

|K|
k > 0, then reroute one unit of demand k in

the counterclockwise direction.
The following observation is useful to prove the validity of the algorithm.
Remark 2. (a) If |Kf | is odd and x∗ is the integral solution obtained by rerouting

x|K| using either method A or B, then for each l ∈ L,
g(x|K|, l)− 0.5 ≤ g(x∗, l) ≤ g(x|K|, l) + 0.5.

(b) If |Kf | is even and x∗ is the result of method A,

g(x∗, l) =

g(x|K|, l) + 1 if l ∈ L1 ∪ L3 ∪ · · · ∪ Ls−1,
g(x|K|, l) if l ∈ L0 ∪ L2 ∪ · · · ∪ Ls ∪ · · · ∪ L2s,
g(x|K|, l)− 1 if l ∈ Ls+1 ∪ Ls+3 ∪ · · · ∪ L2s−1.

(c) If |Kf | is even and x∗ is the result of method B,

g(x∗, l) =

g(x|K|, l) + 1 if l ∈ Ls+1 ∪ Ls+3 ∪ · · · ∪ L2s−1,
g(x|K|, l) if l ∈ L0 ∪ L2 ∪ · · · ∪ Ls ∪ · · · ∪ L2s,
g(x|K|, l)− 1 if l ∈ L1 ∪ L3 ∪ · · · ∪ Ls−1.

When |Kf | is even, the following two lemmas are useful to get information on an
optimal integral solution. We say that a cut {i, j} is odd if Dmax −Dij is odd. We
also say that a ring network satisfies the parity condition if for every odd cut {i, j},
at least one of i and j does not belong to any tight cut. Then the next lemma is the
direct consequence of Theorem 2.2 in Frank et al. [3] and Theorem 6.1 in Schrijver,
Seymour, and Winkler [9].

Lemma 5. Suppose that |Kf | is even. If a ring network satisfies the parity
condition, then zI = zLP ; otherwise, zI = zLP + 1.
Based on the above lemma, we can show that the following lemma holds.
Lemma 6. Suppose that |Kf | is even. For any pair of edges i and j such that

i ∈ Lt for some odd index t ≤ s, and j ∈ Lt for some even index t ≤ s, if both edges
belong to some tight cut, then the cut {i, j} violates the parity condition.

Proof. By our assumption, g(x|K|, i) + g(x|K|, j) = Dmax, and from (2.1) in

Remark 1, g(x|K|, i)+ g(x|K|, j)−Dij = 2
∑
k∈K+

i
∩K+

j
x
|K|
k +2

∑
k∈K−

i
∩K−

j
(rk−x|K|k).

For each k ∈ Kf , x
|K|
k = αk+0.5 for some integer αk and one of |(K+

i ∩K+
j)∩Kf | and

|(K−i ∩K−j)∩Kf | is odd while the other is even. Therefore, g(x|K|, i)+g(x|K|, j)−Dij

is odd.
Theorem 7. The algorithm INTEGER produces an optimal solution for the

RLPWI.
Proof. If |Kf | is odd, g(x|K|, l) has a fractional value for each l ∈ L and its

fractional part is equal to 0.5. Therefore, zLP also has a fractional value whose
fractional part is equal to 0.5. Since zI ≥ zLP +0.5, rerouting by either method A or
B produces an optimal solution. From now on, we assume that s = |Kf | is even and
show why Steps 3 and 4 are guaranteed to provide an optimal integer solution. If no
maximum load edge belongs to L1 ∪ L3 ∪ · · · ∪ Ls−1, (b) of Remark 2 implies that

RING LOADING PROBLEM 297

the integral solution obtained by rerouting x|K| via method A has the objective value
equal to zLP . Suppose that we are in Step 4 and that we have some maximum load
edge, say, l1,which belongs to L1 ∪L3 ∪ · · · ∪Ls−1. Then exactly one of the following
three cases happens.

Case 1. lmax �∈ L2s.

Let x∗ be the integral solution obtained by first rerouting x|K| via method B and
additionally rerouting one unit of demand ks in the counterclockwise direction. Then
g(x∗, l) = g(x|K|, l) + 1 if l ∈ L0 ∪ L2 ∪ · · · ∪ Ls−2 ∪ L2s and g(x

∗, l) ≤ g(x|K|, l)
otherwise. Obviously, either F (x∗) = F (x|K|) or F (x∗) = F (x|K|) + 1. If the latter
case happens, at least one edge in L0 ∪L2 ∪ · · · ∪Ls−2 is a maximum load edge with
respect to x|K|. That edge belongs to some tight cut by Theorem 3. Since l1 also
belongs to some tight cut by Theorem 3, this violates the parity condition along with
l1 by Lemma 6.

Case 2. lmax ∈ L2s and there exists no k ∈ K+
l0
∩K+

lmax
such that x

|K|
k > 0.

In this case, {l0, lmax} is a tight cut by Theorem 4 and l1 also belongs to some tight
cut by Theorem 3. Therefore, {l1, l0} violates the parity condition and zI = zLP + 1.
So, the integral solution obtained by rerouting via method B is optimal to RLPWI.

Case 3. lmax ∈ L2s and there exists k ∈ K+
l0
∩K+

lmax
such that x

|K|
k > 0.

Since x
|K|
k > 0, k ∈ Kb ∪ Kr. Notice that d(k) > d(ks) because lmax ∈ L2s

and lmax ∈ L+
k . In addition, we can know that o(k) > o(ks). Otherwise, k < ks by

our assumption on the ordering of the origin-destination pairs of |K|, and L+
ks
⊆ L+

k .

Since k ∈ Kb ∪ Kr, L(xk) \ L+
k �= ∅ by (iii) of Lemma 2. Therefore, L(xk) �⊆ L+

ks

which contradicts the fact that ks ∈ Kf ⊆ Kb by (ii) of Lemma 2. Let L1 = {l ∈ L :
o(ks) ≤ l < o(k)} and L2 = {l ∈ L : d(k) ≤ l ≤ n}. Note that L2 doesn’t contain any
maximum load edge. Let x∗ be the integral solution obtained by first rerouting x|K|

via method B and additionally rerouting one unit of demand k in the counterclockwise
direction. Then g(x∗, l) = g(x|K|, l) + 1 if l ∈ L0 ∪ L2 ∪ · · · ∪ Ls−2 ∪ L1 ∪ L2 and
g(x∗, l) ≤ g(x|K|, l) otherwise. By the same way as we used in Case 1, we can show
that if F (x∗) = F (x|K|) + 1, the ring network violates the parity condition.
The complexity of our algorithm for solving the RLPWI stays O(n|K|) because

the extra steps for deriving an integer optimal solution from x|K| doesn’t increase the
complexity of EXACT.

4. Conclusion. This paper considered the RLP in which the flow of demand is
allowed to be split but is restricted to integers. This problem arises in the design of
SONET bidirectional rings, where the capacity of edge is selected as the multiples of
unit capacity. We have developed an efficient algorithm which optimally solves the
RLPWI in O(n|K|) time which is faster than any other algorithms developed so far.
The RLP is only a subproblem within the comprehensive planning tool, which has to
be solved multiple times in practical applications. Therefore, the proposed algorithm
is useful when designing a real-world, large-scale SONET broadband network.

REFERENCES

[1] S. Cosares, D. N. Deutsch, I. Saniee, and O. J. Wasem, SONET toolkit: A decision support
system for designing robust and cost-effective fiber-optic networks, Interfaces, 25 (1995),
pp. 20–40.

[2] S. Cosares and I. Saniee, An optimization problem related to balancing loads on SONET
rings, Telecommunication Systems, 3 (1994), pp. 165–181.

298 YOUNG-SOO MYUNG

[3] A. Frank, T. Nishizeki, N. Saito, H. Suzuki, and E. Tardos, Algorithms for routing around
a rectangle, Discrete Appl. Math., 40 (1992), pp. 363–378.

[4] C. Y. Lee and S. G. Chang, Balancing loads on SONET rings with integer demand splitting,
Comput. Oper. Res., 24 (1997), pp. 221–229.

[5] Y.-S. Myung, H.-G. Kim, and D.-W. Tcha, Optimal load balancing on SONET bidirectional
rings, Oper. Res., 45 (1997), pp. 148–152.

[6] Y.-S. Myung, Optimal load balancing on SONET rings with integer demand splitting, J. Ko-
rean OR and MS Society, 23 (1998), pp. 49–62 (in Korean).

[7] H. Okamura and P. D. Seymour, Multicommodity flows in planar graphs, J. Combin. Theory
Ser. B, 31 (1981), pp. 75–81.

[8] C. C. Shyur, Y. M. Wu, and C. H. Chen, A capacity comparison for SONET self-healing
ring networks, IEEE GLOBECOM, 3 (1993), pp. 1574–1578.

[9] A. Schrijver, P. Seymour, and P. Winkler, The ring loading problem, SIAM J. Discrete
Math., 11 (1998), pp. 1–14.

[10] R. Vachani, A. Shulman, and P. Kubat, Multicommodity flows in ring networks, INFORMS
J. Comput., 8 (1996), pp. 235–242.

[11] T. H. Wu, Fiber Network Service Survivability, Artech House, Boston, MA, 1992.

ON LOWER BOUNDS FOR SELECTING THE MEDIAN∗

DORIT DOR† , JOHAN HÅSTAD‡ , STAFFAN ULFBERG‡ , AND URI ZWICK†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 3, pp. 299–311

Abstract. We present a reformulation of the 2n + o(n) lower bound of Bent and John [Pro-
ceedings of the 17th Annual ACM Symposium on Theory of Computing, 1985, pp. 213–216] for the
number of comparisons needed for selecting the median of n elements. Our reformulation uses a
weight function. Apart from giving a more intuitive proof for the lower bound, the new formulation
opens up possibilities for improving it. We use the new formulation to show that any pair-forming
median finding algorithm, i.e., a median finding algorithm that starts by comparing �n/2� disjoint
pairs of elements must perform, in the worst case, at least 2.01n+ o(n) comparisons. This provides
strong evidence that selecting the median requires at least cn+ o(n) comparisons for some c > 2.

Key words. median selection, comparison algorithms, lower bounds

AMS subject classifications. 68Q25, 68R05, 06A07

PII. S0895480196309481

1. Introduction. Sorting and selection problems have received extensive atten-
tion by computer scientists and mathematicians for a long time. Comparison based
algorithms for solving these problems work by performing pairwise comparisons be-
tween the elements until the relative order of all elements is known, in the case of
sorting, or until the ith largest element among the n input elements is found, in the
case of selection.

Sorting in a comparison based computational model is quite well understood.
Any deterministic algorithm can be modeled by a decision tree in which all internal
nodes represent a comparison between two elements; every leaf represents a result of
the computation. Since there must be at least as many leaves in the decision tree as
there are possible reorderings of n elements, all algorithms that sort n elements use
at least �log n!� ≥ n log n− n log e+ o(n) ≈ n log n− 1.44n+ o(n) comparisons in the
worst case. (All logarithms in this paper are base 2 logarithms.) The best known
sorting method, called merge insertion by Knuth [9], is due to Ford and Johnson [7].
It sorts n elements using at most n log n− 1.33n+ o(n) comparisons. Thus, the gap
between the upper and lower bounds is very narrow in that the error in the second
order term is bounded by 0.11n.

The problem of finding the median is the special case of selecting the ith largest
in an ordered set of n elements when i = �n/2�. Although much effort has been put
into finding the exact number of required comparisons, there is still an annoying gap
between the best upper and lower bounds currently known.

Knowing how to sort, we could select the median by first sorting and then selecting
the middlemost element; it is quite evident that we could do better but how much
better? This question received a somewhat surprising answer when Blum et al. [3]
showed in 1973 how to determine the median in linear time using at most 5.43n
comparisons. This result was improved upon in 1976 when Schönhage, Paterson, and

∗Received by the editors September 18, 1996; accepted for publication (in revised form) January
30, 2001; published electronically June 5, 2001.

http://www.siam.org/journals/sidma/14-3/30948.html
†School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv

University, Tel Aviv 69978, Israel (dorit@checkpoint.com, zwick@post.tau.ac.il).
‡Department of Numerical Analysis and Computing Science, Royal Institute of Technology, 100 44

Stockholm, Sweden (johanh@nada.kth.se, staffanu@nada.kth.se).

299

300 D. DOR, J. HÅSTAD, S. ULFBERG, AND U. ZWICK

Pippenger [13] presented an algorithm that uses only 3n + o(n) comparisons. Their
main invention was the use of factories which mass-produce certain partial orders
that can easily be merged with each other.

This remained the best algorithm for almost 20 years until Dor and Zwick [5]
pushed down the number of comparisons a little bit further to 2.95n+o(n) by adding
green factories that recycle debris from the merging process used in the algorithm
of [13].

The first nontrivial lower bound for the problem was also presented in 1973 by
Blum et al. [3] using an adversary argument. Their 1.5n lower bound was subsequently
improved to 1.75n + o(n) by Pratt and Yao [12] in 1973. Then Yap [14], and later
Munro and Poblete [10], improved it to 38

21n+O(1) and 79
43n+O(1), respectively. The

proofs of these last two bounds are long and complicated.

In 1979, Fussenegger and Gabow [8] proved a 1.5n + o(n) lower bound for the
median using a new proof technique. Bent and John [2] used the same basic ideas
when they gave a short proof in 1985 that improved the lower bound to 2n + o(n),
which is currently the best available. Thus, the uncertainty in the coefficient of n is
larger for finding the median than it is for sorting, even though the linear term is the
second order term in the case of sorting.

Since our methods are based on the proof by Bent and John, let us describe it in
some detail. Given the decision tree of a comparison based algorithm, they invented
a method to prune it that yields a collection of pruned trees. Then, lower bounds
for the number of pruned trees and for their number of leaves are obtained. A final
argument saying that the leaves of the pruned trees are almost disjoint then gives a
lower bound for the size of the decision tree.

In section 2 we reformulate the proof by Bent and John by assigning weights
to each node in the decision tree. The weight of a node v corresponds to the total
number of leaves in subtrees with root v in all pruned trees where v occurs in the
proof by Bent and John. The weight of the root is approximately 22n; we show that
every node v in the decision tree has a child whose weight is at least half the weight
of v and that the weights of all the leaves are small.

When the proof is formulated in this way, it becomes more transparent, and one
can more easily study individual comparisons to rule out some as being bad from the
algorithm’s point of view.

For many problems, such as finding the maximal or the minimal element of an
ordered set, and finding the maximal and minimal element of an ordered set, there
are optimal algorithms that start by making �n/2� pairwise comparisons between
singleton elements. We refer to algorithms that start in this way as being pair-
forming. It has been discussed whether there are optimal pair-forming algorithms for
all partial orders, and in particular this question was posed as an open problem by
Aigner [1]. Some examples were then found by Chen [4], showing that pair-forming
algorithms are not always optimal.

It is interesting to note that the algorithms in [5] and [13] are both pair-forming.
It is still an open problem whether there are optimal pair-forming algorithms for
finding the median.

In section 3 we use our new approach to prove that any pair-forming algorithm
uses at least 2.01227n+ o(n) comparisons to find the median.

Dor and Zwick [6] have recently been able to extend the ideas described here and
obtain a (2+ε)n lower bound, for some tiny ε > 0, on the number of comparisons
performed, in the worst case, by any median selection algorithm.

ON LOWER BOUNDS FOR SELECTING THE MEDIAN 301

2. Bent and John revisited. Bent and John [2] proved that 2n+o(n) compar-
isons are required for selecting the median. Their result, in fact, is more general and
provides a lower bound for the number of comparisons required for selecting the ith
largest element for any 1 ≤ i ≤ n. We concentrate here on median selection, although
our results, like those of Bent and John, can be extended to general i.

Although the proof given by Bent and John is relatively short and simple, we
present a reformulation here. There are two reasons for this: the first is that the
proof gets more transparent; the second is that this formulation makes it easier to
study the effect of individual comparisons.

Theorem 2.1 (Bent and John [2]). Finding the median requires 2n+ o(n) com-
parisons.

Proof. Any deterministic algorithm for finding the median can be represented by
a decision tree T , in which each internal node v is labeled by a comparison a : b. The
two children of such a node, va<b and va>b, represent the outcomes a < b and a > b,
respectively. We assume that decision trees do not contain redundant comparisions
between elements whose relative order has already been established.

We consider a universe U containing n elements. For every node v in T and
subset C of U we make the following definitions:

maxv(C) =

{
a ∈ C

∣∣∣∣ every comparison a : b above v
with b ∈ C had outcome a > b

}
,

minv(C) =

{
a ∈ C

∣∣∣∣ every comparison a : b above v
with b ∈ C had outcome a < b

}
.

Before we proceed with the proof that selecting the median requires 2n + o(n) com-
parisons, we present a proof of a somewhat weaker result. We assume that U contains
n = 2m elements and show that selecting the two middlemost elements requires
2n+ o(n) comparisons. The proof in this case is slightly simpler, yet it demonstrates
the main ideas used in the proof of the theorem.

We define a weight function on the nodes of T . This weight function satisfies the
following three properties: (i) the weight of the root is 22n+o(n); (ii) each internal
node v has a child whose weight is at least half the weight of v; (iii) the weight of
each leaf is small.

For every node v in the decision tree, we keep track of subsets A of size m which
may contain the m largest elements with respect to the comparisons already made.
Let A(v) contain all such sets which are called upper half compatible with v. The A’s
are assigned weights which estimate how far from a solution the algorithm is, assuming
that the elements in A are the m largest. The weight of every A ∈ A(v) is defined as

w1
v(A) = 2|minv(A)|+|maxv(Ā)|,

and the weight of a node v is defined as

w(v) =
∑

A∈A(v)

w1
v(A).

The superscript 1 in w1
v(A) is used as, we shall shortly have to define, a second weight

function w2
v(B).

302 D. DOR, J. HÅSTAD, S. ULFBERG, AND U. ZWICK

Table 2.1
The weight of a set A ∈ A(v) in the children of a node v relative to its weight in v.

case w1
va<b

(A) w1
va>b

(A)

a ∈ A b ∈ A 1
2 or 1 1

2 or 1

a ∈ A b ∈ Ā 0 1
a ∈ Ā b ∈ A 1 0

a ∈ Ā b ∈ Ā 1
2 or 1 1

2 or 1

In the root r of T , all subsets of size m of U are upper half compatible with r so
that |A(r)| =

(
2m
m

)
. Also, each A ∈ A(r) has weight 22m, and we find, as promised,

that

w(r) = 22m

(
2m

m

)
= 22n+o(n).

Consider the weight w1
v(A) of a set A ∈ A(v) at a node v labeled by the comparison

a : b. What are the weights of A in v’s children? This depends on which of the
elements a and b belongs to A (and on which of them is minimal in A or maximal
in Ā). The four possible cases are considered in Table 2.1. The weights given there are
relative to the weight w1

v(A) of A at v. A zero indicates that A is no longer compatible
with this child and thus does not contribute to its weight. The weight w1

va<b
(A), when

a, b ∈ A, for example, is 1
2w

1
v(A), if b ∈ minv(A), and is otherwise w1

v(A). As can be
seen, v always has at least one child in which the weight of A is at least half its weight
at v. Furthermore, in each one of the four cases, w1

va<b
(A) + w1

va>b
(A) ≥ w1

v(A).
Each leaf v of the decision tree corresponds to a state of the algorithm in which

the two middlemost elements were found. There is therefore only one set A left in
A(v). Since we have identified the minimum element in A and the maximum element
in Ā, we get that w1

v(A) = 4. Therefore, if we follow a path from the root of the
tree and repeatedly descend to the child with the largest weight, we will, when we
eventually reach a leaf, have performed at least 2n+ o(n) comparisons.

We now prove that selecting the median also requires at least 2n+ o(n) compar-
isons. To make the median well defined we assume that n = 2m − 1. The problem
that arises in the above argument is that the weights of the leaves in T , when the
selection of the median, and not the two middlemost elements, is considered, are not
necessarily small enough: it is possible to know the median without knowing any re-
lations between elements in Ā (which now contains m− 1 elements); this is remedied
as follows.

In a node v, where the algorithm is close to determining the minimum element
in A, we essentially force it to determine the largest element in Ā instead. This is done
by moving an element a0 out of A and creating a set B = Ā∪ {a0}. This set is lower
half compatible with v and the median is the maximum element in B. By a suitable
choice of a0, most of maxv(Ā) is in maxv(B). A set B is lower half compatible with v
if |B| = m and it may contain the m smallest elements in U . We keep track of B’s in
the multiset B(v).

For the root r of T , we let A(r) contain all subsets of size m of U as before and
let B(r) be empty. We exchange some A’s for B’s as the algorithm proceeds. The

ON LOWER BOUNDS FOR SELECTING THE MEDIAN 303

Table 2.2
The weight of a set B ∈ B(v) in the children of a node v relative to its weight in v.

case w2
va<b

(B) w2
va>b

(B)

a ∈ B b ∈ B 1
2 or 1 1

2 or 1

a ∈ B b ∈ B̄ 1 0
a ∈ B̄ b ∈ B 0 1
a ∈ B̄ b ∈ B̄ 1 1

weight of a set B is defined as

w2
v(B) = 2|maxv(B)|.

The weight of B estimates how far the algorithm is from a solution, assuming that
the elements in B are the m smallest elements. The weight of a node v is now defined
to be

w(v) =
∑

A∈A(v)

w1
v(A) + 24

√
n
∑

B∈B(v)

w2
v(B).

In the beginning of an algorithm (in the upper part of the decision tree), the weight
of a node is still the sum of the weights of all A’s, and therefore w(r) = 22n+o(n).

We now define A(v) and B(v) for the rest of T more exactly. For any node v in T ,
except the root, simply copy A(v) and B(v) from the parent node and remove all sets
that are not upper or lower half compatible with v, respectively. We ensure that the
weight of every leaf is small by doing the following: If, for some A ∈ A(v) we have
|minv(A)| = �2√n�, we select an element a0 ∈ minv(A) which has been compared to
the fewest number of elements in Ā; we then remove the set A from A(v) and add the
set B = Ā ∪ {a0} to B(v).

Note that at the root, |minr(A)| = m for all A ∈ A(r) and that this quantity
decreases by at most one for each comparison until a leaf is reached. In a leaf v the
median is known; thus, A(v) is empty.

Lemma 2.2. Let A(v) and B(v) be defined by the rules described above. Then,
every internal node v (labeled a : b) in T has a child with at least half the weight of v,
i.e., w(va<b) ≥ w(v)/2 or w(va>b) ≥ w(v)/2.

Proof. Table 2.1 gives the weights of a set A ∈ A(v) at v’s children relative to the
weight w1

v(A) of A at v. Similarly, Table 2.2 gives the weights of a set B ∈ B(v) in v’s
children, relative to the weight w2

v(v) of B at v. As w1
va<b

(A)+w1
va>b

(A) ≥ w1
v(A) and

w2
va<b

(B) +w2
va>b

(B) ≥ w2
v(B), for every A ∈ A(v) and B ∈ B(v), all that remains to

be checked is that the weight does not decrease when a lower half compatible set B
replaces an upper half compatible set A. This is covered by Lemma 2.3.

Lemma 2.3. If A is removed from A(v) and B is added in its place to B(v), and
if fewer than 4n comparisons have been performed on the path from the root to v, then
24
√
nw2

v(B) > w1
v(A).

Proof. A set A ∈ A(v) is replaced by a set B = Ā ∪ {a0} ∈ B(v) only when
|minv(A)| = �2√n�. The element a0, in such a case, is an element of minv(A) that
has been compared to the fewest number of elements in Ā. If a0 was compared to at
least 2

√
n elements in Ā, we get that each element of minv(A) was compared to at

304 D. DOR, J. HÅSTAD, S. ULFBERG, AND U. ZWICK

least 2
√
n elements in Ā, and at least 4n comparisons have been performed on the path

from the root to v, a contradiction. We therefore get that a0 was compared to fewer
than 2

√
n elements of Ā and thus |maxv(B)| > |maxv(Ā)| − 2

√
n. As a consequence,

we get that 4
√
n+ |maxv(B)| > |minv(A)|+ |maxv(Ā)| and thus 24

√
nw2

v(B) > w1
v(A),

as required.
We now know that the weight of the root is large and that the weight does not

decrease too fast; what remains to be shown is that the weights of the leaves are
relatively small. This is established in the following lemma.

Lemma 2.4. For a leaf v (in which the median is known), w(v) ≤ 2m24
√
n.

Proof. Clearly, the only sets compatible with a leaf of T are the set A containing
the m largest elements and the set B containing the m smallest elements. Since
|minv(A)| = |maxv(B)| = 1, we get that w2

v(B) = 2 and A �∈ A(v).
Since there are exactly m elements that can be removed from B to obtain a

corresponding Ā, there can be at most m copies of B in B(v).
Let T be a comparison tree that corresponds to a median finding algorithm. If

the height of T is at least 4n, we are done. Otherwise, by starting at the root and
repeatedly descending to a child whose weight is at least half the weight of its parent,
we trace a path whose length is at least 2n+ o(n) and Theorem 2.1 follows.

Let us see how the current formalism gives room for improvement that did not
exist in the original proof. The 2n + o(n) lower bound is obtained by showing that
each node v in a decision tree T that corresponds to a median finding algorithm has
a child whose weight is at least half the weight of v. Consider the nodes v0, v1, . . . , v�
along the path obtained by starting at the root of T and repeatedly descending to the
child with the larger weight until a leaf is reached. If we could show that sufficiently
many nodes on this path have weights strictly larger than half the weights of their
parents, we would obtain an improved lower bound for median selection. If w(vi) ≥
1
2 (1 + δi)·w(vi−1), for every 1 ≤ i ≤ �, then the length of this path, and therefore the

depth of T , is at least 2n+
∑�
i=1 log2(1 + δi) + o(n).

3. An improved lower bound for pair-forming algorithms. Let v be a
node of a comparison tree. An element x is a singleton at v if it was not compared
above v with any other element. Two elements x and y form a pair at v if the
elements x and y were compared to each other above v, but neither of them was
compared to any other element.

A pair-forming algorithm is an algorithm that starts by constructing �n/2� =
m− 1 pairs. By concentrating on comparisons that involve elements that are part of
pairs, we obtain a better lower bound for pair-forming algorithms.

Theorem 3.1. A pair-forming algorithm for finding the median must perform,
in the worst case, at least 2.00691n+ o(n) comparisons.

Proof. It is easy to see that a comparison involving two singletons can be delayed
until just before one of them is to be compared for the second time. We can therefore
restrict our attention to comparison trees in which the partial order corresponding
to each node contains at most two pairs. Allowing only one pair is not enough,
as algorithms should be allowed to construct two pairs {a, b} and {a′, b′} and then
compare an element from {a, b} with an element from {a′, b′}.

We focus our attention on nodes in the decision tree in which an element of a pair
is compared for the second time and in which the number of nonsingletons is at most
εm for some ε < 1. If v is a node in which the number of nonsingletons is at most
εm, for some ε < 1, then B(v) is empty and thus w(v) =

∑
A∈A(v) w

1
v(A) and we do

not have to consider Table 2.2 for the rest of the section.

ON LOWER BOUNDS FOR SELECTING THE MEDIAN 305

� c � c � c

� c � c � c

�a

�b �a

�b �a

�b

�a

�b �a

�b �a

�b

A

Ā

Fig. 3.1. The six possible ways that a, b, and c may be divided between A and Ā. Note that c
is not necessarily a singleton element; it may be part of a larger partial order.

Recall that A(v) denotes the collection of subsets of U size m that are upper half
compatible with v. If H,L ⊆ U are subsets of U , of arbitrary size, we let

AH/L(v) = {A ∈ A(v) | H ⊆ A and L ⊆ Ā}.

We let wH/L(v) be the contribution of the sets of AH/L(v) to the weight of v, i.e.,

wH/L(v) =
∑

A∈AH/L(v)

w1
v(A).

For brevity, we write Ah1...hr/l1...ls(v) for A{h1,...,hr}/{l1,...,ls}(v) and wh1...hr/l1...ls(v)
for w{h1,...,hr}/{l1,...,ls}(v).

Before proceeding, we describe the intuition that lies behind the rest of the proof.
Consider Table 2.1 from the last section. If, in a node v of the decision tree, the two
cases a ∈ A, b ∈ Ā and a ∈ Ā, b ∈ A are not equally likely, or more precisely, if the
contributions wa/b(v) and wb/a(v) of these two cases to the total weight of v are not
equal, there must be at least one child of v whose weight is greater than half the weight
of v. The difficulty in improving the lower bound of Bent and John therefore lies at
nodes in which the contributions of the two cases a ∈ A, b ∈ Ā and a ∈ Ā, b ∈ A are
almost equal. This fact is not so easily seen when looking at the original proof given
in [2].

Suppose now that v is a node in which an element a of a pair {a, b} is compared
with an arbitrary element c and that the number of nonsingletons in v is at most εm.
We assume, without loss of generality, that a > b. The weights of a set A ∈ A(v)
in v’s children depend on which of the elements a, b, and c belongs to A and on
whether c is minimal in A or maximal in Ā. The six possible ways of dividing the
elements a, b, and c between A and Ā are shown in Figure 3.1. The weights of the
set A in v’s children, relative to the weight w1

v(A) of A at v, in each one of these six
cases are given in Table 3.1. Table 3.1 is similar to Table 2.1 with c playing the role
of b. There is one important difference, however. If a, b, c ∈ A, as in the first row of
Table 3.1, then the weight of A in va>c is equal to the weight of A in v. The weight
is not halved, as may be the case in the first row of Table 2.1. If the contribution
wabc/(v) of the case a, b, c ∈ A to the weight of v is not negligible, there must again
be at least one child of v whose weight is greater than half the weight of v.

The improved lower bound is obtained by showing that if the contributions of
the cases a ∈ A, b ∈ Ā and a ∈ Ā, b ∈ A are roughly equal, and if most elements
in the partial order are singletons, then the contribution of the case a, b, c ∈ A is
nonnegligible. The larger the number of singletons in the partial order, the larger
is the relative contribution of the weight wabc/(v) to the weight w(v) of v. Thus,
whenever an element of a pair is compared for the second time, we make a small gain.
The above intuition is made precise in the following lemma.

306 D. DOR, J. HÅSTAD, S. ULFBERG, AND U. ZWICK

Table 3.1
The weight of a set A ∈ A(v) in the children of a node v, relative to its weight in v, when the

element a of a pair a > b is compared with an arbitrary element c.

case w1
va<c

(A) w1
va>c

(A)

a ∈ A b ∈ A c ∈ A 1
2 or 1 1

a ∈ A b ∈ Ā c ∈ A 1
2 or 1 1

2

a ∈ Ā b ∈ Ā c ∈ A 1 0

a ∈ A b ∈ A c ∈ Ā 0 1

a ∈ A b ∈ Ā c ∈ Ā 0 1

a ∈ Ā b ∈ Ā c ∈ Ā 1
2

1
2 or 1

Lemma 3.2. If v is a node in which an element a of a pair a > b is compared
with an element c, and if the number of singletons in v is at least m+ 2

√
n, then

w(va<c) ≥ 1
2w(v) + 1

2 (wc/a(v)− wa/c(v)) ,
w(va>c) ≥ 1

2w(v) + 1
2 (wa/c(v)− wc/a(v) + wabc/(v)) .

Proof. Both inequalities follow easily by considering the entries in Table 3.1. To
obtain the second inequality, for example, note that w(va>c) ≥ 1

2 (w(v) + wabc/(v) −
wc/ab(v) + wab/c(v) + wa/bc(v)). As wc/ab(v) = wc/a(v) and wab/c(v) + wa/bc(v) =
wa/c(v), the second inequality follows.

It is worth pointing out that in Table 3.1 and in Lemma 3.2, we need only to
assume that a > b; we do not use the stronger condition that a > b is a pair. This
stronger condition is crucial, however, in what follows, especially in Lemma 3.4.

To make use of Lemma 3.2 we need bounds on the relative contributions of the
different cases. The following lemma is a useful tool for determining such bounds.

Lemma 3.3. Let G = (V1, V2, E) be a bipartite graph. Let δ1 and δ2 be the minimal
degree of the vertices of V1 and V2, respectively. Let ∆1 and ∆2 be the maximal degree
of the vertices of V1 and V2, respectively. Assume that a positive weight function w is
defined on the vertices of G such that w(v1) = r · w(v2) whenever v1 ∈ V1, v2 ∈ V2,
and (v1, v2) ∈ E. Let w(V1) =

∑
v1∈V1

w(v1) and w(V2) =
∑
v2∈V2

w(v2). Then,

r
δ2
∆1
· w(V2) ≤ w(V1) ≤ r

∆2

δ1
· w(V2).

Proof. Let v1(e) ∈ V1 and v2(e) ∈ V2 denote the two vertices connected by the
edge e. We then have

δ1
∑
v1∈V1

w(v1) ≤
∑
e∈E

w(v1(e)) = r
∑
e∈E

w(v2(e)) ≤ r∆2

∑
v2∈V2

w(v2).

The other inequality follows by exchanging the roles of V1 and V2.

Using Lemma 3.3 we obtain the following basic inequalities.

ON LOWER BOUNDS FOR SELECTING THE MEDIAN 307

Lemma 3.4. If v is a node in which a > b is a pair and the number of nonsin-
gletons in v is at most εm, then

1
2 (1− ε)·wac/b(v) ≤ wabc/(v) ≤ 1

2(1−ε) ·wac/b(v) ,
2(1− ε)·wc/ab(v) ≤ wac/b(v) ≤ 2

1−ε ·wc/ab(v) ,
1
2 (1− ε)·wa/bc(v) ≤ wab/c(v) ≤ 1

2(1−ε) ·wa/bc(v) ,
2(1− ε)·w/abc(v) ≤ wa/bc(v) ≤ 2

1−ε ·w/abc(v) .
Each one of these inequalities relates a weight, such as wabc/(v), to a weight, such

as wac/b(v), obtained by moving one of the elements of the pair a > b from A to Ā.
In each inequality we “lose” a factor of 1− ε. When the elements a and b are joined
together, a factor of 2 is introduced. When the elements a and b are separated, a
factor of 1

2 is introduced.
Proof. We present a proof of the inequality wabc/(v) ≤ 1

2(1−ε)·wac/b(v). The proof

of all the other inequalities is almost identical.
Construct a bipartite graph G = (V1, V2, E) whose vertex sets are V1 = Aabc/(v)

and V2 = Aac/b(v). Define an edge (A1, A2) ∈ E between A1 ∈ Aabc/(v) and A2 ∈
Aac/b(v) if and only if there is a singleton d ∈ Ā1 such that A2 = A1 \ {b} ∪ {d}.
Suppose that (A1, A2) is such an edge. As a �∈ minv(A1) but a ∈ minv(A2), while all
other elements are extremal with respect to A1 if and only if they are extremal with
respect to A2 (note that b ∈ minv(A1) and b ∈ maxv(Ā2)), we get that w1

v(A1) =
1
2 ·w1

v(A2).
For every set A of size m, the number of singletons in A is at least (1− ε)m and

at most m. We therefore get that the minimal degrees of the vertices of V1 and V2

are δ1, δ2 ≥ (1 − ε)m and the maximal degrees of V1 and V2 are ∆1,∆2 ≤ m. The
inequality wabc/(v) ≤ 1

2(1−ε) ·wac/b(v) therefore follows from Lemma 3.3.

Using these basic inequalities we obtain the following lemma.
Lemma 3.5. If v is a node in which a > b is a pair and the number of nonsin-

gletons is at most εm, for some ε < 1, then

wabc/(v) ≥ (1−ε)2
(2−ε)2 ·wc/(v) ,

wa/c(v) ≥ (1−ε)(3−ε)
(2−ε)2 ·w/c(v) ,

wc/a(v) ≤ 1
(2−ε)2 ·wc/(v) .

Proof. We present the proof of the first inequality. The proof of the other two
inequalities is similar. Using inequalities from Lemma 3.4 we get that

wc/(v) = wabc/(v) + wac/b(v) + wc/ab(v)

≤ wabc/(v) + 2
1−ε ·wabc/(v) + 1

(1−ε)2 ·wabc/(v)
= (2−ε)2

(1−ε)2 ·wabc/(v)
and the first inequality follows.

We are now ready to show that if v is a node in which an element of a pair is
compared for the second time, then v has a child whose weight is greater than half
the weight of v. Combining Lemmas 3.2 and 3.5, we get that

1
2 ·(w(va<c) + w(va>c)) ≥ 1

2 ·w(v) + (1−ε)2
4(2−ε)2 ·wc/(v) ,

w(va>c) ≥ 1
2 ·w(v)− ε

2(2−ε) ·wc/(v) + (1−ε)(3−ε)
2(2−ε)2 ·w/c(v) .

308 D. DOR, J. HÅSTAD, S. ULFBERG, AND U. ZWICK

Let α = wc/(v)/w(v) and 1− α = w/c(v)/w(v). We get that

1
2 ·(w(va<c) + w(va>c)) ≥

(
1
2 + (1−ε)2

4(2−ε)2α
)
·w(v) ,

w(va>c) ≥
(

1
2 − ε

2(2−ε)α+ (1−ε)(3−ε)
2(2−ε)2 (1− α)

)
·w(v)

=
(

1
2 − 3−2ε

2(2−ε)2α+ (1−ε)(3−ε)
2(2−ε)2

)
·w(v) .

As a consequence, we get that

max{w(va<c), w(va>c)} ≥ max
{

1
2 + (1−ε)2

4(2−ε)2α,
1
2 − 3−2ε

2(2−ε)2α+ (1−ε)(3−ε)
2(2−ε)2

}
· w(v) .

The coefficient of w(v), on the right-hand side, is minimized when the two expressions

whose maximum is taken are equal. This happens when α = 2(3−4ε+ε2)
7−6ε+ε2 . Plugging

this value of α into the two expressions, we get that

max{w(va<c), w(va>c)} ≥ 1
2 (1 + f1(ε))·w(v) ,

where

f1(ε) =
(3− ε)(1− ε)3

(2− ε)2(7− 6ε+ ε2)
.

It is easy to check that f1(ε) > 0 for ε < 1.
A pair-forming comparison is a comparison in which two singletons are compared

to form a pair. A pair-touching comparison is a comparison in which an element
of a pair is compared for the second time. In a pair-forming algorithm, the num-
ber of singletons is decreased only by pair-forming comparisons. Each pair-forming
comparison decreases the number of singletons by exactly two. As explained above,
pair-forming comparisons can always be delayed so that a pair-forming comparison
a : b is immediately followed by a comparison that touches the pair {a, b}, or by a
pair-forming comparison a′ : b′ and then by a comparison that touches both pairs
{a, b} and {a′, b′}.

Consider again the path traced from the root by repeatedly descending to the
child with the larger weight. As a consequence of the above discussion, we get that
when the ith pair-touching comparison along this path is performed, the number
of nonsingletons in the partial order is at most 4i. It therefore follows from the
remark made at the end of the previous section that the depth of the comparison tree
corresponding to any pair-forming algorithm is at least

2n+

m/4∑
i=1

log2

(
1 + f1

(
4i

m

))
+ o(n)

= 2n+
n

8
·
∫ 1

0

log2(1 + f1(t))dt+ o(n) ≈ 2.00691n+ o(n) .

This completes the proof of Theorem 3.1.
The worst case in the proof above is obtained when the algorithm converts all the

elements into quartets. A quartet is a partial order obtained by comparing elements
contained in two disjoint pairs. In the proof above, we analyzed cases in which an
element a of a pair a > b is compared with an arbitrary element c. If the element c is

ON LOWER BOUNDS FOR SELECTING THE MEDIAN 309

�a
�b �a

�b �a
�b

�a
�b �a

�b �a
�b

�a
�b �a

�b �a
�b

�c
�d

�c
�d

�c
�d �c

�d

�c
�d

�c
�d �c

�d

�c
�d

�c
�d

A

Ā

Fig. 3.2. The nine possible ways that a, b, c, and d may be divided between A and Ā.

Table 3.2
The weight of a set A ∈ A(v) in the children of a node v, relative to its weight in v, when the

element a of a pair a > b is compared with an element of a pair c > d.

case w1
va<c

(A) w1
va>c

(A) w1
va<d

(A) w1
va>d

(A)

A ∈ Aabcd/ 1 1 1
2 1

A ∈ Aacd/b 1 1
2

1
2

1
2

A ∈ Acd/ab 1 0 1 0

A ∈ Aabc/d 1
2 1 0 1

A ∈ Aac/bd 1
2

1
2 0 1

A ∈ Ac/abd 1 0 1
2

1
2

A ∈ Aab/cd 0 1 0 1

A ∈ Aa/bcd 0 1 0 1

A ∈ A/abcd 1
2

1
2

1
2 1

also part of a pair, a tighter analysis is possible. By performing this analysis we can
improve Theorem 3.1.

Theorem 3.6. A pair-forming algorithm for finding the median must perform,
in the worst case, at least 2.01227n+ o(n) comparisons.

Proof. Consider comparisons in which the element from a pair a > b is compared
with an element of a pair c > d. The nine possible ways of dividing the elements a,
b, c, and d among A and Ā are depicted in Figure 3.2. We may assume, without loss
of generality, that the element a is compared with either c or with d.

Let v be a node of the comparison tree in which a > b and c > d are pairs and
which one of the comparions a : c or a : d is performed. Let A ∈ A(v). The weights
of a set A in v’s children, relative to the weight w1

v(A) of A at v, in each one of these
nine cases are given in Table 3.2. The two possible comparisons a : c and a : d are
considered separately. The following equalities are easily verified.

Lemma 3.7. If a > b and c > d are pairs in v, then

wacd/b(v) = wabc/d(v) ,

wcd/ab(v) = wab/cd(v) ,

wc/abd(v) = wa/bcd(v) ,

wac/bd(v) = 4·wab/cd(v) .

The following inequalities are analogous to the inequalities of Lemma 3.4.

310 D. DOR, J. HÅSTAD, S. ULFBERG, AND U. ZWICK

Lemma 3.8. If a > b and c > d are pairs in v and if the number of nonsingletons
in v is at most εm, for some ε < 1, then

1
2 (1− ε)wabc/d(v) ≤ wabcd/(v) ≤ 1

2(1−ε)wabc/d(v) ,
2(1− ε)wab/cd(v) ≤ wabc/d(v) ≤ 2

1−εwab/cd(v) ,
1
2 (1− ε)wa/bcd(v) ≤ wab/cd(v) ≤ 1

2(1−ε)wa/bcd(v) ,
2(1− ε)w/abcd(v) ≤ wa/bcd(v) ≤ 2

1−εw/abcd(v) .

First consider the comparison a : c. By examining Table 3.2 and using the
equalities of Lemma 3.7, we get that

w(va<c)+w(va>c)
2 = wabcd/(v) + 3

4wacd/b(v) + 1
2wcd/ab(v) + 3

4wabc/d(v) + 1
2wac/bd(v)

+ 1
2wc/abd(v) + 1

2wab/cd(v) + 1
2wa/bcd(v) + 1

2w/abcd(v)

= wabcd/(v) + 3
2wabc/d(v) + 3wab/cd(v) + wa/bcd(v) + 1

2w/abcd(v).

Minimizing this expression, subject to the equalities of Lemma 3.7, the inequalities of
Lemma 3.8, and the fact that the weights of the nine cases sum up to w(v), amounts
to solving a linear program. By solving this linear program we get that

w(va<c) + w(va>c)

2w(v)
≥ 1

2
(1 + f2(ε)) · w(v) ,

where

f2(ε) =
(3− ε)(1− ε)3

(2− ε)4 .

It seems intuitively clear that the comparison a : d is a bad comparison from the
algorithm’s point of view. The adversary will most likely answer with a > d. Indeed,
by solving the corresponding linear program, we get that

w(va>d) = wabcd/(v) + 1
2wacd/b(v) + wabc/d(v) + wac/bd(v)

+ 1
2wc/abd(v) + wab/cd(v) + wa/bcd(v) + w/abcd(v)

= wabcd/(v) + 3
2wabc/d(v) + 5wab/cd(v) + 3

2wa/bcd(v) + w/abcd(v) ≥ 3
4 .

As 1
2 (1 + f2(ε)) ≤ 3

4 , for every 0 ≤ ε ≤ 1, we may disregard the comparison a : d from
any further consideration.

It is easy to verify that (1+f1(ε))2 ≥ 1+f2(ε). As a result, we get a lower bound
of

2n+
n

8
·
∫ 1

0

log2(1 + f2(t))dt+ o(n) ≈ 2.01227n+ o(n) .

This completes the proof of Theorem 3.6.

4. Concluding remarks. We presented a reformulation of the 2n+ o(n) lower
bound of Bent and John for the number of comparisons needed for selecting the
median of n elements. Using this new formulation we obtained an improved lower
bound for pair-forming median finding algorithms. As mentioned, Dor and Zwick [6]
have recently extended the ideas described here and obtained a (2+ε)n lower bound
for general median finding algorithms for some tiny ε > 0.

ON LOWER BOUNDS FOR SELECTING THE MEDIAN 311

We believe that the lower bound for pair-forming algorithms obtained here can
be substantially improved. Such an improvement seems to require, however, some
new ideas. Obtaining an improved lower bound for pair-forming algorithms may be
an important step towards obtaining a lower bound for general algorithms which is
significantly better than the lower bound of Bent and John [2].

Paterson [11] conjectures that the number of comparisons required for selecting
the median is about (log4/3 2)·n ≈ 2.41n.

REFERENCES

[1] M. Aigner, Producing posets, Discrete Math., 35 (1981), pp. 1–15.
[2] S. W. Bent and J. W. John, Finding the median requires 2n comparisons, in Proceedings of

the 17th Annual ACM Symposium on Theory of Computing, 1985, pp. 213–216.
[3] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, Time bounds for selection,

J. Comput. System Sci., 7 (1973), pp. 448–461.
[4] J. Chen, Partial Order Productions, Ph.D. thesis, Lund University, Lund, Sweden, 1993.
[5] D. Dor and U. Zwick, Selecting the median, SIAM J. Comput., 28 (1999), pp. 1722–1758.
[6] D. Dor and U. Zwick, Median selection requires (2+ε)n comparisons, SIAM J. Discrete Math.,

14 (2001), pp. 312–325.
[7] L. R. Ford and S. M. Johnson, A tournament problem, Amer. Math. Monthly, 66 (1959),

pp. 387–389.
[8] F. Fussenegger and H. N. Gabow, A counting approach to lower bounds for selection problems,

J. Assoc. Comput. Mach., 26 (1979), pp. 227–238.
[9] D. E. Knuth, The Art of Computer Programming, Vol. 3, Searching and Sorting, Addison-

Wesley, Reading, MA, 1973.
[10] I. Munro and P.V. Poblete, A Lower Bound for Determining the Median, Technical report

CS-82-21, University of Waterloo, Waterloo, Canada, 1982.
[11] M. S. Paterson, Progress in selection, in Proceedings of the Fifth Scandinavian Workshop on

Algorithm Theory, Reykjav́ik, Iceland, 1996, pp. 368–379.
[12] V. R. Pratt and F. F. Yao, On lower bounds for computing the ith largest element, in Pro-

ceedings of the 14th Annual Symposium on Switching and Automata Theory, Iowa City, IA,
1973, pp. 70–81.

[13] A. Schönhage, M. Paterson, and N. Pippenger, Finding the median, J. Comput. System
Sci., 13 (1976), pp. 184–199.

[14] C. K. Yap, New Lower Bounds for Medians and Related Problems, Computer science report 79,
Yale University, New Haven, CT, 1976.

MEDIAN SELECTION REQUIRES (2+ε)N COMPARISONS∗

DORIT DOR† AND URI ZWICK†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 3, pp. 312–325

Abstract. Improving a long standing result of Bent and John [Proceedings of the 17th Annual
ACM Symposium on Theory of Computing, Providence, RI, 1985, pp. 213–216], and extending a
recent result of Dor, H̊astad, Ulfberg, and Zwick [SIAM J. Discrete Math., 14 (2001), pp. 299–311],
we obtain a (2+ε)n lower bound (for some fixed ε > 0) on the number of comparisons required, in
the worst case, for selecting the median of n elements.

Key words. median selection, comparison algorithms, lower bounds

AMS subject classifications. 68Q25, 68R05, 06A07

PII. S0895480199353895

1. Introduction. The selection problem is defined as follows: Given a set X
containing n distinct elements and given a number 1 ≤ t ≤ n, find the tth largest
element of X, i.e., the element of X smaller than exactly t − 1 elements of X and
larger than the other n − t elements of X. The median of X is the �n/2�th largest
element of X.

The selection problem is one of the most fundamental problems of computer
science. Although considerable effort was made to determine the exact comparison
complexity of it, the problem is still far from being solved. The history of the upper
and lower bounds obtained for the problem of median selection is summarized in
Table 1.1.

Blum et al. [BFP+73] obtained the first linear upper bound and the first non-
trivial lower bound for the problem. Schönhage, Paterson, and Pippenger [SPP76]
improved the upper bound to 3n. Extending the work of Schönhage, Paterson, and
Pippenger[SPP76], we recently lowered the upper bound to about 2.95n [DZ99].

The lower bound of Blum et al. [BFP+73] is obtained using a simple adversary
argument. Progressively more elaborate adversary arguments were used by Pratt and
Yao [PY73], Kirkpatrick [Kir81], Yap [Yap76], and Munro and Poblete [MP82] to
push the lower bound to 79n/43 ∼ 1.837n. To obtain the last lower bound in this list,
hundreds of cases had to be checked. Therefore, it seems that the type of adversary
arguments used in these works is unlikely to yield substantially better results.

A different approach altogether was used by Fussenegger and Gabow [FG78].
Although their lower bound seems to be identical to the lower bound of Blum et
al. [BFP+73], their result is in fact stronger. Fussenegger and Gabow show that
any comparison tree for finding the median must have at least 2 1.5n−o(n) leaves. As
comparison trees are binary trees (we assume that all the elements are distinct), it
follows that each median finding comparison tree must have a leaf at depth at least
1.5n− o(n). Fussenegger and Gabow also present an alternative formulation of their
lower bound using an adversary based on a weight function which they call chaos.

Bent and John [BJ85] (see also John [Joh88]) extended the work of Fussenegger
and Gabow and showed that every comparison tree for finding the median of n ele-

∗Received by the editors April 12, 1999; accepted for publication January 30, 2001; published
electronically June 5, 2001.

http://www.siam.org/journals/sidma/14-3/35389.html
†School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv

University, Tel Aviv 69978, Israel (dorit@checkpoint.com, zwick@post.tau.ac.il).

312

MEDIAN SELECTION REQUIRES (2+ε)n COMPARISONS 313

Table 1.1
Upper and lower bounds on the number of comparisons required, in the worst case, for selecting

the median of n elements.

UPPER BOUNDS

authors ref. bound

Blum, Floyd, Pratt, Rivest, Tarjan [BFP+73] 5.43 · n
Schönhage, Paterson, Pippenger [SPP76] 3 · n

Dor, Zwick [DZ99] 2.95 · n

LOWER BOUNDS

authors ref. bound

Blum, Floyd, Pratt, Rivest, Tarjan [BFP+73] 1.5 · n
Fusseneger, Gabow [FG78] 1.5 · n

Pratt, Yao [PY73] 1.75 · n
Kirkpatrick [Kir81] 1.75 · n

Yap [Yap76] 1.81 · n
Munro, Poblete [MP82] 1.83 · n
Bent, John [BJ85] 2 · n
Dor, Zwick * (2+ε) · n

ments must either have a depth which is much larger than 2n or must have at least
2 2n−o(n) leaves. As a consequence, each such comparison tree must have a leaf at
depth at least 2n− o(n). Descriptions of this lower bound can also be found in Pater-
son [Pat96] (using a multitude of adversaries), in Knuth [Knu98] (using a randomized
adversary) and in Dor et al. [DHUZ01] (using a weight function).

Dor et al. [DHUZ01] recently showed that any pair-forming median selecting
algorithm must perform, in the worst-case, at least 2.01n comparisons. A pair-forming
algorithm is an algorithm that begins with �n/2� comparisons of �n/2� disjoint pairs
of elements. Although the best current selection algorithms are pair-forming, it is
not yet known whether there is an optimal median selection algorithm which is pair-
forming.

In this work, we extend the result of Dor et al. [DHUZ01] and show that any
median selection algorithm must perform, in the worst-case, at least (2 + ε)n com-
parisons for some fixed ε > 0. Unfortunately, the ε for which we are currently able
to prove this result is tiny. We present here a proof of this result with ε = 2−80. No
attempt was made to optimize ε as it seems that new ideas will be required to obtain
a significant improvement. We believe that the significance of the new lower bound
is in showing that median selection requires more than 2n+ o(n) comparisons.

Preliminary versions of this work appears in the Ph.D. thesis of the first author
[Dor95] and in [DZ96].

2. Discussion. Median selection is one of the most fundamental problems of
computer science and it is important, therefore, to determine its exact complexity.

The comparison complexity of many comparison problems is exactly known. It is
clear, for example, that exactly n − 1 comparisons are needed to find the maximum
of n elements. Exactly n+ �log n� − 2 comparisons are needed, in the worst case, to
find the second largest element (Schreier [Sch32], Kislitsyn [Kis64]). All logarithms
in the paper are taken to base 2. Exactly n+ �log n−1

4 �+ �log n−1
5 �+ 1 comparisons

are needed to find the third largest element of n elements when n ≥ 50 (Kirkpatrick
[Kir74]). Exactly �3n/2� − 2 comparisons are needed to find both the maximum and

314 DORIT DOR AND URI ZWICK

the minimum of n elements (Pohl [Poh72]). Exactly 2n − 1 comparisons are needed
to merge two sorted lists each of length n (Stockmeyer and Yao [SY80]). Exactly
�log 7

12 (n + 1)� + �log 14
17 (n + 1)� comparisons are needed to merge a sorted list of n

elements with a sorted list of two elements (Hwang and Lin [HL71]).
The comparison complexity of sorting is almost exactly known. At least �log n!� ≥

n log n−1.44n comparisons are needed. At most∑n
k=2�log 3

4k� ≤ n log n−1.33n com-
parisons are needed, as shown by Ford and Johnson [FJ59] (see also Knuth [Knu98]).

It is even known that the average case complexity of selecting the median is
1.5n+ o(n). The upper bound is by Floyd and Rivest [FR75]. The lower bound is by
Cunto and Munro [CM89].

Determining the exact number of comparisons needed, in the worst case, for
selecting the median seems to be a much harder and a much more challenging problem.
A gap of about 0.95n still remains between the best upper and lower bounds. We
know much more about the second order term of sorting than we know about the
leading term of median selection. We believe that even small steps towards closing
the gap are significant if they are obtained using new ideas or break what seems to
be a natural boundary.

Paterson [Pat96] conjectures that the number of comparisons required for selecting
the median is about (log4/3 2)·n ≈ 2.41n.

3. Comparison trees. The problem of finding the median can be formulated
as a game between an algorithm and an adversary . The algorithm is supposed to find
the median of the n distinct input elements. The algorithm is only allowed to issue
comparison queries of the form a : b, where a and b are input elements. The adversary
has to answer each such comparison with either a < b or a > b. Each answer of the
adversary has to be consistent with all her previous answers. The algorithm tries to
find the median using as few comparisons as possible. The adversary tries to force
the algorithm to make as many comparisons as possible.

A median finding algorithm in this model can be described using a comparison
tree. A comparison tree T is a binary tree in which each internal vertex v is labeled by
a comparison a : b. The two edges emanating from v are labeled by the two possible
outcomes a < b and a > b of the comparison. The vertices to which these edges lead
are denoted, respectively, by va<b and va>b. The algorithm starts at the root r of
the tree and makes the comparison labeling it. The algorithm then proceeds along
the edge labeled by the reply of the adversary, makes the comparison labeling the
vertex reached, and so forth. The operation of the algorithm ends when a leaf is
encountered. The information gathered by the algorithm when it reaches a vertex v
of the tree amounts to a partial order Pv on the n input elements. A comparison
tree T describes a median finding algorithm if for every leaf w of T , the partial
order Pw contains enough information to determine the median. Throughout the
paper, we assume that the algorithm never makes a comparison whose outcome is
already known to it.

The worst case complexity of a median finding algorithm described by a compar-
ison tree T is simply the depth D(T) of T . The adversary, who knows T , can force
the algorithm to take a path that leads to a leaf of maximal depth.

The number of leaves of a comparison tree T is denoted by L(T). As each com-
parison tree is a binary tree, we immediately get that L(T) ≤ 2D(T) or equivalently
that D(T) ≥ log2 L(T). A lower bound on the number of leaves contained in every
median finding comparison tree therefore supplies a lower bound on the number or
comparisons that have to be made, in the worst case, by any median finding algorithm.

MEDIAN SELECTION REQUIRES (2+ε)n COMPARISONS 315

This is the so-called leaf counting approach.

4. An overview of the new lower bound. The main idea used to obtain the
improved lower bound is fairly simple. Let T be a comparison tree that corresponds to
a median finding algorithm. To each vertex v of T we attach a weight w(v). We then
show that the weights attached to the vertices satisfy the following three properties:

P1. w(root) ≥ 22n−o(n).
P2. w(leaf) ≤ 2o(n) for every leaf leaf.
P3. w(va>b) + w(va<b) ≥ w(v) for every internal vertex v.

Property P3 implies that each internal vertex v has a child u such that w(u) ≥
1
2w(v). By starting at the root of the tree and descending each time to the child with
the larger weight, until a leaf is reached, we trace a path whose length is at least
log2(w(root)/w(leaf)) = 2n − o(n). This gives us an alternative formulation of the
lower bound of Bent and John [BJ85].

To get an improved lower bound we have to go one step further. Let v0, v1, . . . , vk
be the path traced above. Let δi be such that w(vi) =

1
2 (1 + δi)·w(vi−1). The length

of the path is then guaranteed to be at least 2n +
∑k
i=1 log2(1 + δi) − o(n). If we

could show that in enough cases the weight of a child is strictly greater than half the
weight of its parent, so that

∑k
i=1 log2(1 + δi) = Ω(n), we would get our improved

lower bound.
Dor et al. [DHUZ01] obtain an improved lower bound for pair-forming median

algorithms using this approach. Obtaining an improved lower bound for general
median finding algorithms seems to be a harder task. To achieve it, we have to
bend the rules of the game a little bit. The weight function used to obtain the lower
bound violates property P3, so that δi < 0 for some values of i. We can still show,
however, that

∑k
i=1 log2(1 + δi) = Ω(n), which is the important property.

5. Weight functions. A suitable weight function is an essential ingredient in
the plan laid down in the previous section. The weight function used to obtain the
lower bound is a modification of the weight function used in [DHUZ01]. We shortly
describe the weight function used in [DHUZ01] and then describe the weight function
used by us here.

Let P be a partial order on the elements of a set X. Let A ⊂ X be a subset of X.
The set A is said to be an up-set of P if whenever a <P b and a ∈ A, then b ∈ A. In
other words, A is an up-set of P if none of the elements of A is known to be smaller
than an element from Ā = X \ A (see Trotter [Tro92, p. 27]). We let minP (A) be
the set of minimal elements, with respect to P , in A. We let maxP (Ā) be the set
of maximal elements, with respect to P , in Ā. If Pv is the partial order associated
with a vertex v in T , we let minv(A) = minPv (A) and maxv(Ā) = maxPv (Ā). We let
up-set t(v) be the set of up-sets of Pv of size t.

To simplify the description of the weight functions, we assume that comparisons
involving two singletons are always delayed for as long as possible, i.e., until just
before one of these two singletons is to be compared for a second time. (A singleton
is an element that was not yet compared to any other element.) It is easy to see
that we can therefore restrict our attention to comparison trees in which the partial
order corresponding to each vertex contains at most two pairs. (Two elements a and b
form a pair if the comparison a : b is the only comparison in which these two elements
participated.) Allowing only one pair in each partial order is not enough as algorithms
should be allowed to build two pairs {a, b} and {a′, b′} and then compare an element
from {a, b} with an element from {a′, b′} to form a quartet.

316 DORIT DOR AND URI ZWICK

If v is a vertex of a comparison tree in which the number of singletons is greater
than n/2+2

√
n, then the definition of the weight function w(v) of v used in [DHUZ01]

is particularly simple. Let t = �n/2�. The weight wA(v) of v with respect to a set
A ⊂ X of size t is defined as follows:

wA(v) =

{
2 |minv(A)|+ |maxv(Ā)| if A ∈ up-set t(v) ,
0 otherwise.

The weight of v is then defined to be

w(v) =
∑
A

wA(v),

where the sum is over all subsets A of X of size t.
If the number of singletons in v is at most n/2 + 2

√
n, then the definition of the

weight function w(v) used in [DHUZ01] is a bit more complicated. As we concentrate
here on the early stages of the algorithm in which the number of singletons is still
very large, we do not repeat this definition here. The interested reader may find it in
[DHUZ01].

Before describing the weight function ŵ(v) used by us here to obtain the new lower
bound, we describe a slightly different way of looking at the weight function w(v) used
in Dor et al. [DHUZ01].

Let v = a : b be a vertex of a median finding tree. The outcome a < b is said to
be critical with respect to an up-set A if either a, b ∈ A and b ∈ minv(A) or a, b ∈ Ā
and a ∈ maxv(Ā). In other words, an outcome is critical if it removes an element
from the set of minimal elements of A or the set of maximal elements of Ā. Note
that a critical outcome is an outcome of an internal comparison, i.e., a comparison
between two elements of A, or two elements of Ā. An outcome a < b of an internal
comparison which is not critical is said to be noncritical .

Let intv(A) be the number of internal comparisons with respect to A above v.
Let critv(A) be the number of critical outcomes with respect to A above v and let
noncritv(A) be the number of noncritical outcomes with respect to A above v. Clearly
intv(A) = critv(A)+noncritv(A). The number of extremal elements with respect to A,
i.e., |minv(A)| + |maxv(Ā)| is equal to n − critv(A). An alternative formulation of
the weight function wA(v) is therefore

wA(v) =

{
2n−critv(A) if A ∈ up-set t(v) ,
0 otherwise .

So far, we classified the outcome of each internal comparison as either critical
or noncritical. In each vertex v we now also classify the noncritical outcomes with
respect to A obtained above v as either marked or unmarked . If an outcome a < b is
marked, with respect to A, at v, then it will also be marked at all the vertices that
lie below v. Playing the role of the adversary, we may decide, however, to mark a
noncritical outcome a < b in v, with respect to A, although it was not marked at v’s
parent. Let unmarkv(A) be the number of noncritical outcomes with respect to A,
obtained above v, which are still unmarked at v. The new weight function is defined
as follows:

ŵA(v) =

{
2n−critv(A)−unmarkv(A) if A ∈ up-set t(v) ,
0 otherwise.

MEDIAN SELECTION REQUIRES (2+ε)n COMPARISONS 317

Another difference in the definition of the new weight functions is that the score
ŵ(v) is not obtained by summing over all up-sets A. Some of the up-sets are delib-
erately excluded from the summation. For each vertex v there is a set drop(v) such
that

ŵ(v) =
∑

A �∈drop(v)

ŵA(v) .

If A ∈ drop(v), so that A is excluded at v, then A is also excluded at every descendant
of v.

The definition of ŵ(v) given above is used if the number of singletons in v is at
least n/2 + 2

√
n. If the number of singletons in v is less than n/2 + 2

√
n, we revert

to the definition used in [DHUZ01] and take ŵ(v) = w(v). It is easy to see that for
every vertex v we have ŵ(v) ≤ w(v).

The definition of the weight function ŵ(v) is not complete without specifying the
rules used to mark noncritical outcomes and to exclude up-sets . These rules will be
specified in the next section.

6. An improved lower bound for general median finding algorithms. In
this section we obtain the improved lower bound for general median finding algorithms.
We use the weight function ŵ(v) defined in the previous section.

Let T be a median finding tree. We start again at the root at the tree and
then repeatedly descend to the child with the larger weight. As we descend the tree,
we decide which noncritical outcomes to mark and which up-sets to drop, thereby
determining the weights of the vertices we encounter. No outcomes are marked and
no up-sets are excluded at the root. Suppose that we are currently at vertex v. Let v1
and v2 be the two children of v. Outcomes that are marked at v must also be marked
at v1 and v2 and up-sets that are excluded at v must also be excluded at v1 and v2. We
may, however, decide to mark some additional noncritical outcomes, thus increasing
the weight, or to exclude some up-sets, thus decreasing the weight. After making
these decisions, we can compute the weights ŵ(v1) and ŵ(v2). We then descend to
the child with the larger weight. We denote this child by v′.

Let v0, v1, v2, . . . , vk be the path traced from the root. We say that the move
vi → vi+1 is ν-good if ŵ(vi+1) ≥ 1

2 (1 + ν)ŵ(vi). We say that the move is regular if
ŵ(vi+1) ≥ 1

2 ŵ(vi). We say that the move is ν-bad if ŵ(vi+1) ≥ 1
2 (1 − ν)ŵ(vi). Our

goal is to show that the path traced contains many good moves and only a few bad
ones.

We concentrate our attention on comparisons in which at least one of the elements
is compared for the first or second time. The good and the bad moves correspond to
such comparisons. An element becomes active when it is compared for the first time.
If the first comparison of an element yields a good move, the element immediately
becomes inactive. The second comparison involving an active element yields, in most
cases, a good move. In some less frequent cases, however, such a comparison yields
a bad move. In either case, the element becomes inactive. In some cases an element
becomes inactive before it is compared for the second time. We say that two elements
are neighbors if they were directly compared to each other. We will maintain the
following two conditions:

1. An active element has exactly one neighbor.
2. An element has at most one active neighbor.

Each comparison a : b falls into one of the following four types:

318 DORIT DOR AND URI ZWICK

a b a b

c

c

a b

a b

(B) (C) (D)(A)

Fig. 6.1. Comparisons of Types A,B,C, and D. Empty circles denote singletons. Squares denote
active elements. The filled circles in Type A,B, and D comparisons denote elements that are neither
singletons nor active. The dotted line denotes the comparison to be made.

Type A. Comparison between a singleton and an element that does not have an
active neighbor.

Type B. Comparison between a singleton and an element that has an active neigh-
bor.

Type C. Comparison of an active element and another element.
Type D. Other comparison.
Comparisons of Type A and B are comparisons in which an element is compared

for the first time. Comparisons of Type C are comparisons in which an active element
is compared for the second time. The four types of comparisons are shown schemati-
cally in Figure 6.1. We now describe the actions taken by the adversary at a vertex v
labeled by the comparison a : b. We consider four different cases, corresponding to
the four types of comparisons. We let v1 and v2 denote the children of v, and we let
v′ denote the child of v with the largest weight (ties are broken arbitrarily). In the
following we let ν = 2−70, ∆ = 65, and ε = 2−80.

Case A. a is a singleton. b is not active and does not have an active neighbor.
No new outcomes are marked; no new up-sets are dropped at v1 and v2. If v → v′

is a ν-good move, then a immediately becomes inactive. Otherwise, if v → v′ is not
a ν-good move, then a becomes active. If b is also a singleton, then b also becomes
active. The move v → v′ is a regular move. (It is easy to see that if b is also a
singleton, then the move v → v′ is necessarily a regular move.)

Case B. a is a singleton. b is not active but has an active neighbor c.
Assume that b < c. The case b > c is dealt with analogously. Mark the outcome

a > b at va>b with respect to all the up-sets A, such that a, b ∈ Ā, with respect to
which the outcome a > b is noncritical. We show below (Lemma 6.2) that v → v′ is a
ν-good move. The element a immediately becomes inactive. The element c becomes
inactive. The element b remains without an active neighbor.

Case C. a is active and c is the unique neighbor of a.
Assume that a > c. The case a < c is dealt with analogously. In va<b and va>b,

if x > c is a noncritical outcome and A is an up-set such that x, c ∈ Ā, then mark
x > c with respect to A. In va>b, if A is an up-set such that a, b ∈ A and the outcome
a > b is noncritical with respect to A, then mark a > b with respect to A. If the
move v → v′ is not ν-good, then we exclude all the up-sets A for which c ∈ A at v1
and v2 (i.e., drop(va<b) = drop(va>b) = drop(v) ∪ {A | c ∈ A}). We then recompute
the weights ŵ(v1) and ŵ(v2). We show below (Lemma 6.3) that the degree of c in
this case is at least ∆ and that ŵ(va<b) ≥ 1

2 (1 − 3ν) ·ŵ(v). The move v → va<b is

MEDIAN SELECTION REQUIRES (2+ε)n COMPARISONS 319

therefore 3ν-bad. In both cases, a becomes inactive. If b or c were active, then they
also become inactive. If b was a singleton before the comparison a : b, then it becomes
inactive.

Case D. The comparison a : b is not of one of the types considered in Cases A, B,
and C.

No new outcomes are marked; no new up-sets are dropped. The move v → v′ is
regular.

At most one element becomes inactive in Case A. Exactly two elements become
inactive in Case B. At most three elements become inactive in Case C. It should be
noted, however, that three elements become inactive in Case C only if a and c formed
a pair in v. No elements become inactive in Case D.

Up-sets added to drop(v) and therefore excluded from the definition of ŵ(v) are
always up-sets that include, or that do not include, a specific element. We say that
an element a is forced in v if all the up-sets that include a, or all the up-sets that do
not include a, belong to drop(v).

It is important to observe that while marking noncritical outcomes in Cases B
and C, we maintain the following property: if we mark an outcome x < y with respect
to an up-set A for which x, y ∈ A, then we deactivate the active neighbor of y, if there
was one. Similarly, if we mark an outcome x < y with respect to an up-set A for
which x, y ∈ Ā, then we deactivate the active neighbor of x, if there were one.

The new lower bound follows from the following three lemmas, dealing with Cases
A, B, and C.

Lemma 6.1. If the comparison a : b labeling v is of type A and b is forced at v,
then v → v′ is ν-good.

Lemma 6.2. If the comparison a : b labeling v is of type B, then v → v′ is ν-good.

Lemma 6.3. If the comparison a : b labeling v is of type C and v → v′ is not
ν-good, then

(i) the degree of c, the neighbor of a, in Pv is at least ∆;
(ii) the move v → va<b is 3ν-bad.

The (technical) proofs of these three lemmas will be given later. We first show
that the lemmas imply the new lower bound.

Theorem 6.4. The depth of every median finding comparison tree is at least
(2+ε)n− o(n), where ε ≥ 2−80.

Proof. The adversary traces a path from the root. Consider the number of
comparisons performed until N = n/4 elements become involved in comparisons. If
this number is at least (2+4ε)N , then the depth of the tree must be at least (2+ ε)n.
This is because the adversary may decide that N/2 of the compared elements are the
largest elements in the set, and that the remaining N/2 elements are the smallest
elements in the set, in which case the algorithm would have to find the median of the
remaining n−N elements. This requires at least 2(n−N)− o(n) more comparisons
by the lower bound of Bent and John [BJ85]. The total number of comparisons
performed would therefore be at least (2+ 4ε)N +2(n−N)− o(n) = (2+ ε)n− o(n).

Therefore, assume that the number of comparisons performed until N = n/4
elements are involved in comparisons is at most (2 + 4ε)N . Let v∗ be the first vertex
on the path traced by the adversary in which N elements are involved in comparisons.
The partial order Pv∗ contains exactly n − N singletons and N nonsingletons. The
number of elements whose degree in Pv∗ is at least ∆ is at most 2(2 + 4ε)N/∆.
Lemma 6.1 (Case A) implies that a forced element will never have an active neighbor.
As each bad move forces an element, we get, using Lemma 6.3 (Case C), that the

320 DORIT DOR AND URI ZWICK

number of bad moves is at most 2(2+4ε)N/∆. Each good or bad move causes at most
three elements to become inactive. The number of good and bad moves is therefore
at least a third of the number of elements that become inactive. As explained, we
assume that the formation of pairs is delayed until just before the time they are used.
We may therefore assume that each partial order Pv contains at most two pairs. Each
element has at most one active neighbor. The number of active elements at v∗ is
therefore at most (N − 4)/2 + 4 = N/2 + 2. It therefore follows that the number
of good and bad moves is at least (N/2 − 2)/3 ≥ N/6 − 1 and that the number of
good moves is at least N/6− 2(2 + 4ε)N/∆− 1. As mentioned, a good or bad move
in which three elements become inactive can result only from a comparison in which
an element of a pair is compared for the second time. It is easy to show, using the
arguments used in [DHUZ01], that the move that results from such a comparison is
much better than two ν-good moves. We may therefore assume that the number of
good and bad moves is at least (N/2− 2)/2 ≥ N/4− 1 and that the number of good
moves is at least N/4− 2(2 + 4ε)N/∆− 1. We get therefore that

k∑
i=1

log2(1+δi) ≥
(N
4
− 2(2+4ε)N

∆
−1
)
log2(1+ν) +

2(2+4ε)N

∆
· log2(1−3ν) ≥ εn ,

as required.
Before proving Lemmas 6.1–6.3 we introduce the following notation, also used in

[DHUZ01]. Given two sets of elements H,L ⊆ X, we let
AH/L(v) = {A ∈ up-set t(v) | H ⊆ A,L ⊆ Ā } .

In other words, AH/L(v) is the set of all up-sets A of size t = �n/2� at v such that all
the elements of H belong to A while none of the elements of L belongs to A. We also
let

ŵH/L(v) =
∑

A∈AH/L(v)\drop(v)

ŵA(v) .

For brevity, we write ŵa/b(v) and ŵab/(v), etc. instead of ŵ{a}/{b}(v) and ŵ{a,b}/φ(v).
We also need the following lemma which is an adaptation of Lemmas 7 and 8 of

[DHUZ01].
Lemma 6.5. If for every A ∈ AH/L,x(v) and every singleton y ∈ A \H we have

s · ŵA(v) ≤ ŵA′(v) ≤ r · ŵA(v) ,
where A′ = A∪{x} \ {y}, and if the number of nonsingletons in v is at most n

4 −|H|,
then

s

2
· ŵH/L,x(v) ≤ ŵH,x/L(v) ≤ 2r · ŵH/L,x(v) .

Proof. Consider the bipartite graph G = (V1, V2, E), where V1 = AH/L,x(v),
V2 = AH,x/L(v), and (A,A′) ∈ E if and only if A ∈ V1, A

′ ∈ V2, and there is a
singleton y ∈ A \H such that A′ = A ∪ {x} \ {y}. For every A ∈ V1, the number of
singletons in A\H is at least (n2 −|H|)− (n4 −|H|) = n

4 and at most n2 . For an up-set
A ∈ V1 ∪ V2, we let w(A) = ŵA(v). Given an edge e = (v1, v2) ∈ E, we let v1(e) = v1
and v2(e) = v2. We now have

n

4
·
∑
v2∈V2

w(v2) ≤
∑
e∈E

w(v2(e)) ≤ r ·
∑
e∈E

w(v1(e)) ≤ r · n
2
·
∑
v1∈V1

w(v1) .

MEDIAN SELECTION REQUIRES (2+ε)n COMPARISONS 321

As ŵH/L,x(v) =
∑
v1∈V1

w(v1) and ŵH,x/L(v) =
∑
v2∈V2

w(v2), we get the right in-
equality in the statement of the lemma. The left inequality is obtained in a similar
manner.

We now complete the presentation of the lower bound by giving proofs of Lem-
mas 6.1–6.3. We note that the arguments used in the proofs of Lemmas 6.1 and 6.2
are similar to arguments used in [DHUZ01]. Most of the new ideas are used in the
proof of Lemma 6.3.

Proof of Lemma 6.1. Suppose, without loss of generality, that drop(A) ⊇ {A ∈
up-set t(v) | b ∈ A} so that b is forced not to belong to all the up-sets A that participate
in the calculation of the score ŵ(v) of v. We therefore get

ŵ(v) = ŵa/b(v) + ŵ/ab(v) ,

ŵ(va>b) ≥ ŵa/b(v) + 1

2
ŵ/ab(v) .

It is easy to see that if A ∈ A/ab(v), s ∈ A is a singleton, and A′ = A∪{a}\{s}, then
ŵA′(v) = ŵA(v). Using Lemma 6.5, we get that ŵ/ab(v) ≤ 2ŵa/b(v). We therefore

immediately get that ŵa/b(v) ≥ 1
3 ŵ(v). Putting this all together, we get that

ŵ(va>b) ≥ ŵa/b(v) +
1
2 ŵ/ab(v) ≥ 1

2 [ŵ(v) + ŵa/b(v)] ≥ 1
2 (1 +

1
3)ŵ(v) .

Thus, the move v → va>b is in fact a 1
3 -good move.

Proof of Lemma 6.2. Assume, without loss of generality, that b < c. It is easy to
see that

ŵ(v) = ŵabc/(v) + ŵa/bc(v) + ŵac/b(v) + ŵbc/a(v) + ŵc/ab(v) + ŵ/abc(v) ,

ŵ(va>b) = 1
2 ŵabc/(v) + ŵa/bc(v) + ŵac/b(v) + 1

2 ŵc/ab(v) + ŵ/abc(v) ,

ŵ(va<b) = 1
2 ŵabc/(v) + ŵbc/a(v) +

1
2 ŵc/ab(v) +

1
2 ŵ/abc(v) .

(The term ŵ/abc(v) appears in ŵ(va>b) with a coefficient of 1 as we mark the non-
critical outcome a > b at va>b with respect to all the up-sets of A/ab(v).) As a
consequence, we get that

ŵ(va>b) ≥ 1
2 ŵ(v) +

1
2 [ŵa/b(v)− ŵb/a(v) + ŵ/abc(v)] ,

ŵ(va<b) ≥ 1
2 ŵ(v) +

1
2 [ŵb/a(v)− ŵa/b(v)] .

By adding these two inequalities, we also get that

1
2 [ŵ(va>b) + ŵ(va<b)] ≥ 1

2 ŵ(v) +
1
4 ŵ/abc(v) .

To proceed, we need the following inequalities.
Proposition 6.6. If a is a singleton at v, and c, where b < c, is the active

neighbor of b at v, then
(i) ŵ/abc(v) ≥ 1

15 ŵ/b(v);

(ii) ŵa/b(v) ≤ 2
3 ŵ/b(v);

(iii) ŵb/a(v) ≥ 1
3 ŵb/(v).

Proof. The proof of these inequalities is similar to the proof of the inequalities of
Lemma 9 of [DHUZ01]. We describe here the proof of (i). The proofs of the other
two inequalities is similar. Using Lemma 6.5, it is easy to see that

ŵa/bc(v) ≤ 2ŵ/abc(v), ŵac/b(v) ≤ 8ŵ/abc(v), ŵc/ab(v) ≤ 4ŵ/abc(v) .

322 DORIT DOR AND URI ZWICK

Thus,

ŵ/b(v) = ŵa/bc(v) + ŵac/b(v) + ŵc/ab(v) + ŵ/abc(v)

≤ 2ŵ/abc(v) + 8ŵ/abc(v) + 4ŵ/abc(v) + ŵ/abc(v)

≤ 15ŵ/abc(v) ,

as required.
We thus have

1
2 [ŵ(va>b) + ŵ(va<b)] ≥ 1

2 ŵ(v) +
1
4 ŵ/abc(v) ≥ 1

2 ŵ(v) +
1
60 ŵ/b(v) ,

ŵ(va<b) ≥ 1
2 ŵ(v) +

1
2 ŵb/a(v)− 1

2 ŵa/b(v) ≥ 1
2 ŵ(v) +

1
6 ŵb/(v)− 1

3 ŵ/b(v) .

As ŵ(v) = ŵb/(v) + ŵ/b(v), and ŵ(v
′) ≥ max{ŵ(va<b), 1

2 [ŵ(va>b) + ŵ(va<b)]}, a
simple calculation shows that ŵ(v′) ≥ 1

2 (1 +
1
93)ŵ(v). The move v → v′ is therefore

a 1
93 -good move.

Proof of Lemma 6.3. We start with the proof of part (ii) that claims that if v is
labeled by the comparison a : b, where a is active and c is the neighbor of a, and if
v → v′ is not ν-good, then ŵ(va<b) ≥ 1

2 (1 − 3ν) ·ŵ(v). We assume, without loss of
generality, that a > c.

Consider at first the weights ŵ(va<b) and ŵ(va>b) after marking all the noncritical
outcomes involving a and c but before dropping any up-sets. Using arguments similar
to those used in the proof of Lemma 6.2, and noting that a > c, we get that

ŵ(va>b) ≥ 1
2 ŵ(v) +

1
2 [ŵa/b(v)− ŵb/a(v) + ŵabc/(v)],

ŵ(va<b) ≥ 1
2 ŵ(v) +

1
2 [ŵb/a(v)− ŵa/b(v)] .

As none of the moves v → va<b and v → va>b is a ν-good move, we get that

−ν ·ŵ(v) ≤ ŵb/a(v)− ŵa/b(v) ≤ ν ·ŵ(v) ,
ŵabc/(v) ≤ 2ν ·ŵ(v) .

We now consider the weight ŵ(va<b) after dropping all the the up-sets that contain c.
If A is an up-set and c ∈ A, then a ∈ A. (Recall that a > c.) The excluded up-sets
are therefore the up-sets of Aabc/(v) ∪ Aac/b(v). As the up-sets of Aac/b(v) are not
up-sets at va<b, we get that

ŵ(va<b) ≥ 1
2 ŵ(v) +

1
2 (ŵb/a(v)− ŵa/b(v)− ŵabc/(v))

≥ 1
2 (1− 3ν)·ŵ(v) .

The move v → va<b is therefore a 3ν-bad move, as required.
We now prove part (i) of Lemma 6.3. All the weights considered now are before

we mark the additional noncritical outcomes and before we drop any up-sets. Let
B(c) denote the set of elements that were compared to c, on the path to the vertex v,
and were found to be larger than c. Note that a ∈ B(c). Consider the three following
sets of up-sets (see Figure 6.2):

B1 = {A | B(c) ∩ Ā �= {a}, a ∈ Ā, b ∈ A} ,
B2 = {A | B(c) ∩ Ā �= ∅, a ∈ A, b ∈ A} ,
B3 = {A | B(c) ⊆ A, c ∈ Ā, b ∈ A} .

MEDIAN SELECTION REQUIRES (2+ε)n COMPARISONS 323

c

x

c

x

aba
B(c)

c

ax

b b

A ∈ B1 A ∈ B2 A ∈ B3

Fig. 6.2. Up-sets from the collections B1,B2 and B3. Elements above the horizontal line belong
to A. Elements below the horizontal line belong to Ā.

The crux of the lower bound proof is the fact that with respect to each up-set of B1

there is at least one noncritical outcome which is still unmarked at v. Indeed, let
A ∈ B1. As B(c) ∩ Ā �= {a}, there is an element x �= a such that x > c and x ∈ Ā
(note the x may depend on A). As a, x ∈ Ā and a > c and x > c, one of the outcomes
a > c and x > c is noncritical. Noncritical outcomes are marked only in Cases B
and C. When we mark a noncritical outcome y > z with respect to an up-set A such
that y, z ∈ Ā, we deactivate the active neighbor of z, if there were one. As c currently
has an active neighbor, namely, a, we get that either the comparison a : c took place
after the comparison x : c, in which case a > c is an unmarked noncritical outcome, or
that the comparison a : c took place before the comparison x : c, in which case x > c
is still an unmarked noncritical outcome. By marking these noncritical outcomes, the
weight of v increases by at least ŵB1(v). As the move v → v′ is not ν-good, we get
that ŵB1(v) ≤ ν ·ŵ(v).

We need the following three propositions. In each one of them we assume that
the number of nonsingletons in v is at most N = n/4.

Proposition 6.7. In Case C, if the move v → v′ is not ν-good, then ŵB2(v) ≤
4ν ·ŵ(v).

Proof. If A ∈ B1, s is a singleton in A, and A′ = A ∪ {a} \ {s}, then A′ ∈ B2 and
ŵA(v) =

1
2 ·ŵA′(v). Using Lemma 6.5 we therefore get that 1

4 ·ŵB2
(v) ≤ ŵB1

(v). As
ŵB1

(v) ≤ ν ·ŵ(v), we get the required inequality.

Proposition 6.8. In Case C, if the move v → v′ is not ν-good, and if the degree
of c, the neighbor of a, is δ, then ŵabc/(v) ≥ 2−(δ+1) ·ŵB3(v).

Proof. If A ∈ B3, s is a singleton in A, and A
′ = A∪{c}\{s}, then A′ ∈ Aabc/(v).

As the degree of c is δ, we get that ŵA′(v) ≥ 2−δ ·ŵA(v) (as all the outcomes x > c,
where x ∈ B(c) may be critical with respect to A′). Using Lemma 6.5 we get the
required inequality.

Proposition 6.9. In Case C, if the move v → v′ is not ν-good, then ŵab/(v) >
1
4 (1− 2ν)·ŵ(v).

Proof. By moving a from A to Ā, or vice versa, we get, using Lemma 6.5, that
ŵb/a(v) ≤ ŵab/(v) and ŵ/ab(v) ≤ ŵa/b(v). Since v → v′ is not a ν-good move, we get
that ŵa/b(v) ≤ ŵb/a(v) + ν ·ŵ(v). Therefore,

ŵ(v) = ŵab/(v) + ŵ/ab(v) + ŵb/a(v) + ŵa/b(v)

324 DORIT DOR AND URI ZWICK

≤ 2·ŵab/(v) + 2·ŵa/b(v)
≤ 4·ŵab/(v) + 2ν ·ŵ(v),

as required.
We now return to the proof of Lemma 6.3(i). It is easy to verify that

ŵab/(v) = ŵB2
(v) + ŵB3

(v) + ŵabc/(v) .

Let δ be the degree of c. We have already shown, in the proof of part (ii), that if
v → va>b is not a ν-good move, then ŵabc/(v) ≤ 2ν · ŵ(v). Combining this with

Proposition 6.8 we get that ŵB3
(v) ≤ ν2δ+2·ŵ(v). Using Proposition 6.7 we therefore

get that

ŵab/(v) = ŵB2
(v) + ŵB3

(v) + ŵaabc/(v)

≤ 4ν ·ŵ(v) + ν2δ+2 ·ŵ(v) + 2ν ·ŵ(v)
= 2ν(2δ+1 + 3)·ŵ(v) .

Using Proposition 6.9, we get that

1

4
(1− 2ν) ≤ 2ν(2δ+1 + 3) .

As ν = 2−70, we get that δ > ∆ = 65. This completes the proof of Lemma 6.3.

7. Concluding remarks. We described an improved method for obtaining lower
bounds for the selection problem. Our method combines leaf counting and adversary
arguments. Although the improvement obtained in the lower bound for median selec-
tion is tiny, we think that it represents an important step towards obtaining further
improved lower bounds for this very interesting and challenging problem.

REFERENCES

[BFP+73] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, Time bounds
for selection, J. Comput. System Sci., 7 (1973), pp. 448–461.

[BJ85] S. W. Bent and J. W. John, Finding the median requires 2n comparisons, in Proceed-
ings of the 17th Annual ACM Symposium on Theory of Computing, Providence,
RI, 1985, pp. 213–216.

[CM89] W. Cunto and J. I. Munro, Average case selection, J. ACM, 36 (1989), pp. 270–279.
[DHUZ01] D. Dor, J. Håstad, S. Ulfberg, and U. Zwick, On lower bounds for selecting the

median, SIAM J. Discrete Math., 14 (2001), pp. 299–311.
[Dor95] D. Dor, Selection Algorithms, Ph.D. thesis, Department of Computer Science, Tel Aviv

University, Tel Aviv, Israel, 1995.
[DZ99] D. Dor and U. Zwick, Selecting the median, SIAM J. Comput., 28 (1999), pp. 1722–

1758.
[DZ96] D. Dor and U. Zwick, Median selection requires (2+ε)n comparisons, in Proceedings

of the 37th Annual Symposium on Foundations of Computer Science, Burlington,
VT, 1996, pp. 125–134.

[FG78] F. Fussenegger and H. N. Gabow, A counting approach to lower bounds for selection
problems, J. ACM, 26 (1978), pp. 227–238.

[FJ59] L. R. Ford and S. M. Johnson, A tournament problem, Amer. Math. Monthly, 66
(1959), pp. 387–389.

[FR75] R. W. Floyd and R. L. Rivest, Expected time bounds for selection, Comm. ACM, 18
(1975), pp. 165–173.

[HL71] F. K. Hwang and S. Lin, Optimal merging of 2 elements with n elements, Acta Inform.,
1 (1971), pp. 145–158.

MEDIAN SELECTION REQUIRES (2+ε)n COMPARISONS 325

[Joh88] J. W. John, A new lower bound for the set-partitioning problem, SIAM J. Comput.,
17 (1988), pp. 640–647.

[Kir74] D. G. Kirkpatrick, Topics in the Complexity of Combinatorial Algorithms, Technical
report 74, University of Toronto, Toronto, Canada, 1974.

[Kir81] D. G. Kirkpatrick, A unified lower bound for selection and set partitioning problems,
J. ACM, 28 (1981), pp. 150–165.

[Kis64] S. S. Kislitsyn, On the selection of the kth element of an ordered set by pairwise
comparisons, Sibirsk. Math. Zh., 5 (1964), pp. 557–564.

[Knu98] D.E. Knuth, Sorting and Searching, Vol. 3 of The Art of Computer Programming,
2nd ed., Addison-Wesley, Reading, MA, 1998.

[MP82] I. Munro and P. V. Poblete, A Lower Bound for Determining the Median, Technical
report CS-82-21, University of Waterloo, Waterloo, Canada, 1982.

[Pat96] M. S. Paterson, Progress in selection, in Proceedings of the Fifth Scandinavian Work-
shop on Algorithm Theory, Reykjav́ık, Iceland, 1996, pp. 368–379.

[Poh72] I. Pohl, A sorting problem and its complexity, Comm. ACM, 15 (1972), pp. 462–464.
[PY73] V. Pratt and F. Yao, On lower bounds for computing the ith largest element, in

Proceedings of the 14th Annual IEEE Symposium on Switching and Automata
theory, 1973, pp. 70–81.

[Sch32] J. Schreier, On tournament elimination systems, Math. Polska, 7 (1932), pp. 154–160
(in Polish).

[SPP76] A. Schönhage, M. Paterson, and N. Pippenger, Finding the median, J. Comput.
System Sci., 13 (1976), pp. 184–199.

[SY80] P. K. Stockmeyer and F. F. Yao, On the optimality of linear merge, SIAM J. Com-
put., 9 (1980), pp. 85–90.

[Tro92] W. T. Trotter, Combinatorics and Partially Ordered Sets: Dimention Theory, The
Johns Hopkins University Press, Baltimore, MD, 1992.

[Yap76] C. K. Yap, New Lower Bounds for Medians and Related Problems, Comput. Sci. Re-
port 79, Yale University, New Haven, CT, 1976.

THE MAXIMUM EDGE-DISJOINT PATHS PROBLEM
IN BIDIRECTED TREES∗

THOMAS ERLEBACH† AND KLAUS JANSEN‡

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 3, pp. 326–355

Abstract. A bidirected tree is the directed graph obtained from an undirected tree by replacing
each undirected edge by two directed edges with opposite directions. Given a set of directed paths
in a bidirected tree, the goal of the maximum edge-disjoint paths problem is to select a maximum-
cardinality subset of the paths such that the selected paths are edge-disjoint. This problem can
be solved optimally in polynomial time for bidirected trees of constant degree but is APX-hard for
bidirected trees of arbitrary degree. For every fixed ε > 0, a polynomial-time (5/3+ε)-approximation
algorithm is presented.

Key words. approximation algorithms, edge-disjoint paths, bidirected trees

AMS subject classifications. 68Q25, 68R10

PII. S0895480199361259

1. Introduction. Research on disjoint paths problems in graphs has a long his-
tory [14]. In recent years, edge-disjoint paths problems have been brought into focus
by advances in the field of communication networks. Many modern network archi-
tectures establish a virtual circuit between sender and receiver in order to achieve
guaranteed quality of service. When a connection request is accepted, the network
must allocate sufficient resources on all links along a path from the sender to the re-
ceiver. Edge-disjoint paths problems are at the heart of the arising resource allocation
problems.

We study the maximum edge-disjoint paths problem (MEDP) for bidirected tree
networks. A bidirected tree is the directed graph obtained from an undirected tree
by replacing each undirected edge by two directed edges with opposite directions.
Bidirected tree networks have been studied intensively because they are a good model
for optical networks with pairs of unidirectional fiber links between adjacent nodes [28,
20, 27, 13, 12, 26, 16].

1.1. Preliminaries. MEDP in bidirected trees is defined as follows. Given a
bidirected tree T = (V,E) and a set P of simple, directed paths in T , the goal is to
find a subset P ′ ⊆ P such that the paths in P ′ are edge-disjoint and the cardinality
of P ′ is maximized. We say that an algorithm is a ρ-approximation algorithm for
MEDP if it always outputs a subset P ′ ⊆ P of edge-disjoint paths whose cardinality
is at least a (1/ρ)-fraction of the cardinality of an optimal solution.

The conflict graph of a set of directed paths in a bidirected tree is an undirected
graph with a vertex for each path and an edge between two vertices if the correspond-
ing paths intersect (i.e., if they share an edge). One can view MEDP in bidirected
trees as a maximum independent set problem in the conflict graph.

∗Received by the editors September 6, 1999; accepted for publication (in revised form) May
21, 2001; published electronically August 3, 2001. A preliminary version of this article has ap-
peared in Proceedings of the Ninth Annual International Symposium on Algorithms and Computa-
tion (ISAAC’ 98), Lecture Notes in Comput. Sci. 1533, Springer-Verlag, Berlin, 1998, pp. 179–188.

http://www.siam.org/journals/sidma/14-3/36125.html
†Computer Engineering and Networks Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland

(erlebach@tik.ee.ethz.ch).
‡Institute of Computer Science and Applied Mathematics, Christian-Albrechts-University of Kiel,

Olshausenstr. 40, D-24098 Kiel, Germany (kj@informatik.uni-kiel.de).

326

EDGE-DISJOINT PATHS IN BIDIRECTED TREES 327

We assume that the given tree is rooted at an arbitrary node. For a node v, we
let p(v) denote the parent of v. The level of a node is then defined as its distance to
the root node. The root has level zero. We say that a path touches a node if it begins
at that node, passes through that node, or ends at that node. The level of a path is
the minimum of the levels of all nodes it touches. The unique node on a path whose
level is equal to the level of the path is the least common ancestor (lca) of the path.
We denote a path that begins at node u and ends at node v by (u, v) and its lca by
lca(u, v).

We will occasionally make use of the following property of bipartite graphs: for
s = 1 or s = 2, the fact that a maximum matching in a bipartite graph G has
cardinality s implies that there are s vertices in G such that every edge is incident to
at least one of these s vertices. (The property holds for arbitrary values of s and is
known as the König theorem [25]; see, e.g., the book by Berge [6, pp. 132–133].)

1.2. Results. First, in section 2, we determine the complexity of MEDP in
bidirected trees: MEDP can be solved optimally in polynomial time in bidirected
trees of constant degree and in bidirected stars, but it is APX-hard in bidirected trees
of arbitrary degree. The main result of this paper is summarized by the following
theorem.

Theorem 1.1. For every fixed ε > 0, there is a polynomial-time approxima-
tion algorithm for the maximum edge-disjoint paths problem in bidirected trees with
approximation ratio 5/3 + ε.

The description of the algorithm and a proof that the claimed approximation
ratio is indeed achieved appear in section 3. In section 4, we discuss how some of our
results can be generalized to the weighted version of the problem and to the maximum
path coloring problem.

1.3. Related work.

Path coloring in bidirected trees. Previous work on bidirected trees has focused
on the path coloring problem: Given a set of directed paths in a bidirected tree, assign
colors to the paths such that paths receive different colors if they share an edge. The
goal is to minimize the total number of colors used. This problem is NP-hard even
for binary trees [11, 26]. The best known approximation algorithms [12, 13] use at
most �5L/3� colors, where L is the maximum load (the load of an edge is the number
of paths using that edge) and thus a lower bound on the optimal solution. Previous
algorithms had used 15L/8 colors [28] and 7L/4 colors [20, 27] in the worst case. For
binary trees, a randomized path coloring algorithm that uses at most 7L/5 colors with
high probability under certain conditions has been obtained [1]. For the special case
of all-to-all path coloring in bidirected trees, it was shown that the optimal number
of colors is equal to the maximum load [16].

Multicommodity flow in trees. Garg, Vazirani, and Yannakakis [15] studied the
integral multicommodity flow problem in undirected trees, which is a generalization
of MEDP in undirected trees. They showed that the problem with unit edge capaci-
ties (equivalent to MEDP in undirected trees) can be solved optimally in polynomial
time. For undirected trees with edge capacities one or two, they proved the problem
MAXSNP-hard. They also presented a 2-approximation algorithm for integral multi-
commodity flow in trees. It works by considering the demands in order of nonincreas-
ing levels of their lcas and by satisfying them greedily. This approximation algorithm
can be adapted to MEDP in bidirected trees, where it also gives a 2-approximation.
The main idea that leads to our improved approximation algorithm for MEDP in

328 THOMAS ERLEBACH AND KLAUS JANSEN

bidirected trees is to consider all paths with the same lca simultaneously instead of
one by one.

On-line algorithms for MEDP in trees. MEDP has also been studied in the on-line
scenario, where the paths are given to the algorithm one by one. The algorithm must
accept or reject each path without knowledge about future requests. Preemption is not
allowed. It is easy to see that no deterministic algorithm can have a competitive ratio
better than the diameter of the tree in this case. Awerbuch et al. gave a randomized
algorithm with competitive ratio O(log n) for undirected trees with n nodes [4]. Their
algorithm also works for bidirected trees. An improved randomized algorithm with
competitive ratio O(log d) for undirected trees with diameter d was given in [5].

MEDP for other topologies. If MEDP is studied for arbitrary graphs, the algo-
rithm must solve both a routing problem and a selection problem. For arbitrary
directed graphs with m edges, MEDP was recently shown to be NP-hard to approxi-
mate withinm1/2−ε [18]. Approximation algorithms with approximation ratio O(

√
m)

are known [22]; see also [24, 30]. Better approximation ratios can be achieved for re-
stricted classes of graphs. For a class of planar graphs containing two-dimensional
mesh networks, an O(1)-approximation algorithm has been devised in [23]. We re-
mark that the techniques we use in this paper are completely different from those
used in [23].

2. Complexity results. First, we prove that MEDP in bidirected trees is APX-
complete. APX is the class of all optimization problems in NPO that admit constant-
factor approximation algorithms. (NPO contains all optimization problems whose
instances and solutions can be recognized in polynomial time, which have solutions of
polynomial size, and for which the objective value of a given solution can be computed
in polynomial time.) APX-hardness implies that there is some δ > 1 such that no
δ-approximation algorithm can exist unless P = NP. In particular, there cannot
be a polynomial-time approximation scheme for an APX-hard problem unless P =
NP. See [2] for further background information concerning complexity classes for
optimization problems, approximation preserving reductions, and a discussion of the
relationship of APX-hardness to the earlier concept of MAXSNP-hardness.

We recall the definition of AP-reducibility from [2].
Definition 2.1. Let P1 and P2 be two optimization problems in NPO. For a

solution y to an instance x of Pi, let ratioPi(x, y) denote the ratio between the value of
an optimal solution to x and the value of y (or the reciprocal of this ratio, whichever
is larger than 1). P1 is called AP-reducible to P2 if two functions f and g and a
positive constant α > 1 with the following properties exist:

(i) For any instance x of P1 and for any rational r > 1, f(x, r) is an instance
of P2.

(ii) For any instance x of P1 and for any rational r > 1, if there is a solution
to x, then there is also a solution to f(x, r).

(iii) For any instance x of P1, for any rational r > 1, and for any solution y
to f(x, r), g(x, y, r) is a solution to x.

(iv) f and g are computable in polynomial time for any fixed rational r.
(v) For any instance x of P1, for any rational r > 1, and for any solution y

to f(x, r), ratioP2(f(x, r), y) ≤ r implies ratioP1(x, g(x, y, r)) ≤ 1 + α(r − 1).
Intuitively, if P1 is AP-reducible to P2, then an r-approximation algorithm for

P2 implies the existence of a (1 + α(r − 1))-approximation algorithm for P1.
Theorem 2.2. MEDP in bidirected trees is APX-complete.
Proof. We present an AP-reduction from the APX-complete maximum three-

EDGE-DISJOINT PATHS IN BIDIRECTED TREES 329

xi,1 xi,2 xi,3

xi,3,1 xi,3,2xi,2,1xi,1,1 xi,2,2xi,1,2

zkyjxi

Fig. 2.1. Construction of the tree for the three-dimensional matching problem.

dimensional matching problem. The reduction is similar to the one used by Garg,
Vazirani, and Yannakakis to prove MAXSNP-hardness of integral multicommodity
flow in undirected trees with edge capacities one and two [15].

An instance of the maximum three-dimensional matching problem is given by
three disjoint sets X,Y, Z with |X| = |Y | = |Z| = n and a set of triples S ⊆ X×Y ×Z.
A matching of S is a subset M ⊆ S such that no two elements of M agree in any
coordinate. The goal is to compute a matching of maximum cardinality. This problem
is known to be APX-complete even if each element of X ∪ Y ∪ Z occurs in at most
three triples in S [21]. In this bounded version of the problem, each triple can intersect
at most six other triples. Then a greedy algorithm that chooses disjoint triples in
arbitrary order will give a matching of cardinality at least |S|/7.

Let an instance I of the maximum three-dimensional matching problem with at
most three occurrences of each element of X ∪Y ∪Z be given as above. The function
f of the AP-reduction is defined by the following construction of an instance I ′ of
MEDP in bidirected trees—it does not depend on r. We create a bidirected tree T of
depth three as follows. The root of T has 3n children: one for each xi ∈ X, one for
each yj ∈ Y , and one for each zk ∈ Z. Each node xi ∈ X has pi children xi,1,. . . ,xi,pi ,
where pi ≤ 3 is the number of occurrences of xi in S. Each xi,j has two children xi,j,1
and xi,j,2. See Figure 2.1 for a sketch of this construction; note that only a small
subset of the nodes of the tree is actually shown there and that pairs of oppositely
directed edges are depicted as undirected edges for the sake of simplicity.

Now, we create a set P of paths in T . Number the occurrences of xi in the triples
of S from 1 to pi arbitrarily. For every triple in S we add three paths to P . Let triple
(xi, yj , zk) contain the lth occurrence of xi in S. Then we add a path from xi,l,1 to
yj , a path from zk to xi,l,2, and a path from xi,l,1 to xi,l,2.

We claim that S contains d disjoint triples if and only if P contains a subset P ′

of at least |S|+d edge-disjoint paths and that d disjoint triples in S can be computed
efficiently from a given subset P ′ ⊆ P of at least |S|+ d edge-disjoint paths.

Assume that S contains d disjoint triples (xi1 , yj1 , zk1),. . . ,(xid , yjd , zkd). Let
triple (xit , yjt , zkt) contain the ltth occurrence of xit . Then the following |S| + d
paths form a set P ′ of edge-disjoint paths: for each t, 1 ≤ t ≤ d, choose the path from
xit,lt,1 to yjt , the path from zkt to xit,lt,2, and pit − 1 paths from xit,l,1 to xit,l,2 for
l ∈ {1, . . . , pit} \ {lt}; for each xi that does not occur in the d disjoint triples, choose
the pi paths from xi,l,1 to xi,l,2 for 1 ≤ l ≤ pi.

Conversely, assume that there is a subset P ′ of P containing |S|+ d edge-disjoint
paths. Note that P ′ can contain at most one path entering the subtree rooted at
xi from above and at most one path leaving the subtree rooted at xi. The only

330 THOMAS ERLEBACH AND KLAUS JANSEN

possibility for P ′ to contain more than pi paths using edges of the subtree rooted at
xi is to contain one path from xi,li,1 to some yj , one path from some zk to xi,li,2, and
pi − 1 paths from xi,l,1 to xi,l,2 for l ∈ {1, 2, . . . , pi} \ {li}. In that case, P ′ contains
pi+1 paths using edges of the subtree rooted at xi. The only way for P

′ to contain at
least |S|+ d paths is that P ′ contains exactly pi + 1 paths using edges of the subtree
rooted at xi for at least d values of i. Then a set of d disjoint triples is obtained by
taking, for each of the d values of i, the triple containing the lith occurrence of xi.

The function g takes as arguments the instance I, a solution P ′ to I ′, and r.
The instance I ′ itself is not an argument of g, but since I ′ can be computed from I
using the function f , we can assume that I ′ is available during the computation of the
function g. The computation of g does not depend on r and is done as follows. First,
a greedy solution M1 to I is computed. Second, a matching M2 is obtained by taking
the triple (xi, yj , zk) for each pair of paths from xi,l,1 to some yj and from some zk to
xi,l,2 that are contained in P ′. Then we take the larger of M1 and M2 as the function
value of g(I, P ′, r). We have |g(I, P ′, r)| = max{|M1|, |M2|}. Furthermore, we have
|M1| ≥ |S|/7 by the remark about the greedy algorithm at the beginning of this proof
and |M2| ≥ |P ′| − |S| by the arguments above.

Properties (i)–(iv) of an AP-reduction are clearly satisfied. It remains to show (v).
Let d∗ be the cardinality of an optimal matching for the original instance I of the
maximum three-dimensional matching problem. Then an optimal solution to the
constructed instance I ′ of MEDP consists of |S| + d∗ paths, as shown above. Note
that |S|/7 ≤ d∗ ≤ |S|. Assume that we have a solution P ′ to I ′ containing at least
(|S|+ d∗)/r paths.

If r ≥ 13/12, we can use |g(I, P ′, r)| ≥ |M1| ≥ |S|/7 ≥ d∗/7 to show that (v) holds
with α = 72, since 7 ≤ 1 + 72(r − 1) in this case. Therefore assume that r < 13/12.
If |P ′| ≥ (|S|+ d∗)/r, we get

|P ′| ≥ |S|+ (r − 1)|S|+ d∗ − (r − 1)|S|
r

= |S|+ d∗ − (r − 1)|S|
r

≥ |S|+ d∗
r

1−7(r−1)

,

where the last inequality used |S| ≤ 7d∗. Thus we have |g(I, P ′, r)| ≥ |M2| ≥ |P ′| −
|S| ≥ (1− 7(r − 1))d∗/r. For 1 < r < 13/12 we get

r

1− 7(r − 1) =
r

8− 7r = 1 +
8

8− 7r (r − 1) ≤ 1 + 19.2(r − 1) < 1 + 72(r − 1).

Again, (v) holds with α = 72. Therefore, the reduction is indeed an AP-reduction,
and we have proved that MEDP in bidirected trees is APX-hard. Since MEDP in
bidirected trees is contained in APX by our main result (Theorem 1.1), we get that
the problem is APX-complete.

Nevertheless, MEDP can be solved optimally in polynomial time if the input
is restricted in certain ways. First, consider the case that the maximum degree of
the given tree is bounded by a constant. The optimal solution can be computed by
dynamic programming in this case. We process the nodes of the tree in order of
nonincreasing levels. At every node v, we record for each possible subset S of edge-
disjoint paths touching v and its parent (note that |S| ≤ 2) the maximum number of
paths contained in the subtree rooted at v that can be accepted in addition to the
paths in S. Node v is processed only when these values are known for all its children.
We can then enumerate all possible edge-disjoint subsets of paths touching v. For
each such subset, we can look up the corresponding values stored at children of v
and update the values stored at v accordingly. Note that there are only polynomially

EDGE-DISJOINT PATHS IN BIDIRECTED TREES 331

x2 x3 x4

x1
x1

x2

x3

x4

X1

X2

X3

X4

Fig. 2.2. Reducing MEDP in a star to bipartite matching.

many subsets to consider at each node. When the root node has been processed, the
optimal solution can easily be constructed.

Another special case that can be solved optimally in polynomial time is the case
that the given bidirected tree T is a star, i.e., it contains only one node with degree
greater than one. MEDP in bidirected stars can be reduced to the maximum matching
problem in a bipartite graph as follows. (See Figure 2.2 for an example, in which a
subset of edge-disjoint paths and the corresponding matching in the bipartite graph
are drawn with dashed lines.) First, we can assume without loss of generality that
every given path uses exactly two edges of the star; if a path uses only one edge, we can
add a new node to the star and extend the path by one edge without changing the set
of solutions. Now, observe that every path uses exactly one edge directed towards the
center and one edge directed away from the center of the star. Construct a bipartite
graph G by including a vertex for every edge of the star and by adding an edge between
two vertices u and v in G for every path in T that uses the edges corresponding to u
and v. Two paths in T are edge-disjoint if and only if the corresponding edges in G
do not share an endpoint. Sets of edge-disjoint paths in T correspond to matchings
in G. A maximum matching in G can be computed in polynomial time [19].

The latter result can actually be generalized from stars to spiders. A spider is a
bidirected tree in which at most one node (the center) has degree greater than two.
MEDP in a bidirected spider can be solved in polynomial time using an algorithm
for the maximum-weight bipartite matching problem as a subroutine. The bipartite
graph G is constructed as above from the paths touching the center of the spider, and
the weight of an edge e in G specifies how many fewer paths not touching the center
of the spider can be accepted if the path corresponding to e is accepted. The details
are left to the reader.

3. Approximating the optimal solution. Fix any ε > 0. We assume that
ε ≤ 1/3 because otherwise 5/3 + ε > 2 and the simple bottom-up greedy algorithm
derived from [15] achieves approximation ratio 2 already. Let an instance of the
maximum edge-disjoint paths problem be given by a bidirected tree T and a set P
of directed paths in T . Denote by P ∗ an arbitrary optimal solution for the given
instance.

The algorithm proceeds in two passes. In the first pass, it processes the nodes
of T in order of nonincreasing levels (i.e., bottom-up). Assume that the algorithm

332 THOMAS ERLEBACH AND KLAUS JANSEN

is about to process node v. Let Pv denote the subset of all paths (u,w) ∈ P with
lca(u,w) = v that do not intersect any of the paths that have been accepted by the
algorithm at a previous node and that do not use any edges that have been reserved or
fixed by the algorithm (see below). For the sake of simplicity, we can assume without
loss of generality that we have u �= v �= w for all paths (u,w) ∈ Pv; otherwise, we
could add an additional child to v for each path in Pv starting or ending at v and
make the path start or end at this new child instead. Every path p ∈ Pv uses exactly
two edges incident to v, and we refer to these two edges as the top edges of p. We say
that two paths (u1, w1) and (u2, w2) with lca v are equivalent if they use the same
two edges incident to v, i.e., if their top edges are the same. For a set Q of paths with
the same lca, this defines a partition of Q into different equivalence classes of paths
in the natural way.

While the algorithm processes node v, it tries to determine for the paths in Pv
whether they should be included in the solution (these paths are called accepted)
or should not (these paths are called rejected). Sometimes, however, the algorithm
cannot make this decision right away. In these cases the algorithm will leave some
paths in an intermediate state and resolve them later on. The possibilities for paths
in such intermediate states are

(i) undetermined paths,
(ii) groups of deferred paths,
(iii) groups of exclusive paths, and
(iv) groups of 2-exclusive paths.

We refer to undetermined paths and to paths in groups of exclusive paths and in
groups of 2-exclusive paths as unresolved paths and to paths in groups of deferred paths
as deferred paths. The status of unresolved paths is resolved at later nodes during the
first pass. The second pass of the algorithm proceeds top-down and accepts one path
from each group of deferred paths.

3.1. Paths in intermediate states. In the following we give explanations re-
garding the possible groups of paths in intermediate states. First, the algorithm will
sometimes leave a single path p of Pv in an undetermined state. If Pv has only one
equivalence class of paths, accepting a path p ∈ Pv might cause the algorithm to
miss the chance of accepting two paths of smaller level (than v) later on. Hence, the
algorithm could at best achieve a 2-approximation. Therefore, instead of accepting or
rejecting the paths in Pv right away, the algorithm picks one of them and makes it an
undetermined path. All other paths in Pv, if any, are rejected, and the undetermined
path will be accepted or rejected at a later node.

A second situation in which the algorithm does not accept or reject all paths in Pv
right away is sketched in Figure 3.1. (Here and in the following, pairs of oppositely
directed edges are drawn as undirected edges in all figures.) In this situation, the
algorithm decides to accept one of several intersecting paths from Pv, but it defers
the decision of which one of them to accept. The intersecting paths are called a group
of deferred paths. All paths in a group of deferred paths use the same edge incident
to v and to a child c of v. In the figure, this is the edge (c, v). (The case that the
deferred paths share the edge (v, c) is symmetrical.) Furthermore, each deferred path
also uses an edge (v, c′) connecting v and a child c′ �= c, and not all of the deferred
paths use the same such edge. If the algorithm decides to create a new group of
deferred paths, it marks the edge (c, v) as reserved (ensuring that no path accepted
at a node processed after v can use the edge) but leaves all edges (v, c′) for children
c′ �= c available. The reserved edge is indicated by a dashed arrow in Figure 3.1. The

EDGE-DISJOINT PATHS IN BIDIRECTED TREES 333

e

v

c

p()v

Fig. 3.1. A group of deferred paths.

v

p()v

c
p

q

c

v

p()v

Fig. 3.2. Possible configuration of a group of exclusive paths (left-hand side), and a situation
in which both exclusive paths are blocked (right-hand side).

motivation for introducing groups of deferred paths is as follows: first, the reserved
edge blocks at most one path of smaller level that could be accepted in an optimal
solution; second, no matter which path using the edge (p(v), v) is accepted at a node
processed after v, that path uses at most one of the edges (v, c′), and as there is still
at least one deferred path that does not use that particular edge (v, c′), the algorithm
can pick such a deferred path in the second pass. When processing later nodes during
the first pass, the algorithm actually treats the group of deferred paths like a single
accepted path that uses only the reserved edge of the deferred paths.

A group of exclusive paths is sketched in Figure 3.2 (left-hand side). Such a group
consists of one path q (called the lower path) contained in the subtree rooted at a
child c of v and one path p (called the higher path) with lca v that intersects q. At
most one of the two paths can be accepted, but if the algorithm picks the wrong one
this choice can cause the algorithm to accept only one path, while the optimal solution
would accept the other path and one or two additional paths. Hence, the algorithm
defers the decision of which path to accept until a later node. For now, it marks only
the top edge of path q that is intersected by p as fixed. (Fixed edges are indicated by
dotted arrows in our figures.) Obviously, a group of exclusive paths has the following
property.

334 THOMAS ERLEBACH AND KLAUS JANSEN

v

Fig. 3.3. Group of 2-exclusive paths consisting of a pair of independent groups of exclusive paths.

Property (E). If at most one path touching v but not using the fixed edge is
accepted at a later node, either p or q can still be accepted. Only when two paths
touching v are accepted at a later node can they block p and q from being accepted.

The right-hand side of Figure 3.2 shows how two paths accepted at a later node
can block both exclusive paths. While processing later nodes, the algorithm will try
to avoid this whenever possible.

The last types of unresolved paths are sketched in Figures 3.3 and 3.4. These
groups of 2-exclusive paths consist of a set of four paths at most two of which can be
accepted. More precisely, the first possibility for a group of 2-exclusive paths is to
consist of two independent groups of exclusive paths (Figure 3.3), i.e., of two groups
of exclusive paths such that the fixed edge of one group is directed towards the root
and the fixed edge of the other group is directed towards the leaves. Furthermore,
the two groups must either be contained in disjoint subtrees (as shown in Figure 3.3)
or have only their lower paths contained in disjoint subtrees and their higher paths
not intersecting each other. A pair of independent groups of exclusive paths has two
fixed edges: the fixed edges of both groups.

The second possibility for a group of 2-exclusive paths is to consist of a group of
exclusive paths contained in a subtree rooted at a child of v and two paths p1 and p2

with lca v that intersect the exclusive paths (but not their fixed edge) in a way such
that accepting p1 and p2 would block both of the exclusive paths from being accepted
(Figure 3.4). Two edges are marked fixed, namely, the top edge of the higher exclusive
path intersected by a path with lca v and the top edge of the lower exclusive path
intersected by a path with lca v. It is not difficult to show by case analysis that a
group of 2-exclusive paths has the following property.

Property (2E). If at most one path touching v but not using a fixed edge is
accepted at a later node, two paths from the group of 2-exclusive paths can still be
accepted. If two paths touching v but not using a fixed edge are accepted at a later
node, at least one path from the group of 2-exclusive paths can still be accepted.

While processing later nodes, the algorithm will try to avoid accepting two paths
touching v such that only one path from the group of 2-exclusive paths can be ac-
cepted.

3.2. Invariants. In section 3.4 we will present the details of how the algorithm
proceeds during the first pass. At the same time, we will show that the approximation
ratio achieved by the algorithm is 5/3+ ε. In order to establish this, we will prove by

EDGE-DISJOINT PATHS IN BIDIRECTED TREES 335

v

p
2

p
1

p
1

p

v

2

Fig. 3.4. Further configurations of groups of 2-exclusive paths.

induction that the following invariants can be maintained throughout the first pass.
These invariants hold before the first node of T is processed, and they hold again
each time an additional node of T has been processed. A node v is called a root of a
processed subtree if the node v has already been processed but its parent has not.

Invariant A. For every root v of a processed subtree, all paths in that subtree
are accepted, rejected, or deferred except if one of the following cases occurs:

(i) The subtree contains one undetermined path. All other paths contained in
the subtree are accepted, rejected, or deferred. No edge in the subtree is marked fixed.

(ii) The subtree contains one group of exclusive paths. All other paths contained
in the subtree are accepted, rejected, or deferred. The only edge marked fixed in the
subtree is the one from the group of exclusive paths.

(iii) The subtree contains one group of 2-exclusive paths. All other paths con-
tained in the subtree are accepted, rejected, or deferred. The only edges marked fixed
in the subtree are the two from the group of 2-exclusive paths.
All accepted paths are edge-disjoint and do not contain any reserved edges. Every un-
resolved path is edge-disjoint from all accepted paths and does not contain any reserved
edges. Every deferred path contains exactly one reserved edge: the reserved edge of
the group of deferred paths to which the path belongs. If a deferred path p intersects
an accepted or unresolved path q, then the level of q is smaller than that of p.

Invariant B. Let A be the set of all paths that have already been accepted by the
algorithm. Let F be the set of all paths in P whose lca has not yet been processed
and which are not blocked by any of the accepted paths, by reserved edges, or by fixed
edges. Let d be the number of groups of deferred paths that are contained in processed
subtrees. Let U be the set of all undetermined paths. Let X be the union of all groups of
exclusive paths and groups of 2-exclusive paths. Then there is a subset O ⊆ F ∪U ∪X
of edge-disjoint paths satisfying the following conditions:

(a) |P ∗| ≤ (5/3 + ε)(|A|+ d) + |O|.
(b) For every group of exclusive paths, O contains one path from that group; for

every group of 2-exclusive paths, O contains two paths from that group.
Intuitively, the set O represents a subset of P containing edge-disjoint paths that

could still be accepted by the algorithm and that has the following property: if the
algorithm accepts at least a 1/(5/3+ ε)-fraction of the paths in O (in addition to the
paths it has already accepted), its output is a (5/3+ ε)-approximation of the optimal
solution.

Observe that the invariants are satisfied initially with A = ∅, d = 0, F = P ,

336 THOMAS ERLEBACH AND KLAUS JANSEN

U = ∅, X = ∅, and O = P ∗. While it will be easy to see from the description of
the algorithm that Invariant A is indeed maintained throughout the first pass, special
care must be taken to prove that Invariant B is maintained as well.

3.3. The second pass. If the invariants are satisfied after the root node is
processed, we have F = ∅, O ⊆ U ∪X, and |P ∗| ≤ (5/3 + ε)(|A| + d) + |O|. At this
time, there can still be one undetermined path (which can, but need not be contained
in O: therefore, |O| ∈ {0, 1} in this case), one group of exclusive paths (from which
O contains exactly one path, |O| = 1), or one group of 2-exclusive paths (from which
O contains two edge-disjoint paths, |O| = 2). If there is an undetermined path, the
algorithm accepts it. If there is a group of exclusive paths, the algorithm accepts one
of them arbitrarily. If there is a group of 2-exclusive paths, the algorithm accepts two
edge-disjoint paths of them arbitrarily. The algorithm accepts at least |O| additional
paths in this way, and the resulting set A′ of accepted paths satisfies |A′| ≥ |A|+ |O|
and, therefore, |P ∗| ≤ (5/3 + ε)(|A′|+ d).

In the second pass, the algorithm processes the nodes of the tree in reverse order,
i.e., according to nondecreasing levels (top-down). At each node v that is the lca of
at least one group of deferred paths, it accepts one path from each of the groups of
deferred paths such that these paths are edge-disjoint from all previously accepted
paths and from each other. This can always be done due to the definition of groups
of deferred paths. Hence, the number of paths accepted by the algorithm increases
by d in the second pass, and the set A′′ of paths that are accepted by the algorithm in
the end satisfies |A′′| = |A′|+ d and, therefore, |P ∗| ≤ (5/3+ ε)|A′′|. This establishes
Theorem 1.1.

3.4. Details of the first pass. Assume that the algorithm is about to process
node v. Recall that Pv ⊆ P is the set of all paths with lca v that do not intersect
any previously accepted path nor any fixed or reserved edge. Let Uv be the set of
undetermined paths contained in subtrees rooted at children of v. Let Xv be the set
of all paths in groups of exclusive paths and groups of 2-exclusive paths contained
in subtrees rooted at children of v. In the following, we explain how the algorithm
processes node v and determines which of the paths in Pv∪Uv∪Xv should be accepted,
rejected, deferred, or left (or put) in an unresolved state.

Observe that for a given set of paths with lca v the problem of determining a
maximum-cardinality subset of edge-disjoint paths is equivalent to solving MEDP in
a star and can thus be done in polynomial time by computing a maximum matching
in a bipartite graph (cf. section 2). Whenever we use an expression like compute a
maximum number of edge-disjoint paths in S ⊆ Pv in the following, we imply that
the computation should be carried out by employing this reduction to maximum
matching.

Observe that each child of the current node v is the root of a processed subtree,
which can, by Invariant A, contain at most one of the following: one undetermined
path, or one group of exclusive paths, or one group of 2-exclusive paths. Let k be
the number of children of v that have an undetermined path in their subtree, let 0 be
the number of children of v that have a group of exclusive paths, and let m be the
number of children of v that have a group of 2-exclusive paths. We use the expression
subtrees with exclusive paths to refer to all subtrees rooted at children of v with either
a group of exclusive paths or with a group of 2-exclusive paths.

Note that one main difficulty lies in determining which of the paths in Uv ∪Xv

should be accepted and which should be rejected. If k + 0 + 2m is bounded by a
constant (this will be Case 1), all possible combinations of accepting and rejecting

EDGE-DISJOINT PATHS IN BIDIRECTED TREES 337

paths in Uv ∪ Xv can be tried out in polynomial time, but if k + 0 + 2m is large
(this will be Case 2), the algorithm must proceed in a different way in order to make
sufficiently good decisions. The exact threshold for determining when k + 0 + 2m is
considered large and, consequently, the running-time of the algorithm, depend on the
constant ε.

Let F , U , X, A, and d denote the quantities defined in section 3.2 at the instant
just before the algorithm processes node v. Let F ′, U ′, X ′, A′, and d′ denote the
respective quantities right after node v is processed. Furthermore, denote by av the
number of paths that are newly accepted while processing v and by dv the number of
groups of deferred paths that are newly created while processing v.

We can assume that there is a set O ⊆ F ∪U ∪X of edge-disjoint paths satisfying
conditions (a) and (b) of Invariant B before v is processed. In every single case of the
following case analysis, we show how to construct a set O′ that satisfies Invariant B
after v is processed. O′ is obtained from O by replacing paths, removing paths,
or inserting paths as required. In particular, O′ must be a set of edge-disjoint paths
satisfying O′ ⊆ F ′∪U ′∪X ′. Therefore, all paths intersecting a newly accepted path or
the reserved edge of a newly created group of deferred paths must be removed from O.
Note that at most two such paths can have a smaller level than v because all such paths
of smaller level must use the edge (v, p(v)) or (p(v), v). Paths that are rejected by the
algorithm must be removed or replaced in O. If a new group of exclusive paths or
group of 2-exclusive paths is created, O′ must contain one or two paths, respectively,
from that group so that condition (b) of Invariant B is maintained. Furthermore, we
must ensure that |O′| is smaller than |O| by at most (53+ε)(av+dv). As the value |A|+d
increases by av + dv while v is processed (i.e., we have |A′|+ d′ = |A|+ d+ av + dv),
this implies that condition (a) of Invariant B also holds after v is processed, i.e.,
|P ∗| ≤ (5/3 + ε)(|A′|+ d′) + |O′|.

3.4.1. Case 1: Few subtrees with unresolved paths. This case applies if
k + 0 + 2m ≤ 2

ε . Before we go into the details, we give a brief outline of the various
subcases that we consider and how we handle them. First, we can afford to compute
the cardinality s of a largest set of edge-disjoint paths in Pv ∪ Uv ∪Xv in this case.
Note that s ≥ k + 0 + 2m. If s = 0, there is nothing to do at this node. If s = 1 or
s = 2, we are in Case 1.1 or Case 1.2 and distinguish the subcases shown in Table 3.1.
In Case 1.1, with s = 1, we can never accept a path because this might block two
paths considered later. Therefore, we can create only undetermined paths, groups
of exclusive paths, or groups of deferred paths. In Case 1.2, with s = 2, there must
be two edges e1 and e2 incident to v such that all paths in Pv intersect e1 or e2.
Furthermore, there is only a small number of different possibilities of how paths in
Pv can intersect unresolved paths in subtrees under v. Therefore, we can consider all
possible configurations in each of the subcases. For each configuration, we accept two
paths (or create groups of deferred paths) if we can ensure that this blocks at most
three paths from O. If four paths could be blocked (which is the maximum possible
if s = 2), we create a group of 2-exclusive paths instead and argue that the invariants
are still satisfied. If s ≥ 3, we can accept all s paths since this blocks at most two
paths from O of smaller level, and thus it suffices to remove at most s + 2 ≤ (5/3)s
paths from O.

Now we give the details of the analysis of Case 1.

Case 1. k+ 0+2m ≤ 2
ε . The algorithm can try out all combinations of accepting

or rejecting unresolved paths in the subtrees rooted at children of v: for undetermined
paths there are two possibilities (accepting or rejecting the path), for groups of ex-

338 THOMAS ERLEBACH AND KLAUS JANSEN

Table 3.1
Outline of subcases of Cases 1.1 and 1.2.

Case k
 m Action
1.1.1 0 0 0 Create undetermined path or group of deferred paths.
1.1.2 1 0 0 Do nothing (if Pv = ∅), or create group of exclusive paths.
1.1.3 0 1 0 Do nothing (must have Pv = ∅).
1.2.1 0 0 1 Do nothing (must have Pv = ∅).
1.2.2 0 2 0 Accept lower paths of both groups of exclusive paths, or create group

of 2-exclusive paths.
1.2.3 1 1 0 Accept undetermined path and lower path of group of exclusive paths,

or create group of 2-exclusive paths.
1.2.4 0 1 0 Accept two paths, or accept one path and create a group of deferred

paths, or create a group of 2-exclusive paths.
1.2.5 0 0 0 Accept two paths, or accept one path and create one group of deferred

paths, or create two groups of deferred paths.
1.2.6 1 0 0 Accept undetermined path and accept a disjoint path or create a group

of deferred paths, or accept two paths (or create groups of deferred
paths) in Pv .

1.2.7 2 0 0 Accept both undetermined paths, or create group of 2-exclusive paths.

clusive paths there are two possibilities (accepting the lower path or accepting the
higher path), and for groups of 2-exclusive paths there are either four possibilities (in
the case of a pair of independent groups of exclusive paths as shown in Figure 3.3:
accepting the lower or higher path in one group and the lower or higher path in the
other group) or two relevant possibilities (in the cases shown in Figure 3.4: accepting
the lower or higher path of the group of exclusive paths contained in the group of
2-exclusive paths and the edge-disjoint path among the remaining two paths; note
that accepting no path of the group of exclusive paths and only the remaining two
paths blocks more paths from F than any of the other two possibilities; hence we
do not need to consider this third possibility) of accepting two edge-disjoint paths of
the group. Hence, the number of possible combinations is bounded from above by
2k+�4m = 2k+�+2m ≤ 41/ε = O(1). For each combination γ, the algorithm computes
a maximum number sγ of edge-disjoint paths in Pv not intersecting any of the uγ
paths from Uv ∪Xv that are (tentatively) accepted for this combination. Let s be the
maximum of uγ + sγ , taken over all combinations γ. Note that s is the cardinality of
a maximum-cardinality subset of edge-disjoint paths in Pv ∪ Uv ∪ Xv. If s = 0, we
have k = 0 = m = 0 and Pv = ∅, and the algorithm does nothing and proceeds with
the next node. Otherwise, we distinguish the following cases.

Case 1.1. s = 1. As s ≥ k + 0+ 2m, s = 1 implies m = 0 and k + 0 ≤ 1.
Case 1.1.1. k = 0 = m = 0. If Pv has only one equivalence class of paths, pick

one path, say, p, arbitrarily and make it an undetermined path. (Hence, X ′ = X and
U ′ = U ∪ {p}.) Reject all other paths in Pv. If O contains a path p′ �= p from Pv,
replace p′ by p in O to obtain O′ (in order to ensure O′ ⊆ F ′ ∪U ′ ∪X ′); otherwise let
O′ = O. We have av = dv = 0 and |O| = |O′|. Obviously, the invariants are satisfied.

If Pv has more than one equivalence class of paths, there must be an edge e
incident to v that is shared by all paths in Pv (as a consequence of the König theorem).
Make Pv a group of deferred paths with reserved edge e. We have av = 0 and dv = 1.
O can contain at most one path intersecting edge e: either a path from Pv or a path of
smaller level. It suffices to remove this path from O in order to obtain a valid set O′,
and we get |O| − |O′| ∈ {0, 1}. Thus, |O| − |O′| ≤ (5/3 + ε)(av + dv) holds, and the
invariants are satisfied.

EDGE-DISJOINT PATHS IN BIDIRECTED TREES 339

Case 1.1.2. k = 1, 0 = m = 0. There is one child c of v that has an undetermined
path p with lca w in its subtree, possibly w = c. If Pv = ∅, the algorithm does nothing
and leaves p in its undetermined state. If Pv �= ∅, all paths in Pv must intersect p in
the same edge, say, in the edge (u,w) with w = p(u). (The case that they intersect p in
an edge (w, u) is symmetrical.) The algorithm picks an arbitrary path q from Pv and
makes {p, q} a group of exclusive paths with fixed edge (u,w). (Hence, X ′ = X∪{p, q}
and U ′ = U \ {p}.) All other paths in Pv are rejected, and we have av = dv = 0. We
must ensure that O′ contains p or q in order to satisfy condition (b) of Invariant B.
If O does not contain any path from Pv ∪ Uv, by Property (E) either p or q can be
inserted into O after removing at most one path of smaller level. If O contains a path
p′ from Pv ∪ Uv already, this path can be replaced by p or q if p′ �= p, q. We have
|O| ≤ |O′| ≤ |O|+ 1, and the invariants are satisfied.

Case 1.1.3. k = m = 0, 0 = 1. There is one child of v that has a group of
exclusive paths in its subtree. As any path from Pv could be combined with a path
from the group of exclusive paths to obtain two edge-disjoint paths and because we
have assumed s = 1, we must have Pv = ∅. Hence, the algorithm does nothing at
node v and leaves the group of exclusive paths in its intermediate state.

Case 1.2. s = 2. Observe that k + 0 + 2m ≤ s = 2. In many of the subcases of
Case 1.2, the algorithm will yield av + dv = 2. If O contains at most one path from
Pv ∪ Uv ∪ Xv, removing that path and at most two paths of smaller level is clearly
sufficient to obtain a valid set O′ in such subcases. Therefore, we do not repeat this
argument in every relevant subcase; instead, we discuss only the case that O contains
two paths from Pv ∪ Uv ∪Xv.

Case 1.2.1. m = 1, k = 0 = 0. There is a subtree rooted at a child of v that
contains a group of 2-exclusive paths. We must have Pv = ∅ because any path in Pv
could be combined with two paths from Xv to form a set of three edge-disjoint paths.
Hence, the algorithm does nothing at node v and leaves the group of 2-exclusive paths
in its unresolved state.

Case 1.2.2. 0 = 2, k = m = 0. There are two children of v whose subtrees contain
a group of exclusive paths. Note that s = 2 implies Pv = ∅ in this case, as any path
from Pv could be combined with one exclusive path from each subtree to obtain a set
of three edge-disjoint paths.

If the fixed edges of both groups of exclusive paths point in the same direction
(i.e., are both directed to the root or to the leaves), the algorithm accepts the lower
paths of both groups of exclusive paths. The higher paths are rejected, and no edge is
marked fixed anymore. We have av = 2 and dv = 0, and at most three paths must be
removed from O to obtain a valid set O′: the two paths from the groups of exclusive
paths that are contained in O and at most one path of smaller level using the edge
between v and p(v) whose direction is opposite the direction of the formerly fixed
edges.

If the fixed edges of the groups of exclusive paths point in different directions (i.e.,
one is directed towards the root and one towards the leaves), the groups represent a
pair of independent groups of exclusive paths, and the algorithm can create a new
group of 2-exclusive paths. Note that O contains two paths from the new group of
2-exclusive paths already because it contained one path from each of the two groups
of exclusive paths in Xv due to condition (b) of Invariant B. Therefore, we can set
O′ = O, and the invariants are satisfied.

Case 1.2.3. k = 0 = 1, m = 0. There is one child of v that has a group of exclusive
paths in its subtree and one child of v that has an undetermined path in its subtree.

340 THOMAS ERLEBACH AND KLAUS JANSEN

v

e

v

Fig. 3.5. Case 1.2.3.1: Pv contains two edge-disjoint paths (left-hand side); Case 1.2.3.2(a):
The fixed edge and e have the same direction (right-hand side).

All paths in Pv must intersect the undetermined path because otherwise a path from
Pv could be combined with the undetermined path and an exclusive path to obtain a
set of three edge-disjoint paths.

Case 1.2.3.1. There are two edge-disjoint paths in Pv. In this case, the situation
must be as shown on the left-hand side of Figure 3.5: the two edge-disjoint paths
from Pv must intersect the group of exclusive paths in a way that blocks all exclusive
paths from being accepted, and there cannot be any other kinds of paths in Pv.

The algorithm accepts the lower path from the group of exclusive paths and the
undetermined path, and it rejects all other paths in Pv ∪ Xv. No edge is marked
fixed anymore. We have av = 2 and dv = 0. Note that any combination of two
edge-disjoint paths from Pv∪Uv∪Xv blocks at least three of the four top edges of the
paths accepted by the algorithm. Hence, if O contains two paths from Pv ∪ Uv ∪Xv,
it can contain at most one path of smaller level intersecting the paths accepted by
the algorithm, and it suffices to remove at most three paths from O to obtain a valid
set O′.

Case 1.2.3.2. Pv �= ∅ and all paths in Pv intersect the same edge e of the unde-
termined path.

Case 1.2.3.2(a). The direction of e is the same as that of the fixed edge of the
group of exclusive paths (see the right-hand side of Figure 3.5). The algorithm accepts
the undetermined path and the lower path from the group of exclusive paths. All other
paths in Pv ∪Xv are rejected, and no edge is marked fixed anymore. We have av = 2
and dv = 0. If O contains two paths from Pv ∪ Uv ∪ Xv, these paths also use the
fixed edge and the edge e, and at most one further path from O can be blocked by
the paths accepted by the algorithm (because such a path must use the edge between
v and p(v) in the direction opposite the direction of e). Thus, it suffices to remove at
most three paths from O to obtain a valid set O′.

Case 1.2.3.2(b). The direction of e is different from that of the fixed edge, and
there is a path p ∈ Pv that does not intersect the higher exclusive path (see the
left-hand side of Figure 3.6). The algorithm uses Xv, p and the undetermined path
together to create a new group of 2-exclusive paths consisting of a pair of independent
groups of exclusive paths. All other paths in Pv are rejected by the algorithm. In
addition to the fixed edge of the old group of exclusive paths, the edge e is marked

EDGE-DISJOINT PATHS IN BIDIRECTED TREES 341

e

v

e

v

Fig. 3.6. Cases 1.2.3.2(b) and 1.2.3.2(c): The fixed edge and e have different directions.

fixed. Note that O contains one path from Xv due to condition (b) of Invariant B. If
O contains the undetermined path or the path p, let O′ = O. If O contains a path
other than p from Pv, replace this path by p or by the undetermined path. (One of
these must be possible.) If O does not contain a path from Pv ∪ Uv but contains a
path p′ using the edge between v and p(v) in the direction given by edge e, replace
p′ either by p or by the undetermined path (one of the two must be possible). If O
does not contain a path from Pv ∪Uv and no path using the edge between v and p(v)
in the direction given by edge e, add either p or the undetermined path to O. In any
case, the invariants are satisfied. In particular, |O′| ≥ |O|.

Case 1.2.3.2(c). The direction of e is different from that of the fixed edge, and all
paths in Pv intersect the higher exclusive path. (See the right-hand side of Figure 3.6.)
The algorithm accepts the undetermined path and the lower path from the group of
exclusive paths, and it rejects all other paths from Pv ∪Xv. No edge is marked fixed
anymore. We have av = 2 and dv = 0. If O contains two paths from Pv ∪Uv ∪Xv, it
must contain at least one of the two paths accepted by the algorithm, and the other
path in O uses a top edge of the other path accepted by the algorithm. O contains at
most one path of smaller level intersecting the paths accepted by the algorithm, and
it suffices to remove at most three paths from O in order to obtain a valid set O′.

Case 1.2.3.3. Pv = ∅. The algorithm accepts the undetermined path and the
lower path from the group of exclusive paths, and it rejects all other paths in Pv∪Xv.
No edge is marked fixed anymore. We have av = 2 and dv = 0. Any combination
of two edge-disjoint paths from Pv ∪ Uv ∪ Xv blocks at least three of the four top
edges of the paths accepted by the algorithm. Hence, if O contains two paths from
Pv ∪ Uv ∪Xv, it can contain at most one path of smaller level intersecting the paths
accepted by the algorithm, and it suffices to remove at most three paths from O to
obtain a valid set O′.

Case 1.2.4. 0 = 1, k = m = 0. There is one child c of v that has a group of
exclusive paths in its subtree. Denote the higher and the lower path in the group of
exclusive paths by p and q, respectively. Assume without loss of generality that the
fixed edge e′ of the group of exclusive paths is directed towards the root of the tree
(as shown in Figure 3.7). Note that s = 2 implies Pv �= ∅. We distinguish further
cases regarding the maximum number of edge-disjoint paths in Pv.

Case 1.2.4.1. There are two edge-disjoint paths p1 and p2 in Pv. As s = 2, p1

and p2 must intersect the exclusive paths in a way that blocks all of them from being

342 THOMAS ERLEBACH AND KLAUS JANSEN

2e

2
p

1e

e’
q

v

p

1
p c c’’ c’

p

e’ 2e

1e

2

q

v

p

1
p

p’

c c’’ c’

Fig. 3.7. Case 1.2.4.1: Pv contains two edge-disjoint paths that block the exclusive paths.

accepted. See Figure 3.7. Let p1 intersect p, and let p2 intersect q. Let c
′ �= c be the

child of v such that p1 uses the edges (c, v) and (v, c
′), and let c′′ �= c be the child of v

such that p2 uses the edges (c
′′, v) and (v, c). Note that c′ = c′′ is possible. Let the

top edge of p intersected by p1 be e1, and let the top edge of q intersected by p2 be e2.
As Pv ∪Xv contains only two edge-disjoint paths, every path p′ ∈ Pv must intersect
either edge e1, or intersect edge e2, or intersect both p1 and p2. (The latter case is
possible only if c′ �= c′′ and if all paths in Pv that intersect e1 use the edges (c, v) and
(v, c′) and all paths in Pv that intersect e2 use the edges (c

′′, v) and (v, c); in that
case, p′ must use (c′′, v) and (v, c′), as shown on the right-hand side of Figure 3.7.)

Case 1.2.4.1(a). All paths in Pv that intersect e1 use the edges (c, v) and (v, c
′),

and all paths in Pv that intersect e2 use the edges (c
′′, v) and (v, c).

First, assume that all paths in Pv intersect either e1 or e2. Note that there are
exactly two equivalence classes of paths in Pv in this case. See Figure 3.7 (left-hand
side). The algorithm uses the group of exclusive paths and one representative from
each of the two equivalence classes of paths in Pv to create a group of 2-exclusive
paths. All other paths in Pv are rejected. The fixed edge e′ of the group of exclusive
paths is no longer marked fixed; instead, the edges e1 and e2 are marked fixed. If O
contains two paths from Pv∪Xv, one of them must be from Xv due to condition (b) of
Invariant B, and the other can be replaced by a path in the new group of 2-exclusive
paths. Otherwise, it is possible to remove the path fromXv and at most one additional
path from O such that the resulting set contains no path from Pv ∪Xv, at most one
path of smaller level touching v, and no path of smaller level intersecting a fixed edge
of the new group of 2-exclusive paths. By Property (2E), two paths from the new
group of 2-exclusive paths can then be inserted into that set to obtain O′. We have
|O′| ≥ |O|, and the invariants are satisfied.

Now, assume that there is a path p′ ∈ Pv that intersects neither e1 nor e2. As
noted above, we must have c′ �= c′′ in this case, and p′ must use the edges (c′′, v)
and (v, c′). See Figure 3.7 (right-hand side). The algorithm accepts the lower path
from the group of exclusive paths and the path p′, and it rejects all other paths in

EDGE-DISJOINT PATHS IN BIDIRECTED TREES 343

Pv ∪Xv. No edge is marked fixed anymore. We have av = 2 and dv = 0. Note that
any combination of two edge-disjoint paths from Pv ∪Xv blocks at least three of the
four top edges of the paths accepted by the algorithm. Hence, if O contains two paths
from Pv ∪Xv, it can contain at most one path of smaller level intersecting the paths
accepted by the algorithm, and it suffices to remove at most three paths from O to
obtain a valid set O′.

Case 1.2.4.1(b). There are at least two equivalence classes of paths in Pv inter-
secting the higher path of the group of exclusive paths. The algorithm accepts the
lower path of the group of exclusive paths and makes the paths in Pv intersecting the
higher path a group of deferred paths. All other paths in Pv ∪Xv are rejected, and no
edge is marked fixed anymore. The reserved edge of the group of deferred paths is the
top edge shared by all these paths. If O contains two paths from Pv ∪Xv, note that
one of the two paths must be from Xv (due to condition (b) of Invariant B) and that
these two paths also block the top edges of the lower path of the group of exclusive
paths. Hence, O cannot contain any path of smaller level intersecting the lower path,
and it can contain at most one path of smaller level intersecting the reserved edge of
the newly deferred paths. It suffices to remove at most three paths from O to obtain
a valid set O′.

Case 1.2.4.1(c). There is only one equivalence class of paths in Pv intersecting
the higher path of the group of exclusive paths, and there are at least two equivalence
classes of paths in Pv intersecting the lower path of the group of exclusive paths.
The algorithm accepts the higher path of the group of exclusive paths and makes the
paths in Pv intersecting the lower path a group of deferred paths. All other paths
in Pv ∪Xv are rejected, and no edge is marked fixed anymore. The reserved edge of
the group of deferred paths is the top edge shared by all these paths. If O contains
two paths from Pv ∪ Xv, note that one of the two paths must be from Xv (due to
condition (b) of Invariant B) and that these two paths also block edge e1. Hence, O
cannot contain any path of smaller level intersecting e1, and it can contain at most
one path of smaller level intersecting the reserved edge of the newly deferred paths or
the top edge of the higher path that is directed towards the leaves because all such
paths must use the edge (p(v), v). It suffices to remove at most three paths from O
to obtain a valid set O′.

Case 1.2.4.2. Pv does not contain two edge-disjoint paths. Let e be an edge
incident to v such that all paths in Pv use edge e.

Case 1.2.4.2(a). e = (v, c′) for some c′ �= c, and Pv has at least two different
equivalence classes of paths. The algorithm makes all paths in Pv a new group of
deferred paths with reserved edge e and accepts q, the lower path of the group of
exclusive paths. Path p is rejected, and no edge in this subtree is marked fixed
anymore. We have av = dv = 1. If O contains two paths from Pv ∪Xv, these paths
block two of the three top edges blocked by the algorithm: the fixed edge e′ of the
group of exclusive paths and edge e. O can contain at most one path of smaller level
that intersects the path accepted by the algorithm or the reserved edge of the new
group of deferred paths, and it suffices to remove at most three paths from O to obtain
a valid set O′.

Case 1.2.4.2(b). e �= (v, c′) for all children c′ �= c of v, or Pv has only one equiva-
lence class of paths. If there is a path p′ ∈ Pv that does not intersect q, the algorithm
accepts p′ and q. If all paths in Pv intersect q, the algorithm accepts p and an arbi-
trary path from Pv. In both cases, all other paths in Pv ∪ Xv are rejected, and no
edge in this subtree is marked fixed anymore. We have dv = 0 and av = 2. Assume

344 THOMAS ERLEBACH AND KLAUS JANSEN

e1
e2

v

e2

e1

v

Fig. 3.8. Case 1.2.5(a): All sets of two edge-disjoint paths use the same four top edges (left-
hand side); Case 1.2.5(b): there is only one equivalence class of paths using edge e1 but more than
one class using edge e2 (right-hand side).

that O contains two paths from Pv ∪Xv. We will show that it suffices to remove at
most three paths from O to obtain a valid set O′.

If the algorithm has accepted p, O must also contain p and a path from Pv, thus
blocking at least three of the four top edges of the paths accepted by the algorithm.
At most one further path in O can be blocked by the paths accepted by the algorithm.

Now assume that the algorithm has accepted q. Observe that the two paths from
Pv ∪Xv that are in O must also use the edges e′ and e, thus blocking two of the four
top edges of paths accepted by the algorithm. If e and e′ have the same direction,
O can contain at most one path of smaller level intersecting the paths accepted by
the algorithm because such a path must use the edge (p(v), v). If Pv has only one
equivalence class of paths, the paths from Pv∪Xv that are in O block three of the four
top edges of paths accepted by the algorithm, and again it suffices to remove at most
one path of smaller level from O. Finally, consider the case that Pv has more than
one equivalence class of paths and that e = (v, c). Since edge e blocks more paths of
smaller level than the top edge of q that is directed towards the leaves, the two paths
from Pv ∪Xv that are in O do in fact block at least as many paths of smaller level as
three of the four top edges of the paths accepted by the algorithm.

Case 1.2.5. k = 0 = m = 0. As s = 2, there must be two edges incident to v such
that all paths in Pv use at least one of these two edges (by the König theorem). Let
e1 and e2 be two such edges.

Case 1.2.5(a). All possible sets of two edge-disjoint paths from Pv use the same
four edges incident to v. See the left-hand side of Figure 3.8 for an example. The
algorithm picks two arbitrary edge-disjoint paths from Pv, accepts them, and rejects
all other paths from Pv. We have av = 2 and dv = 0. If O contains two paths from Pv,
removing these two paths is sufficient to obtain a valid set O′ because they use the
same top edges as the paths accepted by the algorithm, and O cannot contain any
further path intersecting the paths accepted by the algorithm.

In the following, let D be the set of paths in Pv that intersect all other paths
from Pv. In other words, a path p ∈ Pv is in D if Pv does not contain a path q that is
edge-disjoint from p. Note that if Case 1.2.5(a) does not apply, it follows that either
the paths in Pv \ D using edge e1 or those using edge e2 must have more than one
equivalence class of paths.

Case 1.2.5(b). There is only one equivalence class C of paths in Pv \ D using
edge e1 but more than one equivalence class of paths in Pv \D using edge e2 and not
intersecting a path from C. See the right-hand side of Figure 3.8. (The case with e1

and e2 exchanged is symmetrical. Furthermore, note that the case that there is only
one equivalence class C of paths in Pv \ D using edge e1 and only one equivalence
class of paths in Pv \D using edge e2 and not intersecting a path from C satisfies the
condition of Case 1.2.5(a).) The algorithm picks a path p from C arbitrarily, accepts p,

EDGE-DISJOINT PATHS IN BIDIRECTED TREES 345

e1 e2

v

e1 e2

v

Fig. 3.9. Case 1.2.5(c): Configurations in which two groups of deferred paths can be created.

and makes the paths using edge e2 and not intersecting p a group of deferred paths
with reserved edge e2. All other paths in Pv are rejected. We have av = 1 and dv = 1.
If O contains two paths from Pv, these paths must also use both top edges of p and
the newly reserved edge, and thus removing these two paths from O is sufficient to
obtain a valid set O′.

Case 1.2.5(c). There is more than one equivalence class of paths in Pv \D using
edge e1, there is more than one equivalence class of paths in Pv \ D using edge e2,
and Case 1.2.5(a) does not apply. See Figure 3.9. The algorithm makes the paths
in Pv \D using e1 a group of deferred paths with reserved edge e1 and the paths in
Pv \D using e2 a group of deferred paths with reserved edge e2. All other paths in Pv
are rejected. Note that no matter which paths of smaller level are accepted by the
algorithm later on, there are still two paths, one in each of the two groups of newly
deferred paths, that are edge-disjoint from these paths of smaller level and from each
other. (Otherwise, Case 1.2.5(a) would apply.) We have av = 0 and dv = 2. If O
contains two paths from Pv, these paths use e1 and e2 as well, and removing these
two paths from O is sufficient to obtain a valid set O′ because O cannot contain any
further path intersecting a reserved edge of the newly deferred paths.

Case 1.2.6. k = 1, 0 = m = 0. There is one child of v that has an undetermined
path p in its subtree. Let P ′v ⊆ Pv denote the set of paths in Pv that do not intersect p.
We begin by making some simple observations. First, P ′v must not contain two edge-
disjoint paths. Hence, there must be an edge e incident to v that is shared by all
paths in P ′v. Second, s = 2 implies that the maximum number of edge-disjoint paths
in Pv is at most two.

Let the lca of the undetermined path be v′, and let c be the child of v whose
subtree contains the undetermined path (possibly c = v′). Let v1 and v2 be children
of v′ such that the undetermined path uses the edges (v1, v

′) and (v′, v2). We consider
a number of subcases regarding the number of equivalence classes in P ′v.

Case 1.2.6(a). P ′v is empty. Let P1 and P2 denote the sets of paths in Pv that
intersect p in the edge (v1, v

′) and in the edge (v′, v2), respectively. Note that Pv =
P1 ∪ P2 and that P1 �= ∅ �= P2. For i = 1, 2, the algorithm accepts an arbitrary
path from Pi if Pi has only one equivalence class of paths and creates a new group
of deferred paths from Pi otherwise. The undetermined path p is rejected. We have
av + dv = 2. If O contains two paths from Pv ∪ Uv, removing these two paths is
sufficient because they block at least as many paths of smaller level as the newly
accepted paths or newly reserved edges.

Case 1.2.6(b). P ′v has one equivalence class of paths. The algorithm accepts
an arbitrary path from P ′v and the undetermined path p. All other paths in Pv are
rejected. We have av = 2 and dv = 0. Assume that O contains two paths from Pv∪Uv.
If O contains p, O must also contain a path from P ′v, and it suffices to remove these
two paths from O to obtain a valid set O′. If O does not contain p but contains a
path from P ′v, O must also contain a path from Pv that intersects p; these two paths

346 THOMAS ERLEBACH AND KLAUS JANSEN

v’

1 2v’ v’

p q

v

v’’v’’

v’’

21

Fig. 3.10. Case 1.2.7: v has two children with undetermined paths in their subtrees.

block at least three of the four top edges blocked by the algorithm, and it suffices to
remove these two paths and at most one path of smaller level. Finally, if O contains
neither p nor a path from P ′v, O must contain two paths from Pv that intersect p in
different top edges and at least one of which intersects also a top edge of the paths
in P ′v; again, it suffices to remove at most three paths from O to obtain a valid set O′.

Case 1.2.6(c). P ′v has more than one equivalence class of paths. Let e be the
edge incident to v that is shared by all paths in P ′v. The algorithm accepts the
undetermined path p and creates a new group of deferred paths from the paths in P ′v.
All other paths in Pv are rejected. We have av = dv = 1. Assume that O contains
two paths from Pv ∪ Uv. If O contains p, O must also contain a path from P ′v, and
it suffices to remove these two paths from O to obtain a valid set O′. If O does
not contain p but contains a path from P ′v, O must contain a path from Pv that
intersects p; these two paths block at least two of the three top edges blocked by the
algorithm, and it suffices to remove these two paths and at most one path of smaller
level. Finally, if O contains neither p nor a path from P ′v, O must contain two paths
from Pv that intersect p in different top edges; again, these two paths block at least
two of the three top edges blocked by the algorithm, and it suffices to remove at most
three paths from O to obtain a valid set O′.

Case 1.2.7. k = 2, 0 = m = 0. Two children of v have undetermined paths in
their subtrees. Denote the undetermined paths by p and q. See Figure 3.10. As
s = 2, every path in Pv must intersect at least one undetermined path. In addition,
if there are two paths in Pv that intersect one undetermined path in different top
edges, at least one of them must also intersect the other undetermined path. Let P1

and P2 denote the sets of paths in Pv that intersect p and q, respectively. Note that
P1 ∩ P2 �= ∅ is possible.

Case 1.2.7(a). There are edge-disjoint paths p1 and p2 in Pv such that p1 intersects
p in a top edge e1 but does not intersect q, and p2 intersects q in a top edge e2 but does
not intersect p, and such that e1 and e2 have different directions (i.e., one is directed
towards the root, and the other is directed towards the leaves). The algorithm makes
p, q, p1, and p2 a group of 2-exclusive paths consisting of a pair of independent groups
of exclusive paths and rejects all other paths from Pv. The edges e1 and e2 are marked
fixed. If O contains two paths from the new group of 2-exclusive paths already, let
O′ = O. Otherwise, it is possible to replace paths in O by paths from the new group
of 2-exclusive paths to obtain O′. In any case, |O′| ≥ |O|.

Case 1.2.7(b). If the condition for Case 1.2.7(a) does not hold, the algorithm
accepts p and q and rejects all paths from Pv. We have av = 2 and dv = 0. Assume
that O contains two paths from Pv ∪ Uv. If O contains p and q, it suffices to remove

EDGE-DISJOINT PATHS IN BIDIRECTED TREES 347

these two paths. If O contains only one of p and q, say, p, it must contain a path from
Pv that intersects q, and these two paths block three of the four top edges blocked
by the algorithm. If O contains neither p nor q, it must contain two paths from Pv.
If at least one of these two paths in O intersects both p and q, these two paths again
block at least three of the four top edges blocked by the algorithm. If both paths in
O intersect only one of p and q, it must be the case that one of them intersects p in
an edge e1 and one of them intersects q in an edge e2. If e1 and e2 have the same
direction, O can contain at most one path of smaller level intersecting a path accepted
by the algorithm. If e1 and e2 have different directions, the condition of Case 1.2.7(a)
applies.

Case 1.3. s ≥ 3. The algorithm accepts the s paths and rejects all other paths
from Pv ∪ Uv ∪ Xv. No edge in this subtree is marked fixed anymore. As s is the
maximum number of edge-disjoint paths in Pv ∪ Uv ∪ Xv, O can contain at most s
paths from Pv∪Uv∪Xv. Furthermore, O can contain at most two paths from F using
the edges (v, p(v)) or (p(v), v), and these are the only two further paths in O that
could possibly be blocked by the s paths accepted by the algorithm. Hence, a valid
set O′ can be obtained from O by deleting at most s + 2 paths. As s + 2 ≤ (5/3)s,
the invariants are maintained.

3.4.2. Case 2: Many subtrees with unresolved paths. Case 2 applies if
k+0+2m > 2

ε . In this case, the algorithm cannot try out all possibilities of accepting
or rejecting unresolved paths in polynomial time. Instead, it computes four candidate
sets of edge-disjoint paths in Pv∪Uv∪Xv and accepts the paths in the largest of these
four sets. Unlike for Case 1, the subcases of Case 2 do not correspond to different
actions taken by the algorithm. Instead, the subcases apply to different ranges of the
ratio between s3−s1 and k, where s1 is the maximum number of edge-disjoint paths in
Pv not intersecting a path in Uv and s3 is the maximum number of edge-disjoint paths
in Pv without any restriction. In each of the subcases, a lower bound on the number
of paths accepted by the algorithm and an upper bound on the optimal number of
edge-disjoint paths in Pv ∪Uv ∪Xv are derived to show that the invariant is satisfied.
The detailed analysis of Case 2 is as follows.

Case 2. k + 0 + 2m > 2
ε . The algorithm calculates four candidate sets of edge-

disjoint paths from Pv ∪ Uv ∪Xv and chooses the largest of them. For obtaining two
of the four sets, we employ a method of removing paths from an arbitrary set S of
edge-disjoint paths in Pv such that 0+ 2m exclusive paths from Xv can be accepted
in addition to the paths remaining in S. The resulting set of edge-disjoint paths in
S ∪ Xv has cardinality |S| + 0 + 2m − r, where r is the number of paths that were
removed from S. The details of the method and a proof that r ≤ (|S| + 0 + m)/3
will be presented later in Lemma 3.1. With this tool we are ready to describe the
candidate sets S1, S2, S3, and S4. Let P ′v ⊆ Pv be the subset of paths in Pv that do
not intersect any undetermined path in Uv.

1. Compute a maximum number s1 of edge-disjoint paths in P ′v. S1 is obtained
by taking these paths, all k undetermined paths, and as many additional edge-disjoint
paths from Xv as possible. We have |S1| ≥ k + s1 +m because S1 contains k unde-
termined paths and at least m paths from groups of 2-exclusive paths in Xv due to
Property (2E).

2. S2 is obtained from S1 by removing r of the s1 paths in S1 ∩ Pv from S1

such that 0+2m exclusive paths can be accepted. S2 contains 0+2m exclusive paths,
and according to Lemma 3.1 only r ≤ (s1 + 0 + m)/3 of the s1 paths in S1 ∩ Pv
were removed to obtain S2. As S2 still contains the k undetermined paths, we have

348 THOMAS ERLEBACH AND KLAUS JANSEN

|S2| ≥ k+m+(2/3)(s1+ 0+m). In addition, we have |S2| ≥ k+ 0+2m ≥ 2
ε because

S2 contains all k undetermined paths from Uv and 0+ 2m exclusive paths.
3. S3 is obtained by first computing a maximum number s3 of edge-disjoint

paths in Pv and then adding as many edge-disjoint paths from Xv ∪ Uv as possible.
We have |S3| ≥ s3+m because S3 contains at leastm paths from groups of 2-exclusive
paths in Xv due to Property (2E).

4. S4 is obtained from S3 by removing r of the s3 paths in S3∩Pv from S3 such
that 0+2m exclusive paths can be accepted, in the same way as S2 is obtained from S1.
Since r ≤ (s3+0+m)/3 according to Lemma 3.1, we have |S4| ≥ m+(2/3)(s3+0+m).

The algorithm accepts the paths in that set Si with maximum cardinality and
rejects all other paths from Pv ∪Uv ∪Xv. We have av = max{|S1|, |S2|, |S3|, |S4|} and
dv = 0. Note that av ≥ |S2| ≥ 2

ε and that this implies 2 ≤ εav.
Let Ov = O ∩ (Pv ∪Uv ∪Xv), and let b

′ be the number of paths from Pv that are
contained in Ov and that intersect at least one of the k undetermined paths. Observe
that Ov can contain at most k − b′/2 undetermined paths from Uv. Note that the
maximum number of edge-disjoint paths in Pv is s3 and that the maximum number
of edge-disjoint paths in P ′v is s1. Using |Ov| ≤ s3 + k − b′/2 + 0+ 2m if b′ ≥ s3 − s1

and using |Ov| ≤ s1 + b′ + k − b′/2 + 0+ 2m if b′ < s3 − s1, we get

|Ov| ≤ s1 + (s3 − s1)/2 + k + 0+ 2m.(3.1)

With this upper bound on |Ov| and the lower bounds on the cardinalities of the four
sets Si, we can now prove that at least one of the sets Si satisfies |Ov|+2 ≤ (5/3+ε)|Si|.
Since it suffices to remove at most |Ov| + 2 paths from O in order to obtain a valid
set O′, this implies that the invariants are maintained.

If k = 0, we have |Ov| ≤ s3 + 0 + 2m and av ≥ |S4| ≥ (2/3)(s3 + 0 + 2m). This
implies |Ov| + 2 ≤ (3/2)av + 2 ≤ (3/2 + ε)av. If k > 0, let α = (s3 − s1)/k and
distinguish the following cases.

Case 2.1. α > 3/2. If 0 + 2m ≤ (α/2)k, (3.1) gives |Ov| ≤ s1 + (1 + α)k, and
we have av ≥ |S3| ≥ s3 + m ≥ s1 + αk. We obtain |Ov| + 2 ≤ av(1 + α)/α + 2 ≤
(5/3)av + 2 ≤ (5/3 + ε)av. If 0+ 2m ≥ (α/2)k, we use (3.1) and av ≥ |S4| to bound
the ratio between |Ov|+ 2 and av as follows:

|Ov|+ 2
av

≤ s1 + (1 + α/2)k + 0+ 2m

(2/3)s1 + (2α/3)k + (2/3)0+ (5/3)m
+
2

av

≤ 3

2
+

(1− α/2)k

(2/3)s1 + (2α/3)k + (2/3)0+ (5/3)m
+ ε

≤ 3

2
+

(1− α/2)k

(2α/3)k + (α/3)k
+ ε ≤ 1 + 1

α
+ ε ≤ 5

3
+ ε.

Case 2.2. 4/3 < α ≤ 3/2. If 0 + 2m ≤ (3/2)(α − 1)k, (3.1) gives |Ov| ≤ s1 +
(2α − 1/2)k, and we have av ≥ |S3| ≥ s3 + m ≥ s1 + αk. We obtain |Ov| + 2 ≤
av(2α − 1/2)/α + 2 ≤ (5/3)av + 2 ≤ (5/3 + ε)av. If 0 + 2m ≥ (3/2)(α − 1)k, we
use (3.1) and av ≥ |S2| to bound the ratio between |Ov|+ 2 and av as follows:

|Ov|+ 2
av

≤ s1 + (1 + α/2)k + 0+ 2m

(2/3)s1 + k + (2/3)0+ (5/3)m
+
2

av

≤ 3

2
+

(α− 1)k/2
(2/3)s1 + k + (2/3)0+ (5/3)m

+ ε

≤ 3

2
+

(α− 1)k/2
k + (α− 1)k + ε ≤ 2− 1

2α
+ ε ≤ 5

3
+ ε.

EDGE-DISJOINT PATHS IN BIDIRECTED TREES 349

Case 2.3. α ≤ 4/3. From (3.1) we get |Ov| ≤ s1 + (5/3)k + 0+ 2m, and we have
av ≥ |S2| ≥ (2/3)s1 + k + (2/3)0 + (5/3)m. We obtain |Ov| + 2 ≤ (5/3)av + 2 ≤
(5/3 + ε)av.

We have shown that |Ov| + 2 ≤ (5/3 + ε)av holds in all subcases of Case 2. To
complete the description of Case 2, we still have to explain the method for removing
paths from S1 and S3 in order to obtain S2 and S4, respectively. The method takes
an arbitrary set S of edge-disjoint paths in Pv and removes paths from S to obtain
a set S′ such that every subtree with exclusive paths is touched by at most one path
in S′. The motivation for this is that S can cause all paths from a group of exclusive
paths to be blocked only if two paths from S intersect the corresponding subtree
(Property (E)). Similarly, if only one path from a group of 2-exclusive paths can be
accepted, S must contain two paths from Pv that intersect the corresponding subtree
(Property (2E)).

The method proceeds as follows. Consider a graph G with the paths in S as its
vertices and an edge between two paths if they touch the same child of v. G has
maximum degree two and consists of a collection of chains and cycles. Note that
every edge of G corresponds to a child of v that is touched by two paths in S. We
are interested in the maximal parts of chains and cycles that consist entirely of edges
corresponding to children of v that are the roots of subtrees with exclusive paths.
There are the following possibilities for such parts:

(i) a cycle such that all paths on the cycle have both endpoints in a subtree
with exclusive paths;

(ii) a chain such that the paths at both ends have only one endpoint in a subtree
with exclusive paths, while the internal paths have both endpoints in subtrees with
exclusive paths;

(iii) a chain such that the path at one end has only one endpoint in a subtree
with exclusive paths, while all other paths have both endpoints in a subtree with
exclusive paths;

(iv) a chain such that all its paths have both endpoints in a subtree with exclusive
paths.

Note that every such maximal part of a cycle or chain has length (number of paths)
at least two because it contains at least one edge. The method for removing paths
proceeds as follows. Cycles of even length and chains are handled by removing every
other path from S, starting with the second path for chains. Cycles of odd length are
handled by removing two consecutive paths in one place and every other path from
the rest of the cycle.

Consider the example depicted in Figure 3.11. The node v has eight children,
named a to h, and six of them (c to h) are roots of subtrees with exclusive paths
(indicated by an exclamation mark). A set S of edge-disjoint paths in Pv is sketched.
The graph G obtained from this set is shown in Figure 3.12, and the label of a vertex
in G is u-w if the corresponding path begins in the subtree rooted at u and ends in
the subtree rooted at w. With respect to (i)–(iv) above, G contains a cycle of type (i)
with length three (containing the paths f -g, g-h, and h-f) and a chain of type (ii)
with length three (containing the paths a-d, d-c, and c-b). According to the rules
given above, three paths would be removed from S: two paths, say, f -g and g-h, from
the cycle, and the path d-c from the chain of length three.

It is easy to see that this process always ensures that in the end S contains, for
each subtree with exclusive paths, at most one path with an endpoint in that subtree.
Hence, due to Properties (E) and (2E), S can be filled up with edge-disjoint exclusive

350 THOMAS ERLEBACH AND KLAUS JANSEN

cb f g hea d

v

! ! ! ! ! !

Fig. 3.11. Set of edge-disjoint paths in Pv.

e-a

g-h

a-d

d-c

h-f

f-gc-b

Fig. 3.12. Graph G representing the structure of the paths.

paths until it contains all 0+ 2m exclusive paths.

Lemma 3.1. Let v be a node with 0+m children with exclusive paths. Let S ⊆ Pv
be a set of edge-disjoint paths. Let S′ ⊆ S be the set of paths obtained from S by
removing paths according to the method described above. Let |S| = s and |S \ S′| = r.
Then r ≤ (s+ 0+m)/3.

Proof. Let a be the number of cycles of type (i), and let ai, 1 ≤ i ≤ a, be
the length of the ith cycle. Denote the number of chains of type (ii) by b and their
lengths by bi, 1 ≤ i ≤ b. Denote the number of chains of type (iii) by c and their
lengths by ci, 1 ≤ i ≤ c. Denote the number of chains of type (iv) by d and their
lengths by di, 1 ≤ i ≤ d. Note that ai, bi, ci, di ≥ 2 for all i. As the number of
paths contained in the union of all these chains and cycles is at most s, we have∑a
i=1 ai +

∑b
i=1 bi +

∑c
i=1 ci +

∑d
i=1 di ≤ s. Furthermore, considering the number

of children with exclusive paths covered by each chain or cycle, we obtain
∑a
i=1 ai +∑b

i=1(bi−1)+
∑c
i=1 ci+

∑d
i=1(di+1) ≤ 0+m. Bounding bi−1 ≥ bi/2, ci ≥ ci/2, and

di + 1 ≥ di/2 in the latter inequality and adding up the two inequalities, we obtain∑a
i=1 2ai+

∑b
i=1(3/2)bi+

∑c
i=1(3/2)ci+

∑d
i=1(3/2)di ≤ s+0+m. Taking into account

that r =
∑a
i=1

⌈
ai
2

⌉
+
∑b
i=1� bi2 � +

∑c
i=1� ci2 � +

∑d
i=1�di2 � and that �ai/2� ≤ (2/3)ai

for ai ≥ 2, the lemma follows.
In the example displayed in Figure 3.11, we had s = 7 and 0+m = 6, and it was

sufficient to remove r = 3 paths. Indeed, r ≤ (s+ 0+m)/3 = 4 1
3 .

3.5. Running-time of the algorithm. The running-time of our algorithm is
polynomial in the size of the input for fixed ε > 0 but exponential in 1/ε. Let a
bidirected tree T = (V,E) with n nodes and a set P containing h directed paths in T
(each path specified by its endpoints) be given. For arbitrary ε > 0, we show below
that our approximation algorithm can be implemented to run in time

O
(
n+ h+ 41/εmin

{√
n · h, h1.5

})
.

Note that we can choose ε = 1/ log n and still achieve running-time polynomial in

EDGE-DISJOINT PATHS IN BIDIRECTED TREES 351

the size of the input. The resulting algorithm has approximation ratio at most 5/3+
1/ log n and, therefore, asymptotic approximation ratio 5/3: if the optimal solution
contains many paths, nmust also be large, and the approximation ratio gets arbitrarily
close to 5/3.

We have implemented the algorithm and evaluated it experimentally [10]. On
instances where the requests were generated by choosing source and destination uni-
formly at random, the algorithm, with ε set to 1/10, usually produced solutions that
were very close to the optimal solution (within less than 1 percent). For a detailed
discussion of the implementation and the experimental results, we refer to [10].

We sketch how the claimed running-time is achieved. After an O(n) preprocessing
step similar to the lca algorithm of [29], we can compute for every path p ∈ P its lca
and its top edges in time O(h) in total. For every node v of T , we compute a list Lv
of all paths p with lca(p) = v. This takes time O(h).

When node v is processed in the first pass, Pv is computed from Lv by checking
for every path in Lv whether it is blocked by an accepted path or by a fixed or
reserved edge and discarding it if this is the case. In order to perform each of these
checks in constant time, a special edge-marking scheme is employed: When a path p
is accepted, we mark the top edges of p, all unmarked upward edges in the subtree
below the upward top edge of p, and all unmarked downward edges in the subtree
below the downward top edge of p. When an edge becomes fixed or reserved, the
edges in the subtree below the edge are marked similarly. Since each edge is marked
only once, the total time spent in marking is O(n). With this marking scheme, a path
in Lv is blocked by a previously accepted path or a fixed or reserved edge if and only
if its first or last edge is marked.

The remaining processing of v is dominated by the time for computing maxi-
mum matchings, which has to be done 41/ε times if Case 1 applies and four times
(to compute S1, S2, S3, and S4) if Case 2 applies. A maximum matching in a bipar-
tite graph with n1 vertices and m1 edges can be computed in time O(

√
n1m1) [19].

Therefore, the time for computing a maximum matching in the bipartite graph con-
structed from (a subset) of Pv can be bounded by O(

√
min{degv, |Pv|} · |Pv|), where

degv is the degree of v in T . To see this, note that the bipartite graph has at most
|Pv| edges and that the number of nonisolated vertices is bounded by 2|Pv| and by
2 degv. Therefore, the processing of vertex v in the first pass (excluding the time
for edge marking, which is accounted separately) takes time at most O(degv +|Lv|+
41/ε

√
min{degv, |Lv|} · |Lv|). Summing this over all vertices v, we obtain the bound

O(n+h+41/εmin
{√

n · h, h1.5
}
). Finally, the second pass can easily be implemented

to run in time O(n+ h).

4. Generalizations. There are several generalizations of MEDP. First, it is
meaningful to consider the weighted version of the problem, where each path has a
certain weight and the goal is to maximize the total weight of the accepted paths.
The weighted version of MEDP can still be solved optimally in polynomial time in
bidirected stars and spiders (by reduction to maximum-weight matching in a bipartite
graph) and in bidirected trees of bounded degree (by a minor modification of the
dynamic programming procedure given in section 2).

We do not know how to generalize the (5/3 + ε)-approximation algorithm for
MEDP from section 3 to the weighted case. However, we have obtained a (5/3 + ε)-
approximation algorithm for the weighted version of MEDP in bidirected trees using
a completely different approach in [9]. This algorithm is based on linear programming
and converts the fractional optimum solution of a linear programming relaxation into

352 THOMAS ERLEBACH AND KLAUS JANSEN

an approximate integral solution using the path coloring algorithm from [12, 13] as a
subroutine.

Another generalization of MEDP is the maximum path coloring (MaxPC) prob-
lem. For a given bidirected tree T = (V,E), set P of directed paths in T , and number
W of colors, the MaxPC problem is to compute a subset P ′ ⊆ P and a W -coloring
of P ′. The goal is to maximize the cardinality of P ′. The MaxPC problem is equiv-
alent to finding a maximum (induced) W -colorable subgraph in the conflict graph of
the given paths. Studying MaxPC is motivated by the admission control problem
in all-optical wavelength-division multiplexing (WDM) networks without wavelength
converters: every wavelength (color) can be used to establish a set of connections
provided that the paths corresponding to the connections are edge-disjoint, and the
number of available wavelengths is limited [7]. The weighted variant of MaxPC is
interesting as well.

Both MaxPC and weighted MaxPC can be solved optimally in polynomial time for
bidirected stars by using an algorithm for (the weighted version of) the capacitated b-
matching problem. Given an undirected graph G = (V,E) and a function b : V → N0,
a b-matching is a function x : E → N0 such that

∑
e∈Γ(v) x(e) ≤ b(v) for every vertex

v ∈ V , where Γ(v) is the set of edges incident to v. There exists a polynomial-
time algorithm for computing a b-matching of maximum weight, i.e., a b-matching
for which

∑
e∈E w(e)x(e) is maximum, where w : E → Q is an arbitrary weight

function. If the multiplicities with which edges can be included into the b-matching
are bounded by edge capacities c(e) (i.e., if we require 0 ≤ x(e) ≤ c(e) for all e ∈ E),
the resulting problem is called the capacitated b-matching problem and can also be
solved in polynomial time [17, pp. 257–259]. In order to solve the weighted MaxPC
problem with W colors for a given set of weighted paths in a star, transform the
paths into a bipartite multigraph as in the case of MEDP (cf. Figure 2.2) and then
compute a capacitated b-matching of maximum weight, where we set b(v) =W for all
vertices v and c(e) = 1 for all edges e of the bipartite multigraph. This b-matching
corresponds to a maximum-weight subset of the given paths such that at most W
paths in the subset use the same edge. Since any set of paths with maximum load
W in a bidirected star can be colored efficiently with W colors (by edge-coloring the
corresponding bipartite multigraph), this subset is an optimal solution to the given
MaxPC problem.

If both the number W of colors and the maximum degree of the bidirected tree
are bounded by constants, MaxPC and weighted MaxPC can be solved optimally in
polynomial time by dynamic programming (similar to the procedure in section 2).
MaxPC is NP-hard for arbitrary W in bidirected binary trees (because path coloring
is NP-hard) and for W = 1 in bidirected trees of arbitrary degree (because it is
equivalent to MEDP in this case).

In order to obtain approximation algorithms for MaxPC with arbitrary numberW
of colors, a technique due to Awerbuch et al. [3] can be employed. It allows reducing
the problem with W colors to MEDP with only a small increase in the approximation
ratio. The technique works for MaxPC in arbitrary graphs G; we discuss it here only
for trees. Let an instance of MaxPC be given by a bidirected tree T = (V,E), a
set P of paths in T , and a number W of colors. An approximation algorithm A for
arbitrary number W of colors is obtained from an approximation algorithm A1 for
one color (i.e., for the maximum edge-disjoint paths problem) by running W copies
of A1, giving as input to the ith copy the bidirected tree T and the set of paths that
have not been accepted by the first i − 1 copies of A1 (see Figure 4.1). The output

EDGE-DISJOINT PATHS IN BIDIRECTED TREES 353

Algorithm A
Input: bidirected tree T , set P of paths, number W of colors
Output: disjoint subsets P1,. . . ,PW of P (each Pi is edge-disjoint)
begin
for i = 1 to W do

begin
Pi ← A1(T, P);
P ← P \ Pi;
end

end

Fig. 4.1. Reduction from many colors to one color.

of A is the union of the W sets of paths output by the copies of A1, and the paths in
the ith set are assigned color i.

In [3] it is shown that Algorithm A obtained using this technique has approxima-
tion ratio at most ρ + 1 if A1 has approximation ratio ρ, even if different colors are
associated with different network topologies. For identical networks, which we have
in our application, the approximation ratio achieved by A can even be bounded by
1/(1− (1− 1

ρW)
W), which is smaller than 1/(1− e−1/ρ) for all W . It is remarked in

[3] that this bound can be viewed as an adaptation of a similar result in [8]. A formal
proof is given in [31]. This reduction works also in the weighted case.

Since we have an optimal algorithm for MEDP in bidirected trees of bounded
degree and (5/3 + ε)-approximation algorithms for MEDP in arbitrary bidirected
trees, we can employ the above technique and obtain approximation algorithms with
ratio 1/(1 − 1/e) ≈ 1.58 for MaxPC in bidirected trees of bounded degree and with
ratio approximately 2.22 for MaxPC in arbitrary bidirected trees.

Acknowledgments. The authors are grateful to Stefano Leonardi for pointing
out the reduction from MaxPC with an arbitrary number of colors to MaxPC with
one color, and to Adi Rosén for informing them about the improved analysis for the
ratio obtained by this reduction in the case of identical networks for all colors and for
supplying a preliminary version of [3].

REFERENCES

[1] V. Auletta, I. Caragiannis, C. Kaklamanis, and P. Persiano, Randomized path coloring
on binary trees, in Proceedings of the Third International Workshop on Approximation
Algorithms for Combinatorial Optimization (APPROX 2000), Lecture Notes in Comput.
Sci. 1913, Springer-Verlag, Berlin, 2000, pp. 60–71.

[2] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi, Complexity and Approximation. Combinatorial Optimization Problems and
Their Approximability Properties, Springer-Verlag, Berlin, 1999.

[3] B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Rosén, On-line competitive algorithms
for call admission in optical networks, Algorithmica, 31 (2001), pp. 29–43.

[4] B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén, Competitive non-preemptive call con-
trol, in Proceedings of the 5th Annual ACM–SIAM Symposium on Discrete Algorithms
(SODA’94), Arlington, VA, 1994, pp. 312–320.

[5] B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani, On-line admission control and
circuit routing for high performance computing and communication, in Proceedings of the
35th Annual Symposium on Foundations of Computer Science (FOCS’94), Santa Fe, NM,
1994, pp. 412–423.

[6] C. Berge, Graphs and Hypergraphs, 2nd ed., North-Holland, Amsterdam, 1976.
[7] N. K. Cheung, K. Nosu, and G. Winzer, eds., Dense Wavelength Division Multiplexing

Techniques for High Capacity and Multiple Access Communication Systems, IEEE Journal

354 THOMAS ERLEBACH AND KLAUS JANSEN

on Selected Areas in Communications, vol. 8, no. 6, IEEE Communications Society, New
York, 1990, special issue.

[8] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser, Location of bank accounts to optimize
float: An analytic study of exact and approximate algorithms, Management Sci., 23 (1977),
pp. 789–810.

[9] T. Erlebach and K. Jansen, Conversion of coloring algorithms into maximum weight inde-
pendent set algorithms, in ICALP Workshops 2000, Proceedings in Informatics 8, Carleton
Scientific, Ontario, Canada, 2000, pp. 135–145.

[10] T. Erlebach and K. Jansen, Implementation of approximation algorithms for weighted and
unweighted edge-disjoint paths in bidirected trees, in Proceedings of the 4th Workshop on
Algorithm Engineering (WAE 2000), Saarbrücken, Germany, 2000.

[11] T. Erlebach and K. Jansen, The complexity of path coloring and call scheduling, Theoret.
Comput. Sci., 255 (2001), pp. 33–50.

[12] T. Erlebach, K. Jansen, C. Kaklamanis, M. Mihail, and P. Persiano, Optimal wavelength
routing on directed fiber trees, Theoret. Comput. Sci., 221 (1999), pp. 119–137.

[13] T. Erlebach, K. Jansen, C. Kaklamanis, and P. Persiano, An optimal greedy algorithm for
wavelength allocation in directed tree networks, in Proceedings of the DIMACS Workshop
on Network Design: Connectivity and Facilities Location, DIMACS Ser. Discrete Math.
Theoret. Comput. Sci. 40, AMS, Providence, RI, 1998, pp. 117–129.

[14] A. Frank, Packing paths, circuits, and cuts—a survey, in Paths, Flows, and VLSI-Layout,
B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver, eds., Springer-Verlag, Berlin, 1990,
pp. 47–100.

[15] N. Garg, V. V. Vazirani, and M. Yannakakis, Primal-dual approximation algorithms for
integral flow and multicut in trees, Algorithmica, 18 (1997), pp. 3–20.

[16] L. Gargano, P. Hell, and S. Perennes, Colouring paths in directed symmetric trees with
applications to WDM routing, in Proceedings of the 24th International Colloquium on
Automata, Languages and Programming (ICALP’97), Lecture Notes in Comput. Sci. 1256,
Springer-Verlag, Berlin, 1997, pp. 505–515.

[17] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Springer-Verlag, Berlin, 1988.

[18] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis, Near-optimal
hardness results and approximation algorithms for edge-disjoint paths and related problems,
in Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC’99),
Atlanta, GA, 1999, pp. 19–28.

[19] J. E. Hopcroft and R. M. Karp, An n5/2 algorithm for maximum matchings in bipartite
graphs, SIAM J. Comput., 2 (1973), pp. 225–231.

[20] C. Kaklamanis and P. Persiano, Efficient wavelength routing on directed fiber trees, in Pro-
ceedings of the 4th Annual European Symposium on Algorithms (ESA’96), Lecture Notes
in Comput. Sci. 1136, Springer-Verlag, Berlin, 1996, pp. 460–470.

[21] V. Kann, Maximum bounded 3-dimensional matching is MAX SNP-complete, Inform. Process.
Lett., 37 (1991), pp. 27–35.

[22] J. Kleinberg, Approximation Algorithms for Disjoint Paths Problems, Ph.D. thesis, Depart-
ment of Electrical Engineering and Computer Science, MIT, Cambridge, MA, 1996.

[23] J. Kleinberg and É. Tardos, Disjoint paths in densely embedded graphs, in Proceedings of
the 36th Annual Symposium on Foundations of Computer Science (FOCS’95), Milwaukee,
WI, 1995, pp. 52–61.

[24] S. G. Kolliopoulos and C. Stein, Approximating disjoint-path problems using greedy algo-
rithms and packing integer programs, in Proceedings of the 6th Integer Programming and
Combinatorial Optimization Conference (IPCO VI), Lecture Notes in Comput. Sci. 1412,
Springer-Verlag, Berlin, 1998, pp. 153–168.

[25] D. König, Graphen und Matrizen, Mat. Fiz. Lapok, 38 (1931), pp. 116–119.
[26] S. R. Kumar, R. Panigrahy, A. Russel, and R. Sundaram, A note on optical routing on

trees, Inform. Process. Lett., 62 (1997), pp. 295–300.
[27] V. Kumar and E. J. Schwabe, Improved access to optical bandwidth in trees, in Proceedings of

the 8th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’97), New Orleans,
LA, 1997, pp. 437–444.

[28] M. Mihail, C. Kaklamanis, and S. Rao, Efficient access to optical bandwidth, in Proceedings
of the 36th Annual Symposium on Foundations of Computer Science (FOCS’95), Milwau-
kee, WI, 1995, pp. 548–557.

[29] B. Schieber and U. Vishkin, On finding lowest common ancestors: Simplification and paral-
lelization, SIAM J. Comput., 17 (1988), pp. 1253–1262.

EDGE-DISJOINT PATHS IN BIDIRECTED TREES 355

[30] A. Srinivasan, Improved approximations for edge-disjoint paths, unsplittable flow, and re-
lated routing problems, in Proceedings of the 38th Annual Symposium on Foundations of
Computer Science (FOCS’97), Miami Beach, FL, 1997, pp. 416–425.

[31] P.-J. Wan and L. Liu, Maximal throughput in wavelength-routed optical networks, in Multi-
channel Optical Networks: Theory and Practice, DIMACS Ser. Discrete Math. Theoret.
Comput. Sci. 46, AMS, Providence, RI, 1998, pp. 15–26.

PARTITIONS AND (m AND n) SUMS OF PRODUCTS—TWO CELL
PARTITION∗

GREGORY L. SMITH†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 3, pp. 356–369

Abstract. We let SPm(〈Xt〉∞t=1) denote the sums of m increasing products from a sequence
〈Xt〉∞t=1. Given m �= n, we construct a two cell partition of N so that neither cell contains
SPn〈X〉∞t=1) ∪ SPm(〈y〉 >∞

t=1) for any sequences 〈Xt〉∞t=1 and 〈y〉∞t=1.

Key words. partition, sequence, sums of products, finite products

AMS subject classification. 05

PII. S0895480198349014

Introduction. In 1976 Erdos asked whether it is always possible, given a two
cell partition of N, to find one cell and an infinite subset all of whose “multilinear
expressions. . . (where each variable occurs only once)” are in that cell. This question
was answered in the negative in 1980 [1] when a counterexample was produced for a
weaker assertion. However, in 1995 [2] it was shown that Erdos’s assertion does hold
for a special kind of multilinear expression, namely, sums of a fixed number of products
with indices in increasing order. That is, given n ∈ N and a sequence 〈yt〉∞t=1 in N, we
let SPn(〈yt〉∞t=1) = {

∑n
k=1

∏
t∈Fk

yt : F1, F2, . . . , Fn are finite nonempty subsets of N

and for k ∈ {1, 2, . . . , n−1},maxFk ≤ minFk+1}. In addition it was shown that given
m �= n there exists a two cell partition of N/S such that one cell does not contain
SPn(〈Yt〉∞t=1) for any sequence 〈Yt〉∞t=1 and the other does not contain SPm(〈Xt〉∞t=1)
for any sequence 〈Xt〉∞t=1.

In this paper we provide a construction for such a partition. We make use through-
out this work of results obtained in [2].

1. A two cell partition which distinguishes SPm(〈xt〉∞
t=1) from

SPn(〈yt〉∞
t=1). We will now identify a two cell partition which will distinguish

SPm(〈xt〉∞t=1) and SPn(〈yt〉∞t=1) as guaranteed by [2, Theorem 3.17]. Again as in
[2], we fix m and n in N with m > n, and we pick a prime p and an integer k such
that pk|m, pk � |n and pk+1 � |m.

Definition 1.1.

A0 = {pj : j < ω}
A1 = {x ∈ N\A0 : p

2j < x < p2j+1/2 for some j ∈ ω},
A2 = {x ∈ N\A0 : p

2j+1/2 < x < p2j+1 for some j ∈ ω},
A3 = {x ∈ N\A0 : p

2j+1 < x < p2j+3/2 for some j ∈ ω},
A4 = {x ∈ N\A0 : p

2j+3/2 < x < p2j+2 for some j ∈ ω}.

Definition 1.2. Given x ∈ N pick a(x) ∈ N with pa(x) ≤ x < pa(x)+1 and choose

〈δ(x, t)〉a(x)t=0 in {0, 1, . . . , p− 1} such that x =∑a(x)
t=0 δ(x, t)p

t. Let b(x) = max{t < a(x)
: δ(x, t) �= 0} (where b(x) = −1 if x = δ(x, a(x))pa(x)), c(x) = max{t < a(x) : δ(x, t) �=
p−1} (where c(x) = −1 if each δ(x, t) = p−1 for t < a(x)), and d(x) = min{t ≤ a(x) :
δ(x, t) �= 0} = max{t : pt|x}. Let l(x) = δ(x, a(x)). Let λ(x) = |{t : δ(x, t) �= 0}|.

∗Received by the editors December 7, 1998; accepted for publication (in revised form) March 6,
2001; published electronically August 3, 2001.

http://www.siam.org/journals/sidma/14-3/34901.utml
†Department of Mathematics, Norfolk State University, Norfolk, VA 23504 (glsmith@nsu.edu).

356

TWO CELL PARTITION 357

One should note that a(x), b(x), c(x), and d(x) are, respectively, the positions
of the leftmost nonzero digit, the next to leftmost nonzero digit, the leftmost digit
below p − 1 to the right of a(x), and the rightmost nonzero digit of x when x is
written in base p without leading zeros. l(x) is the leading digit of x in base p, and
λ(x) is the number of nonzero digits in x. Therefore, if x = 304130 and p = 5, then
a(x) = 5, b(x) = 3, c(x) = 4, d(x) = 1, and l(x) = 3. The cells which we will be
considering are based on {A0, A1, A2, A3, A4} which is a partition on N. Then A0 and
A2 are divided into the congruence classes of Zpk+1. A3 is divided into 2pk+1 parts:
the classes of Zpk+1, which are divided into D and N\D, where D = {∑m

t=1zt : each
zt ∈ A0 and z1 < z2 < · · · < zm}. A4 is divided into 2pk+1 parts: the classes of
Zpk+1, which are further divided into L1 and N\L1, where L1 = {∑m

t=1zt : for each
t ∈ {1, 2, . . . ,m}, d(zt) > a(zt) − c(zt) and if t > 1, a(zt) − c(zt) > a(zt−1)}. A1 is
divided into 4pk+1 parts, namely, the classes of Zpk+1 which are divided by D and
N\D, which are further divided by L2 and N\L2, where L2 = {∑m

t=1zt : for each
t ∈ {1, 2, . . . ,m}, d(zt) > a(zt)− b(zt) and if t > 1, a(zt)− b(zt) > a(zt−1)}.

Given a partition P we write x ≈ y (mod P) to mean that x and y are in the
same cell of P. We now define more precisely a partition P of N.

Definition 1.3. Define P by agreeing that x ≈ y (mod P) if and only if
(1) x ≈ y (mod {A0, A1, A2, A3, A4});
(2) x ≡ y mod pk+1;
(3) if x, y ∈ A1 ∪A3, then x ≈ y (mod {D,N\D});
(4) if x, y ∈ A1, then x ≈ y (mod {L2,N\L2});
(5) if x, y ∈ A4, then x ≈ y (mod {L1,N\L1}).

Theorem 1.4. There do not exist sequences 〈xt〉∞t=1 and 〈y〉∞t=1 such that
SPn(〈x∞t=1〉) ∪ SPm(〈y〉∞t=1) is monochrome with respect to the partition P.

Proof. This was proved in [2, Theorem 3.16], except that there the partition P

included an additional division of A1 requiring that x ≈ y (mod {E,N\E}), where
E was the set of all numbers whose base p expansion has exactly m nonzero digits,
and thus D ⊂ E. An examination of the proof shows that the only place the division
based on E is used is in the proof of case (4), and that the division based on D works
just as well in that case.

We will first identify cells M ′ and N ′, respectively, and we will put the ele-
ments of a cell from partition P into M ′ if there exists a sequence 〈xt〉∞t=1 such that
SPm(〈xt〉∞t=1) is contained in that cell (similarly for N ′). In addition, given a set
S ⊂ N, if we can show that there does not exist an increasing sequence 〈xt〉∞t=1 such
that SPm(〈xt〉∞t=1) ⊂ S, then we will put the elements of S into N ′ (similarly forM ′).

Definition 1.5. N ′ = (N\Npk) ∪ (A0 ∩ Npk+1) ∪ (A2 ∩ Npk+1) ∪ (A3 ∩ Npk+1)∪
(A4∩N\L1∩Npk+1)∪ (A1∩L2∩D∩Npk+1)∪ (A1∩N\L2∩N\D∩Npk+1) and M ′ =
(Npk\Npk+1)∪(A4∩L1∩Npk+1)∪(A1∩L2∩N\D∩Npk+1)∪(A1∩N\L2∩D∩Npk+1).

We now show that {N ′,M ′} is a partition of N. We show this by first noting that
{N\Npk,Npk\Npk+1,Npk+1} is clearly a partition of N, and N\Npk ⊂ N ′ while Npk\
Npk+1 ⊂M ′. We now need only to account for Npk+1. Recall that {A0, A1, A2, A3, A4}
is a partition of N. Hence {A0 ∩ Npk+1, A1 ∩ Npk+1, A2 ∩ Npk+1, A3 ∩ Npk+1,
A4∩Npk+1} is a partition of Npk+1, and [(A0∩Npk+1)∪(A2∩Npk+1)∪(A3∩Npk+1)] ⊂
N ′. Observe that {A4 ∩ N\L1 ∩ Npk+1, A4 ∩ L1 ∩ Npk+1} is a partition of A4∩Npk+1,
and [(A4 ∩ N\L1 ∩ Npk+1)] ⊂ N ′ while (A4 ∩ L1 ∩ Npk+1) ⊂M ′. Note that {A1∩L2∩
N\D ∩ Npk+1, A1 ∩ N\L2 ∩D ∩ Npk+1, A1 ∩ N\L2 ∩ N\D ∩ Npk+1} is a partition of
A1 ∩ Npk+1, and [(A1 ∩ N\L2 ∩ N\D ∩ Npk+1) ∪ (A1 ∩ L2 ∩D ∩ Npk+1)] ⊂ N ′, while
[(A1 ∩ L2 ∩ N\D ∩ Npk+1) ∪ (A1 ∩ N\L2 ∩D ∩ Npk+1)] ⊂M ′.

358 GREGORY L. SMITH

The following is easily verified.
Lemma 1.6. There does not exist an increasing sequence 〈xt〉∞t=1 such that

SPm(〈xt〉∞t=1) ⊂ A0.
Definition 1.7. A5 = {xεN\A0 : p

2j+1/4 < x < p2j+1/2 for some jε ω}.
We state the following without proof.
Lemma 1.8.
(a) If x, yεA5 then xyεA2.
(b) If xεA2 and yεA3, then xyεA1 ∪A4.
Lemma 1.9. There does not exist an increasing sequence 〈xt〉∞t=1 such that

SPm(〈xt〉∞t=1) ⊆ A2.
Proof. Suppose we have an increasing sequence 〈xt〉∞t=1 such that SPm(〈xt〉)∞t=1 ⊆

A2. Pick #εN such that 1+p− < p1/2. (If p > 2, k = 1 will suffice. To see this consider
that in base p, 121 < 1000. That is, p2 + 2p + 1 < p3 so that (1 + 1

p)
2 < p.) Let

y =
∑m−1
t=1 xt and pick v such that xv > p

a(y)+ (Definition 1.2).
We first show that

(∗) if F is a finite nonempty subset of N and min F ≥ v, then
∏
tεF

xt /∈ A3 ∪A4.

Indeed, let such F be given and let z =
∏
tεF xt. Observe that a(z) + 1 − # ≥

a(y)+#+1−# = a(y)+1. Thus pa(z) < z+y < pa(z)+1+pa(y)+1 ≤ pa(z)+1+pa(z)+1− =
pa(z)+1(1+p−) < pa(z)+3/2. Since z+yεA2 we have a(z) is not odd; that is, z /∈ A3∪A4

as claimed.
Next observe that for at most one t ≥ v we can have xtεA2. (For if s > t ≥ v and

xs and xt are inA2, then by [2, Lemma 3.12(a)], xs·xtεA3∪A4, contradicting (*).) Also
observe that for all t > v, xt /∈ A0. Indeed, if we had such xt = p

a(xt) we would have
pa(xt) < xt+y < p

a(xt)+pa(y)+1 ≤ pa(xt)+pa(xt)− = pa(xt)(1+p−) < pa(xt)+1/2, while
xt+yεA2, a contradiction. (We have pa(xt)− ≥ pa(y)+1 because a(xt) ≥ a(y)+ #+1.)

Now pick w ≥ v such that pa(xw) > y/(p1/4 − 1) and for all t ≥ w, xtεA2. Then
for all t ≥ w, pa(xt)+1/2 − pa(xt)+1/4 > y. Now we claim that for all t ≥ w, xtεA5.
Therefore let t ≥ w be given. Since xt /∈ A0 ∪ A2 and by (*) xt /∈ A3 ∪ A4 we have
xtεA1. Then a(xt) is even and pa(xt) < xt < p

a(xt)+1/2 and xt + y > p
a(xt)+1/2 since

xt + yεA2. Thus xt > p
a(xt)+1/2 − y > pa(xt)+1/4, so xtεA5 as claimed.

Now pick i, j, s, t, with i > j > s > t ≥ w. Then xi · xjεA2 and xs · xtεA2 by
Lemma 1.8(a) so xi · xj · xs · xtεA3 ∪ A4 by [2, Lemma 3.12(a)]. This contradicts
(*) and completes the proof.

Lemma 1.10. There does not exist an increasing sequence 〈xt〉∞t=1 such that
SPm(〈xt〉∞t=1) ⊂ A3.

Proof. Suppose such a sequence 〈xt〉∞t=1 exists. By [2, Theorem 2.4 and Lemmas
2.2(b), 3.12(a) and 3.12(b)] we can assume that FP (〈xt〉∞t=1) ⊂ Aj for j = 0, 1, or 4.
First assume that FP (〈xt〉∞t=1) ⊂ A0, in which case each xtεA0. Now consider y =
xm−1 + · · · + x2 + x1. Note for infinitely many i’s we have xi > y and a(xi) is
even or odd. If infinitely many of the a(xi)’s are even, then pick one such i. Then
a(xi + y) = a(xi) so xi + yεA1 ∪A2, a contradiction. If infinitely many of the a(xi)’s
are odd, then pick v > w such that a(xv) and a(xw) are odd and xv and xw are larger
than y. Hence xvxw + yεA1 ∪A2, a contradiction.

Now assume that FP (〈xt〉∞t=1) ⊂ A4. Again, let y = xm−1 + · · ·+ x2 + x1. Pick #
such that a(x) > a(y) + 2. Now x + yεSPm(〈xt〉∞t=1) ⊆ A3 and pa(x�)+1 < x + y <
pa(x�)+1 + pa(y)+1 < pa(x�)+2 and a(x) is odd, so in fact pa(x�) < x + y < p

a(x�)+1/2.
However, then pa(x�) < x < p

a(x�)+1/2, so xεA3, a contradiction.

TWO CELL PARTITION 359

Finally assume that FP (〈xt〉∞t=1) ⊆ A1. Pick # such that pa(x�)+1/2 > y/(p1/2−1),
so y < pa(x�)+1−pa(x�)+1/2. Then pa(x�) < x < p

a(x�)+1/2 so pa(x�) < x+y < p
a(x)+1

and a(x) is even, while x + yεA3, a contradiction.
Lemma 1.11. There does not exist an increasing sequence 〈xt〉∞t=1 such that

SPm(〈xt〉∞t=1) ⊂ N\Npk.
Proof. Given a sequence 〈xt〉∞t=1 we can assume that the elements of FP (〈xt〉∞t=1)

are congruent mod pk+1 by [2, Theorem 2.4 and Lemma 2.2(b)]. Pick i such that
xt ≡ i mod pk for each t. Therefore, x1 + x2 + · · · + xm ≡ m · i mod pk. However,
pk|m · i. Therefore, SPm(〈xt〉∞t=1) can be contained only in the class 0 in Zpk.

We state the following without proof.
Lemma 1.12. Given a prime p and a, zεN. If a ≡ a2 mod pz, then a ≡ 0 or

a ≡ 1 mod pz.
Lemma 1.13. There does not exist an increasing sequence 〈xt〉∞t=1 such that

SPn(〈xt〉∞t=1) ⊂ Npk\Npk+1.
Proof. Suppose such a sequence 〈xt〉∞t=1 and # exist. By [2, Theorem 2.4 and

Lemma 2.2(b)], we can assume that the elements of FP (〈xt〉∞t=1) are congruent
mod pk+1. Hence for xεFP (〈xt〉∞t=1) we have that x ≡ 0 mod pk+1 or x ≡ 1
mod pk+1 since 0 and 1 are the only idempotents in Zpk+1 by Lemma 1.12. If
x ≡ 0 mod pk+1 for xεFP (〈xt〉∞t=1) we have SPn〈xt〉∞t=1 ⊆ Npk+1. Therefore x ≡ 1
mod pk+1 for εFP (〈xt〉∞t=1). Hence n·1 ≡ #pk mod pk+1 for some # ∈ {1, 2, . . . , p−1}.
Therefore for some c, cpk+1 = n− #pk. Therefore, n = cpk+1 − #pk which means that
pk|n, a contradiction.

Lemma 1.14. Given the sequence where xt = p
3·22t−1·4k − p2·22t−1·4k for tεN, let

Fε[N]<ω>0 with r = minF and let #(F) =
∑
tεF 3 · 22t−1 · 4k.

(a) Then p(F) >
∏
tεF x ≥ p(F) −∑tεF p

(F)−22t−1·4k.
(b) Then a(

∏
tεF xt)− c(

∏
tεF xt) ≥ a(xr)− c(xr)− 1.

Proof. (a) Given Fε[N]<ω>0 , let #(F) =
∑
tεF 3 · 22t−1 · 4k and let r = minF . We

claim that p(F) >
∏
tεF xt ≥ p(F) −∑tεF p

(F)−22t−1·4k which we will show by induc-

tion of |F |. Suppose |F |= 1. Then F = {r} and p(F) = p3·2
2r−1·4k > xr = p3·2

2r−1·4k−
p2·2

2r−1·4k = p(F) − p(F)−22r−1·4k. Now assume |F | > 1. Let G = F\{r}. We have

p(F)−3·22r−1·4k = p(G) >
∏
tεG xt ≥ p(G) −∑tεG p

(G)−22t−1·4k = p(F)−3·22r−1·4k −∑
tεG p

(F)−3·22r−1·4k−22r−1·4k. Also p3·2
2r−1·4k > xr = p3·2

2r−1·4k − p2·22r−1·4k. Hence
p(F) >

∏
tεG xt · xr ≥ p(F) − ∑tεG p

(F)−22t−1·4k − p(F)−3·22r−1·4k+2·22r−1·4k+∑
tεG p

(F)−3·22r−1·4k−22t−1·4k+2·22r−1·4k > p(F) − ∑tεF p
(F)−22t−1·4k. Therefore

p(F) >
∏
tεF xt ≥ p(F) −∑tεF p

(F)−22t−1·4k.
(b) Suppose |F | = 1; then F = {r} and we have that xr = p

(F) − p(F)−22r−1·4k.
Hence the digits are p− 1 from place position #(F)− 1 to #(F)− 22r−1 · 4k in base p.
Therefore,

a

(∏
tεF

xt

)
− c

(∏
tεF

xt

)
= #(F)− 1− [#(F)− 22r−1 · 4k − 1]

= 22r−1 · 4k.

Now assume |F | > 1. Then we have that p(F) >
∏
tεF xt ≥ p(F)−∑tεF p

(F)−22t−1·4k

by (a). If
∏
tεF xt = p

(F) −∑tεF p
(F)−22t−1·4k, then the digits are p− 1 from place

360 GREGORY L. SMITH

position #(F)− 1 to #(F)− 22r−1 · 4k + 1. Therefore,

a

(∏
tεF

xt

)
− c

(∏
tεF

xt

)
= #(F)− 1− [#(F)− 22r−1 · 4k]

= 22r−1 · 4k − 1.

And if
∏
tεF xt > p

(F) −∑tεF p
(F)−22t−1·4k, then the number of p− 1’s starting

from place position #(F) − 1 may increase. Hence c(
∏
tεF xt) ≤ #(F) − 22r−1 · 4k.

Therefore, in this case we have that

a

(∏
tεF

xt

)
− c

(∏
tεF

xt

)
≥ #(F)− 1− [#(F)− 22r−1 · 4k]

= 22r−1 · 4k − 1.

Therefore, in either case,

a

(∏
tεF

xt

)
− c

(∏
tεF

xt

)
≥ 22r−1 · 4k − 1 = a(xr)− c(xr)− 1.

Lemma 1.15. The sequence where xt = p
3·22t−1·4k − p2·22t−1·4k for t ∈ N has the

following properties:
(a) FP (〈xt〉∞t=1) ⊂ A4 ∩ Npk+1,
(b) a(xt)− c(xt) < d(xt) for tεN,

(c) a(xt+1)− c(xt+1) > a(
∏t
=1 x) + 1 for tεN,

(d) a(
∏
tεFi
xt)− c(

∏
tεFi
xt) > a(

∏
tεFj
xt) for Fi, Fjε[N]

<ω
>0 andmaxFj < minFi,

(e) a(
∏
tεF xt)− c(

∏
tεF xt) < d(

∏
tεF xt) for Fε[N]<ω>0 ,

(f) SPu(〈xt〉∞t=1) ⊂ A4 for uεN\{1},
(g) SPn(〈xt〉∞t=1) ⊂ N\L1.

Note, in the case n = 1, that we are considering FP (〈xt〉∞t=1) and stated results
hold.

Proof. (a) Given Fε[N]<ω>0 , let #(F) =
∑
tεF 3 · 22t−1 · 4k and let r = minF . By

Lemma 1.14(a) we have that

p(F) >
∏
tεF

xt ≥ p(F) −
∑
tεF

p(F)−22t−1·4k.

Now note that 2p(F)−22r−1·4k >
∑
tεF p

(F)−22t−1·4k. Let x, yεF and suppose

x < y. Then p(F)−22x−1·4k > p(F)−22y−1·4k. And since the elements of F are all
distinct we have that 2p(F)−22r−1·4k >

∑
tεF p

(F)−22t−1·4k since r = minF .
Hence ∏

tεF

xt ≥ p(F) −
∑
tεF

p(F)−22t−1·4k

> p(F) − 2p(F)−22r−·4k

≥ p(F) − p(F)−7 since p ≥ 2 and r, k ≥ 1

= p(F)(1− p−7)

> p(F)−1/2.

Therefore
∏
tεF xtεA4 ∩ Npk+1.

TWO CELL PARTITION 361

(b) Consider xt = p
3·22t−1·4k − p2·22t−1·4k. Therefore

a(xt)− c(xt) = 3 · 22t−1 · 4k − 1
[
2 · 22t−1 · 4k − 1

]
= 22t−1 · 4k
< 2 · 22t−1 · 4k
= d(xt).

(c)

a

(
∏
t=1

xt

)
= #− 1−

∑
t=1

a(xt)by (a) and [2, Lemma 3.8(a)]

= #− 1 +

∑
t=1

(3 · 22t−1 · 4k − 1)

=

∑
t=1

3 · 22t−1 · 4k − 1

<
3

2
· 4k ·

∑

t=1
4t

=
3

2
· 4k · 4

+1 − 4

3

= 4k · 4
+1 − 4

2
= 4k(2 · 4 − 2)

= 4k(22+1 − 2)

< 22+1 · 4k − 1

= a(x+1)− c(x+1)− 1.

Hence a(x+1)− c(x+1) > a(
∏
t=1 xt) + 1.

(d) Pick Fi, Fjε[N]
<ω
>0 , where maxFj < minFi. Let r = minFi.

Therefore

a

(∏
tεFi

xt

)
− c

(∏
tεFi

xt

)
≥ a(xr)− c(xr)− 1 by Lemma 1.14(b)

> a

(
r−1∏
t=1

xt

)
by (c)

≥ a

∏
tεFj

xt

 .

Hence a(
∏
tεFi
xt)− c(

∏
tεFi
xt) > a(

∏
tεFj
xt).

(e) Given Fε[N]<ω>0 , let r = minF . Note

a

(∏
tεF

xt

)
− c

(∏
tεF

xt

)
≤ a(xr)− c(xr) by (a) and [2, Lemma 3.10(a)]

< d(xr) by (b)

≤ d
(∏
tεF

xt

)
.

362 GREGORY L. SMITH

(f) For uεN pick xεSPu(〈xt〉∞t=1). Hence x =
∏
tεF1
xt+

∏
tεF2
xt+ · · ·+

∏
tεFu
xt,

where maxFi < minFi+1 for iε{1, . . . , u− 1}. Note ∏tεFu
xtεA4. And since we have

no carrying when adding by (d) and (e), we have that a(x) = a(
∏
tεFu
xt). Hence

since
∏
tεF xt > p

a(x)+1/2 we have x > pa(x)+1/2. Therefore SPu(〈xt〉∞t=1) ⊂ A4.
(g) Pick xεSPn(〈xt〉∞t=1). Hence x =

∏
tεF1
xt +

∏
tεF2
xt + · · · +

∏
tεFn
xt, where

maxFi < minFi+1 for iε{1, . . . , n−1}. Suppose xεL1. Then there exist z1, z2, . . . , zm
such that

∏
tεFn
xt + · · ·+

∏
tεF1
xt = zm + · · ·+ z1, where d(zm) > a(zm)− c(zm) >

a(zm−1) > d(zm−1) > a(zm−1)− c(zm−1) > · · · > d(z1) > a(z1)− c(z1).
Now pick the first α and β starting from the left, where a(

∏
tεFα
xt) = a(zβ) and

a(
∏
tεFα
xt) �= d(zβ). This must occur since m > n. Hence we have case (A), where

d(
∏
tεFα
xt) < d(zβ), and case (B), where d(

∏
tεFα
xt) > d(zβ). The following case

illustration will be helpful; * means a nonzero digit in base p.

a(zβ) d(zβ) a(zβ−1) d(zβ−1)
∗ ∗ ∗ ∗

(A) ∗ ∗→
a(
∏
tεFα
xt) d(

∏
tεFα
xt)

∗ ∗ ←∗
(B) a(

∏
tεFα
xt) d(

∏
tεFα
xt) a(

∏
tεFα−1 xt)

Now consider case (A). If c(zβ) lies between a(zβ) and d(zβ), then clearly a(zβ)−
c(zβ) = a(

∏
tεFα
xt) − c(

∏
tεFα
xt). However, if c(zβ) lies just to the right of d(zβ),

which will occur if the digits are p− 1 from a(zβ) to d(zβ), and a(zβ−1) is also to the
immediate right of d(zβ), then c(

∏
tεFα
xt) can lie to the right of a(zβ−1) (since a(zβ−1)

might be the position for p−1) in which case a(zβ)−c(zβ) < a(
∏
tεFα
xt)−c(

∏
tεFα
xt).

Therefore, we have d(
∏
tεFα
xt) ≤ a(zβ−1) < a(zβ)− c(zβ) ≤ a(

∏
tεFα
xt)− c(

∏
tεFα
xt)

< d(
∏
tεFα
xt), a contradiction. As for case (B), if c(

∏
tεFα
xt) lies between a(

∏
tεFα
xt)

and d(
∏
tεFα
xt), then a(

∏
tεFα
xt)− c(

∏
tεFα
xt) = a(zβ)− c(zβ). And if c(

∏
tεFα
xt)

is to the immediate right of d(
∏
tεFα
xt), which will occur if the digits are p− 1 from

a(
∏
tεFα
xt) to d(

∏
tεFα
xt), and a(

∏
tεFα−1

xt) is just to the right of d(
∏
tεFα
xt), then

c(zβ) can lie to the right of a(
∏
tεFα−1

xt) (since p − 1 may be in the a(
∏
tεFα−1

xt)

position) in which case a(
∏
tεFα
xt)− c(

∏
tεFα
xt) < a(zβ)− c(zβ). Therefore, we have

d(zβ) ≤ a(
∏
tεFα−1

xt) < a(
∏
tεFα
xt)− c(

∏
tεFα
xt) ≤ a(zβ)− c(zβ) < d(zβ), a contra-

diction. Hence xεN\L1. Therefore SPn(〈xt〉∞t=1) ⊂ N\L1.
Lemma 1.16. There is a sequence 〈xt〉∞t=1 such that SPm(〈xt〉∞t=1) ⊂ A4 ∩ L1 ∩

Npk+1.
Proof. Pick the sequence 〈xt〉∞t=1 of Lemma 1.15. Then by Lemma 1.15(a) we have

that FP (〈xt〉∞t=1) ⊂ A4 ∩ Npk+1. And by Lemma 1.15(f) we have SPm(〈xt〉∞t=1) ⊂ A4.
By Lemmas 1.15(d) and (e) we have for xεSPm(〈xt〉∞t=1) that xεL1. Hence SPm(〈xt〉∞t=1)
⊂ L1. And since 0 ·m = 0 in Zpk+1 we have that SPm(〈xt〉∞t=1) ⊂ A4 ∩ L1∩
Npk+1.

Lemma 1.17. There is a sequence 〈xt〉∞t=1 such that SPn(〈xt〉∞t=1) ⊂ A4 ∩N\L1 ∩
Npk+1.

Proof. Again pick the sequence 〈xt〉∞t=1 of Lemma 1.15. Then FP (〈xt〉∞t=1) ⊂
A4 ∩ Npk+1 by Lemma 1.15(a). And by Lemma 1.15(f) we have SPn(〈xt〉∞t=1) ⊂ A4.
By Lemma 1.15(g) we have that SPn(〈xt〉∞t=1) ⊂ N\L1. And since 0 ·m = 0 in Zpk+1

we have that SPn(〈xt〉∞t=1) ⊂ A4 ∩ N\L1 ∩ Npk+1.

Lemma 1.18. Given the sequence where xt =
∑m+1
i=1 p

(1+i)(m+1)2t−1·6k for tεN,
let Fε[N]<ω>0 with r = minF and let #(F) =

∑
tεF (m+ 2)(m+ 1)2t−1 · 6k.

TWO CELL PARTITION 363

(a) Then

p(F) <
∏
tεF

xt < p
(F) + 2

∑
tεF

p(F)−(m+1)2t−1·6k+1.

(b) Then

a

(∏
tεF

xt

)
− b

(∏
tεF

xt

)
≥ a(xr)− b(xr)− 2.

Proof. (a) Given Fε[N]<ω>0 , let #(F) =
∑
tεF (m+ 2)(m+ 1)2t−1 · 6k and let r =

minF . We claim that p(F) <
∏
tεF xt < p

(F) + 2
∑
tεF p

(F)−(m−1)2t−1·6k+1 which
we will show by induction on |F |. Suppose |F | = 1. Then F = {r} and p(F) =

p(m+2)(m+1)2r−1·6k < xr =
∑m+1
i=1 p

(1+i)(m+1)2r−1·6k < p(m+2)(m+1)2r−1·6k+
p(m+1)(m+1)2r−1·6k+1 < p(m+2)(m+1)2r−1·6k + 2p(m+1)(m+1)2r−1·6k+1 = p(F)+
2p(F)−(m+2)(m+1)2t−1·6k+1. Now assume |F | > 1. Let G = F/{r}. We have

p(F)−(m+2)(m+1)2r−1·6k = p(G) <
∏
tεG xt < p

(G) + 2
∑
tεG p

(G)−(m+1)2t−1·6k+1 =

p(F)−(m+2)(m+1)2r−1·6k + 2
∑
tεG p

(F)−(m+2)(m+1)2r−1·6k−(m+1)2t−1·6k+1. Hence since

xr < p
(m+2)(m+1)2r−1·6k + p(m+1)(m+1)2r−1·6k+1, we have

p(F) <
∏
tεG

xt · xr < p(F) + 2
∑
tεG

p(F)−(m+1)2t−1·6k+1 + p(F)−(m+1)2r−1·6k+1

+ 2
∑
tεG

p(F)−(m+1)2r−1·6k+1−(m+1)2t−1·6k+1

< p(F) + 2
∑
tεG

p(F)−(m+1)2t−1·6k+1 + p(F)−(m+1)2r−1·6k+1 + p(F)−(m+1)2r−1·6k+1

= p(F) + 2
∑
tεG

p(F)−(m+1)2t−1·6k+1 + 2p(F)−(m+1)2r−1·6k+1

= p(F) + 2
∑
tεF

p(F)−(m+1)2t−1·6k+1.

(b) By (a) we have that p(F) <
∏
tεF xt < p

(F)+ 2
∑
tεF p

(F)−(m+1)2t−1·6k+1.

Observe that p(F) + 2
∑
tεF p

(F)−(m+1)2t−1·6k+1 has its leftmost nonzero digit in
place position #(F) in base p, and its next to leftmost nonzero digit comes from

2p(F)−(m+1)2r−1·6k+1 and so occurs at or to the right of position #(F)− (m+1)2r−1 ·
6k + 1. Hence b(

∏
tεF xt ≤ #(F)− (m+ 1)2r−1 · 6k + 2, and a(

∏
tεF xt) = #(F).

Therefore

a

(∏
tεF

xt

)
− b

(∏
tεF

xt

)
≤ #(F)− [#(F)− (m+ 1)2r−1 · 6k + 2]

= (m+ 1)2r−1 · 6k + 1

= a(xr)− b(xr)− 2.

364 GREGORY L. SMITH

Lemma 1.19. The sequence where xt =
∑m+1
i=1 p

(1+i)(m+1)2t−1·6k for tεN has the
following properties:

(a) FP (〈xt〉∞t=1) ⊂ A1 ∩ Npk+1,

(b) a(xt)− b(xt) < d(xt) for tεN,

(c) a(xt+1)− b(xt+1) > a(
∏t
=1 x) + 2 for tεN,

(d) a(
∏
tεFi
xt)− b(

∏
tεFi
xt) > a(

∏
tεFj
xt) for Fi, Fjε[N]

<ω
>0 andmaxFj < minFi,

(e) a(
∏
tεF xt)− b(

∏
tεF xt) < d(

∏
tεF xt) for Fε[N]<ω>0 ,

(f) SPu(〈xt〉∞t=1) ⊂ A1 for uε[N]\{1},
(g) SPu(〈xt〉∞t=1) ⊂ N\D for uεN\{1},
(h) SPn(〈xt〉∞t=1) ⊂ N\L2.
Again, in the case n = 1, we are considering FP (〈xt〉∞t=1) and stated results hold.
Proof. (a) Given Fε[N]<ω>0 , let #(F) =

∑
tεF (m + 2)(m + 1)2t−1 · 6k and let

r = minF. By Lemma 1.18(a) we have that

p(F) <
∏
tεF

xt < p
(F) + 2

∑
tεF

p(F)−(m+1)2t−1·6k+1.

Now note that

4p(F)−(m+1)2r−1·6k+1 > 2
∑
tεF

p(F)−(m+1)2t−1·6k+1.

Let x, yεF and suppose x < y. Then p(F)−(m+1)2x−1·6k+1 > p(F)−(m+1)2y−1·6k+1. And
since the elements of F are distinct we have that a(p(F)−(m+1)2r−1·6k+1) = a(

∑
tεF

p(F)−(m+1)2t−1·6k+1). Therefore 4p(F)−(m+1)2r−1·6k+1 > 2
∑
tεF p

(F)−(m+1)2t−1·6k+1

since r = minF . Hence

∏
tεF

xt < p
(F) +

∑
tεF

p(F)−(m+1)2t−1·6k+1

< p(F) + 4p(F)−(m+1)2r−1·6k+1

≤ p(F) + p(F)−16 since m ≥ 2, r, k ≥ 1 and p2 ≥ 4

= p(F)(1 + p−6)

< p(F)+1/2.

Therefore
∏
tεF xtεA1 ∩ Npk+1.

(b) Consider xt =
∑m+1
i=1 p

(1+i)(m+1)2t−1·6k. Therefore

a(xt)− b(xt) = (m+ 2)(m+ 1)2t−1 · 6k − (m+ 1)(m+ 1)2t−1 · 6k
= (m+ 1)2t−1 · 6k
< 2(m+ 1)2t−1 · 6k
= d(xt).

TWO CELL PARTITION 365

(c)

a

(
∏
t=1

xt

)
=

∑
t=1

a(xt) by (a) and [2, Lemma 3.8(b)]

=

∑
t=1

(m+ 2)(m+ 1)2t−1 · 6k

=
m+ 2

m+ 1
· 6k ·

∑
t=1

(m+ 1)2t

=
m+ 2

m+ 1
· 6k · (m+ 1)2+2 − (m+ 1)2

(m+ 1)2 − 1

= (m+ 2)6k · (m+ 1)2+1 − (m+ 1)

m2 + 2m

= 6k · (m+ 1)2+1 − (m+ 1)

m

< (m+ 1)2+1 · 6k − 2

= a(x+1)− b(x+1)− 2.

(d) Pick Fi, Fjε[N]
<ω
>0 , where maxFj < maxFi. Let r = minFi.

Therefore

a

(∏
tεFi

xt

)
− b

(∏
tεF i

xt

)
≥ a(xr)− b(xr)− 2 by Lemma 1.18(b)

≥ a
(
r−1∏
t=1

xt

)
by (c)

≥ a
(∏
t=F

xt

)
.

Hence a(
∏
tεFi
xt)− b(

∏
tεFi
xt) > a(

∏
tεFj
xt).

(e) Given Fε[N]<ω>0 , let r = minF . Note

a

(∏
tεF

xt

)
− b

(∏
tεF

xt

)
≤ a(xr)− b(xr) by (a) and [2, Lemma 3.10(b)]

< d(xr) by (b)

≤ d
(∏
tεF

xt

)
.

Therefore a(
∏
tεF xt)− b(

∏
tεF xt) < d(

∏
tεF xt).

366 GREGORY L. SMITH

(f) For uε[N] pick xεSPu(〈xt〉∞t=1). Hence x =
∏
tεF1
xt+

∏
tεF2
xt+ · · ·+

∏
tεFu
xt,

where maxFi < minFi+1, for iε{1, . . . , u− 1}. Note that ∏tεFu
xtεA1 by (a), and we

have p(Fu) >
∏
tεFu
xt < p

(Fu) + 2
∑
tεFu
p(Fu)−(m+1)2t−1·6k+1 by Lemma 1.15(a).

Let r = minFu. Then 2p(Fu)−(m+1)2r−1·6k+1 ≤ p(Fu)−18 since p ≥ 2,m ≥ 2, and
r, k ≥ 1. Hence b(

∏
tεFu
xt) ≤ #(Fu) − 18. And since we have no carrying when

adding by (d) and (e), we have p(Fu) <
∏
tεF1
xt + · · ·+

∏
tεFu
xt < p

(Fu)+1/2 since
b(
∏
tεFu
xt) ≤ #(Fu)− 18. Therefore SPu(〈xt〉∞t=1) ⊂ A1.

(g) Given Fε[N]<ω>0 , let r = maxF . We will show by induction on |F | that∏tεF xt
has at least m + 1 nonzero digits in its base p expansion. Suppose |F | = 1. Then

F = {r} and xr =
∑m+1
i=1 p

(l+i)(m+1)2r−1·6k has at leastm+1 nonzero digits in its base
p expansion. Now assume |F | > 1. Let G = F\{r}. We have that

∏
tεG xt has at least

m+1 nonzero digits in its base p expansion. Hence since a(xr)−b(xr) > a(
∏
tεG xt)+2

by (c) we have that
∏
tεG xt · xr =

∏
tεF xt written in base p has a copy of

∏
tεF xt

from position a(
∏
tεF xt) to a(xr). Therefore

∏
tεF xt has at least m+1 nonzero digits

in its base p expansion.
Now pick xεSPu(〈xt〉∞t=1) for uεN. Hence x =

∏
tεF1
xt+

∏
tεF2
xt+ · · ·+

∏
tεFu
xt,

where maxFi < minFi+1 for iε{1, . . . , u−1}. Since we have no carrying when adding
by (d) and (e), we have that

∏
tεF1
xt + · · · +

∏
tεFu
xt has at least m + 1 nonzero

digits in its base p expansion. So xεN\D. Therefore SPu(〈xt〉∞t=1) ⊂ N\D.
(h) Pick xεSPn(〈xt〉∞t=1). Hence x =

∏
tεF1
xt + · · · +

∏
tεFn
xt, where maxFi <

minFi+1 for iε{1, . . . , n−1}. Suppose xεL2. Then there exist z1, z2, . . . , zm such that∏
tεFn
xt + · · ·+

∏
tεF1
xt = zm + · · ·+ z1, where d(zm) > a(zm)− b(zm) > a(zm−1) >

d(zm−1) > a(zm−1)− b(zm−1) > · · · > d(z1) > a(z1)− b(z1).
Now pick the first α and β starting from the left where a(

∏
tεF xt) = a(zβ)

and d(
∏
tεFα

) �= d(zβ). This will occur since m > n. Hence we have case (A)
where d(

∏
tεFα
xt) < d(zβ) and case (B) where d(

∏
tεFα
xt) > d(zβ). The following

illustration of cases will be helpful, where * means a nonzero digit in base p.

a(zβ) b(zβ) d(zβ) a(zβ−1)

∗ ∗ ∗ ∗
(A) ∗ ∗ ←∗

a(
∏
tεFα
xt) b(

∏
tεFα
xt) d(

∏
tεFα
xt)

∗ ∗ ∗ ←∗

(B) a(
∏
tεFα
xt) b(

∏
tεFα
xt) d(

∏
tεFα
xt) a(

∏
tεFα−1

xt)

or ∗ ∗ ←∗

a(
∏
tεFα
xt) b(

∏
tεFα
xt) = d(

∏
tεFα
xt) a(

∏
tεFα−1

xt)

Note that for Fε[N]<ω>0

∏
tεF xt is not a single nonzero digit in base p. Also zβ is

not a single nonzero digit in base p since then one would have d(zβ) = a(zβ) <
a(zβ) + 1 = a(zβ) − b(zβ). Then in either case (A) or (B) we have a(zβ) − b(zβ) =
a(
∏
tεFα
xt)− b(

∏
tεFα
xt).

In case (A) we have d(zβ) ≤ a(zβ−1) < a(zβ)− b(zβ) = a(
∏
tεFα
xt)− b(

∏
tεFα
xt) <

d(
∏
tεFα
xt), a contradiction. In case (B), we have d(zβ) ≤ a(

∏
tεFα−1

xt) < a(
∏
tεFα
xt)

TWO CELL PARTITION 367

− b(∏tεFα
xt) = a(zβ) − b(zβ) < d(zβ), a contradiction. Hence xεN\L2. Therefore

SPn(〈xt〉∞t=1) ⊂ N\L2.
Lemma 1.20. There is a sequence 〈xt〉∞t=1 such that SPm(〈xt〉∞t=1) ⊂ A1 ∩ L2 ∩

N\D ∩ Npk+1.
Proof. Pick the sequence 〈xt〉∞t=1 of Lemma 1.19. Then by Lemma 1.19(a) we

have that FP (〈xt〉∞t=1) ⊂ A1 ∩ Npk+1. By Lemma 1.19(f) we have SPm(〈xt〉∞t=1) ⊂
A1. By Lemmas 1.19(d) and (e) we have for xεSPm(〈xt〉∞t=1) that xεL2. Therefore
SPm(〈xt〉∞t=1) ⊂ L2. And SPm(〈xt〉∞t=1) ⊂ N\D by Lemma 1.19(g). Also, since
0̄ ·m = 0̄ in Zpk+1, we have that SPm(〈xt〉∞t=1) ⊂ A1 ∩ L2 ∩ N\D ∩ Npk+1.

Lemma 1.21. There is a sequence 〈xt〉∞t=1 such that SPn(〈xt〉∞t=1) ⊂ A1 ∩N\L2 ∩
N\D ∩ Npk+1.

Proof. Again pick the sequence 〈xt〉∞t=1 of Lemma 1.19. For n = 1 we have
FP (〈xt〉∞t=1) ⊂ A1 ∩ Npk+1 by Lemma 1.19(a). And by Lemma 1.19(f) we have
SPn(〈xt〉∞t=1) ⊂ A1. By Lemma 1.19(h) we have that SPn(〈xt〉∞t=1) ⊂ N\L2. And
SPn(〈xt〉∞t=1) ⊂ N\D by Lemma 1.19(g). Also since 0 · n = 0 in Zpk+1 we have that
SPn(〈xt〉∞t=1) ⊂ A1 ∩ N\L2 ∩ N\D ∩ Npk+1.

Lemma 1.22. The sequence where xt = p3·2
2t−1·4k for tεN has the following

properties:
(a) FP (〈xt〉∞t=1) ⊂ A0 ∩ Npk+1,

(b) a(xt+1) > a(
∏t
=1 x) + 8 for tεN,

(c) d(
∏
tεFi
xt) > a(

∏
tεFj
xt) + 8 for Fi, Fj [N]

<ω
>0 and maxFj < minFi,

(d) SPu(〈xt〉∞t=1) ⊂ A1 for uε[N]\{1},
(e) SPm(〈xt〉∞t=1) ⊂ D,
(f) SPm(〈xt〉∞t=1) ⊂ N\L2.

Proof. (a) Given Fε[N]<ω>0 , clearly
∏
tεF xtεA0 ∩ Npk+1 since xtεA0 ∩ Npk+1 for

all tεN. Hence FP (〈xt〉∞t=1) ⊂ A0 ∩ Npk+1.
(b)

a

(
∏
t=1

xt

)
=

∑
t=1

a(xt) due to (a)

=

∑
t=1

3 · 22t−1 · 4k

=
3

2
· 4k ·

∑
t=1

4t

=
3

2
· 4k 4

+1 − 4

3

= 4k · 4
+1 − 4

2

= 4k(2 · 4 − 2)

= 4k(22+1 − 2)

< 3 · 22+1 · 4k − 8

= a(x+1)− 8.

Hence a(x+1) > a(
∏
t=1 xt) + 8.

(c) Pick Fi, Fjε[N]
<ω
>0 where maxFj < minFi. Let r = minFi.

368 GREGORY L. SMITH

Therefore

d

(∏
tεFi

xt

)
= a

(∏
tεFi

xt

)
due to (a)

≥ a(xr)

> a

(
r−1∏
t=1

xt

)
+ 8

≥ a

∏
tεFj

xt

 = 8

(d) For uεN\{1} pick xεSPu(〈xt〉∞t=1). Hence x =
∏
tεF1
xt +

∏
tεF2
xt + · · · +∏

tεFu
xt, where maxFi < minFi+1 for iε{1, . . . , u− 1}. Note∏tεFi

xtA0 for iε{1, . . . , u}
by (a) and let # = a(

∏
tεFu
xt). Since we have no carrying when adding in base p by

(c), we have that p <
∏
tεF1
xt + · · ·+

∏
tεFu
xt < p

+1/2 since a(
∏
tεFu−1

xt) < #− 8

by (c). Therefore SPu(〈xt〉∞t=1) ⊂ A1.
(e) Pick xεSPm(〈xt〉∞t=1). Hence x =

∏
tεF1
xt + · · · +

∏
tεFm

xt where maxFi <
minFi+1 for iε{1, . . . ,m − 1}. Note again that

∏
tεFi
xtεA0 for iε{1, . . . ,m} by (a).

Hence
∏
tεF1
xt + · · ·+

∏
tεFm

xt has m ones in its base p expansion since there is no
carrying when adding by (c). Therefore SPm(〈xt〉∞t=1) ⊂ D.

(f) Pick xεSPm(〈xt〉∞t=1). By (e) x has exactly m nonzero digits in its base p
expansion. Recall that L2 =

∑m
t−1 zt : for each tε{1, 2, . . . ,m}, d(zt) > a(zt) − b(zt)

and if t > 1, a(zt)− b(zt) > a(zt−1)}. And note that if
∑m
t=1 zt is as in the definition

of L2, then zt does not have an expansion consisting of a single nonzero digit, since
then one would have d(zt) = a(zt) < a(zt)+1 = a(zt)− b(zt). Therefore the elements
of L2 have at least 2m nonzero digits. Hence SPm(〈xt〉∞t=1) ⊂ N\L2.

Lemma 1.23. There is a sequence 〈xt〉∞t=1 such that SPm(〈xt〉∞t=1) ⊂ A1∩N\L2∩
D ∩ Npk+1.

Proof. Pick the sequence 〈xt〉∞t=1 of Lemma 1.19. Then by Lemma 1.22(a) we have
that FP (〈xt〉∞t=1) ⊂ Npk+1. And by Lemma 1.22(d) we have SPm(〈xt〉∞t=1) ⊂ A1. We
have that SPm(〈xt〉∞t=1) ⊂ D by Lemma 1.22(e). Also SPm(〈xt〉∞t=1) ⊂ N\L2 by
Lemma 1.22(f). And since 0 · 0 in Zpk+1 we have that SPm(〈xt〉∞t=1) ⊂ A1 ∩ N\L2 ∩
D ∩ Npk+1.

Lemma 1.24. The set A1 ∩ L2 ∩D ∩ Npk+1 = ∅.
Proof. We need only show that L2 ∩D = ∅. Recall from the definition of L2 that

the elements of L2 must have at least 2m nonzero digits in their base p expansion,
whereas the members of D have exactly m nonzero digits in their base p expansion.
Hence A1 ∩ L2 ∩D ∩ Npk+1 = ∅.

Theorem 1.25. Let m and n be in N with m > n. Then there is a partition N =
N∪M such that whenever 〈xt〉∞t=1 is a sequence in N with SPm(〈xt〉∞t=1)[SPn(〈xt〉∞t=1)]
monochrome with respect to {N,M} one has SPm(〈xt〉∞t=1) ⊂M [SPn(〈xt〉∞t=1) ⊂ N].

Proof. Now let B1 = N\Npk, B2 = A0 ∩ Npk+1, B3 = A2 ∩ Npk+1, B4 = A3 ∩
Npk+1, B5 = A4 ∩ N\L1 ∩ Npk+1, B6 = A1 ∩ L2 ∩D ∩ Npk+1 and B7 = A1 ∩ N\L2 ∩
N\D∩Npk+1, B8 = Npk\Npk+1, B9 = A4∩L1∩Npk+1, B10 = A1∩L2∩N\D∩Npk+1,
and B11 = A1 ∩ N\L2 ∩D ∩ Npk+1. Let N = B1 ∪B2 ∪B3 ∪B4 ∪B5 ∪B6 ∪B7 and
let M ′ = B8 ∪B9 ∪B10 ∪B11. Let M = (M ′\{n}) ∪ {m} and N = (N ′\{m}) ∪ {n}.
Let sequences 〈xt〉∞t=1 and 〈yt〉∞t=1 be given with SPm(〈xt〉∞t=1) and SPn(〈yt〉∞t=1) both
monochrome with respect to {M,N}.

TWO CELL PARTITION 369

If infinitely often (or in fact at least m times) x1 = 1, then mεSPm(〈xt〉∞t=1)∩M ;
so, since SPm(〈xt〉∞t=1) is monochrome, SPm(〈xt〉∞t=1) ⊆M . Similarly, if infinitely of-
ten yt = 1, one has SPn(〈xt〉∞t=1) ⊆ N . Thus we may assume, by passing to subsys-
tems, that both 〈xt〉∞t=1 and 〈yt〉∞t=1 are increasing sequences.

By [2, Corollary 2.5] we may assume (by passing to subsystems) that we have i
and j in {1, 2, . . . , 11} such that SPm(〈xt〉∞t=1) ⊂ Bi and SPn(〈yt〉∞t=1) ⊆ Bj . We need
to show that iε{8, 9, 10, 11} and jε{1, 2, 3, 4, 5, 6, 7}.

Now i is not any of 1, 2, 3, or 4 by Lemmas 1.11, 1.6, 1.9, and 1.10, respectively.
Also i �= 5 by Lemma 1.18 and Theorem 1.4, i �= 7 by Lemma 1.21 and Theorem 1.4,
and i �= 6 by Lemma 1.24.

We have j �= 8 by Lemma 1.13. Also j �= 9 by Lemma 1.16 and Theorem
1.4, j �= 10 by Lemma 1.20 and Theorem 1.4, and j �= 11 by Lemma 1.23 and
Theorem 1.4.

REFERENCES

[1] N. Hindman, Partitions and sums and products—Two counterexamples, J. Combin. Theory Ser.
A, 29 (1980), pp. 113–120.

[2] G. Smith, Partitions and (m and n) sums of products, J. Combin. Theory Ser. A, 72 (1995),
pp. 77–94.

MINIMUM SPAN OF NO-HOLE (r + 1)-DISTANT COLORINGS∗

GERARD J. CHANG† , JUSTIE SU-TZU JUAN‡ , AND DAPHNE DER-FEN LIU§

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 3, pp. 370–380

Abstract. Given a nonnegative integer r, a no-hole (r+1)-distant coloring, called Nr-coloring,
of a graph G is a function that assigns a nonnegative integer (color) to each vertex such that the
separation of the colors of any pair of adjacent vertices is greater than r, and the set of the colors used
must be consecutive. Given r and G, the minimum Nr-span of G, nspr(G), is the minimum difference
of the largest and the smallest colors used in an Nr-coloring of G if there exists one; otherwise, define
nspr(G) = ∞. The values of nsp1(G) (r = 1) for bipartite graphs are given by Roberts [Math.
Comput. Modelling, 17 (1993), pp. 139–144]. Given r ≥ 2, we determine the values of nspr(G) for
all bipartite graph with at least r − 2 isolated vertices. This leads to complete solutions of nsp2(G)
for bipartite graphs.

Key words. vertex-coloring, no-hole (r + 1)-distant coloring, minimum span, bipartite graphs

AMS subject classification. 05C78

PII. S0895480198339456

1. Introduction. The T -coloring of graphs models the channel assignment prob-
lem introduced by Hale [6] in communication networks. In the channel assignment
problem, several transmitters and a forbidden set T (called T -set) of nonnegative
integers with 0 ∈ T are given. We assign a nonnegative integral channel to each
transmitter under the constraint that if two transmitters interfere, the difference of
their channels does not fall within the given T -set. Two transmitters may interfere
due to various reasons such as geographic proximity and meteorological factors. To
formulate this problem, we construct a graph G such that each vertex represents a
transmitter, and two vertices are adjacent if their corresponding transmitters interfere.

Thus, we have the following definition. Given a T -set and a graph G, a T-coloring
of G is a function f : V (G)→ Z+ ∪ {0} such that

|f(x)− f(y)| /∈ T if xy ∈ E(G).

Note that if T = {0}, then T -coloring is the same as ordinary vertex-coloring.
A no-hole T -coloring of a graph G is a T -coloring f of G such that the set

{f(v) : v ∈ V (G)} is consecutive (the no-hole assumption). When T = {0, 1} and
T = {0, 1, 2, . . . , r}, a no-hole T -coloring is also called an N-coloring [16] and an Nr-
coloring (or no-hole (r+1)-distant coloring) [17], respectively. That is, an Nr-coloring
of a graph G is a vertex coloring f : V (G) → Z+ ∪ {0} such that the following two
conditions are satisfied:
• |f(x)− f(y)| ≥ r + 1 if uv ∈ E(G);

∗Received by the editors May 27, 1998; accepted for publication (in revised form) June 7, 2001;
published electronically August 29, 2001.

http://www.siam.org/journals/sidma/14-3/33945.html
†Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan

(gjchang@math.nctu.edu.tw). The research of this author was supported in part by the National
Science Council under grant NSC87-2115-M009-007 and the Lee and MTI Center for Networking
Research at NCTU.

‡Department of Computer Science and Information Engineering, National Chi Nan University, 1,
University Road, Puli, Nantou 545, Taiwan (jsjuan@csie.ncnu.edu.tw).

§Department of Mathematics, California State University, Los Angeles, CA 90032
(dliu@calstatela.edu). The research of this author was supported in part by the National Science
Foundation under grant DMS-9805945.

370

NO-HOLE (r + 1)-DISTANT COLORINGS 371

• the set {f(v) : v ∈ V (G)} is consecutive.
In terms of efficiency of the usage of the channels (colors), the variable T -span

has been considered. The span of a T -coloring f is the difference of the largest and
the smallest colors used in f(V); the T -span of a graph G, spT (G), is the minimum
span among all T -colorings of G.

The T -spans for different families of graphs and for different T -sets have been
studied extensively (see [3, 4, 5, 10, 11, 12, 14, 15, 18]). It is known [3, 10] that if T
is an r-initial set, that is, T = {0, 1, 2, . . . , r} ∪A where A is a set of integers without
multiples of (r + 1), then the following holds for all graphs:

(∗) spT (G) = (χ(G)− 1)(r + 1),

where χ(G), the chromatic number of G, is the minimum number of colors to properly
color vertices of G.

It is known [3] and not difficult to learn that for any given T -set and any graph
G, a T -coloring always exists. However, a no-hole T -coloring does not always exist.
For instance, as T = {0, 1}, then Kn, the complete graph with n vertices, does not
have a no-hole T -coloring for any n ≥ 2.

The minimum span of a no-hole T -coloring for a graph G is denoted by nspT (G).
If there does not exist a no-hole T -coloring for G, then nspT (G) = ∞. If T =
{0, 1, 2, . . . , r}, denote nspT (G) by nspr(G).

A no-hole T -coloring is also a T -coloring. Hence by (∗), a natural lower bound for
nspr(G) is (χ(G)−1)(r+1). Roberts [16] and Sakai and Wang [17] studied N-coloring
and Nr-coloring, respectively. Among the findings in [16, 17] are the results about the
existence of an N-coloring and an Nr-coloring for several families of graphs including
paths, cycles, bipartite graphs, and 1-unit sphere graphs. The authors also compare
the span of such a coloring (if there exists one) with the lower bound (χ(G)−1)(r+1).
The N-colorings and Nr-colorings studied in [16, 17] are not necessarily optimal; i.e.,
the spans are not always the minimum.

This article focuses on the exact values of the minimum Nr-span, nspr(G), espe-
cially for bipartite graphs, i.e., graphs with χ(G) ≤ 2. In section 2, we give preliminary
results for general graphs. In section 3, we explore the values of nspr(G) for bipartite
graphs. The solutions of nsp1(G) for bipartite graphs are given by Roberts [16]. We
determine the values of nspr(G) for any bipartite graph G with at least r− 2 isolated
vertices. This result also leads to a complete description of the values of nsp2(G) for
all bipartite graphs.

2. Preliminary results. In this section, we present several results about the
minimum Nr-span for general graphs. We show a number of upper and lower bounds
of nspr(G) for different types of graphs. In order to find the minimum span, without
loss of generality, we assume that the color 0 is always used in any Nr-coloring.

If |V (G)| = n and nspT (G) < ∞, then by definition a trivial upper bound for
nspT (G) is n − 1. On the other hand, any no-hole T -coloring is also a T -coloring,
hence we have the following proposition.

Proposition 2.1. For any T -set and any graph G with n vertices, spT (G) ≤
nspT (G); and nspT (G) ≤ n− 1 if nspT (G) <∞.

Combining Proposition 2.1 and (∗), we have the following proposition.
Proposition 2.2. For any r ∈ Z+ and any graph G with chromatic number

χ(G), (χ(G)− 1)(r + 1) ≤ nspr(G).
With the following result, we show a lower bound of nspr(G) in terms of r and

the number of isolated vertices in G.

372 GERARD J. CHANG, JUSTIE S.-T. JUAN, AND DAPHNE D.-F. LIU

Theorem 2.3. Suppose r ∈ Z+ and G is a graph with i isolated vertices, i ≥ 0,
and at least one edge. Then nspr(G) ≥ max{2r − i+ 1, r + 1}.

Proof. It suffices to show the result when nspr(G) is finite. Because G has at
least one edge, nspr(G) ≥ r + 1. Thus the lemma holds if i ≥ r.

Suppose i < r. Let f be an optimal Nr-coloring of G. By the no-hole assumption
of an Nr-coloring, the colors r, r− 1, . . . , 2, 1, 0, must be used by some vertices. Since
G has only i isolated vertices and i < r, there exists a nonisolated vertex u with
r − i ≤ f(u) ≤ r. Because u is nonisolated, there exists some vertex v such that
uv ∈ E(G). Then f(v) ≥ f(u), for otherwise 0 ≤ f(u)− f(v) ≤ r, a contradiction to
uv ∈ E(G). Therefore, we have

f(v) ≥ f(u) + r + 1 ≥ r − i+ r + 1 = max{2r − i+ 1, r + 1}.
This implies nspr(G) ≥ max{2r − i+ 1, r + 1}.

The union of two vertex-disjoint graphs G and H, denoted by G∪H, is the graph
with vertex set V (G ∪H) = V (G) ∪ V (H) and edge set E(G ∪H) = E(G) ∪ E(H).
For the case in which H has exactly one vertex x, G ∪H is denoted by G ∪ {x}.

The inequality nspr(G) ≤ nspr(G ∪ H) does not always hold. For instance, if
G = K2, then nsp1(G) = ∞, while nsp1(G ∪ {x}) = 2. In the rest of the section, we
present several results on unions of graphs.

Theorem 2.4. Suppose G is a graph with at least one edge; then
nspr+1(G ∪ {x}) ≥ nspr(G) + 1.

Proof. It suffices to show the result when nspr+1(G ∪ {x}) is finite. Suppose f is
an Nr+1-coloring of G ∪ {x}. Define a coloring g on V (G) by

g(v) =

{
f(v) if f(v) < f(x) or f(v) = 0,

f(v)− 1 if f(v) ≥ f(x) and f(v) > 0.

It is straightforward to verify that g is an Nr-coloring of G and the span of g is one
less than the span of f . Therefore, nspr+1(G ∪ {x}) ≥ nspr(G) + 1.

Theorem 2.5. Suppose G is a graph with nspr(G) = q(r + 1) + j, where q ≥ 1
and 0 ≤ j ≤ r, and H is a graph with q vertices. Then nspr+1(G∪H) ≤ nspr(G)+q.

Proof. It suffices to show the result when nspr(G) <∞. Let f be an optimal Nr-
coloring of G and f(V (G)) = {0, 1, . . ., nspr(G)}. Suppose V (H) = {x1, x2, . . . , xq}.
Define a coloring g on G ∪H, g : V (G ∪H)→ Z+ ∪ {0}, by

g(v) =

{
 (r+2)f(v)

r+1 � if v ∈ V (G),

k(r + 2)− 1 if v = xk ∈ V (H).

It is enough to show that g is an Nr+1-coloring for G∪H. Because f is onto, therefore
g(V (G ∪ H)) is a consecutive set; indeed g(V (G ∪ H)) = {0, 1, 2, . . . ,nspr(G) + q}.
If uv ∈ E(G ∪ H), then either uv ∈ E(G) or uv ∈ E(H). If uv ∈ E(H), then
|g(u) − g(v)| ≥ r + 2. If uv ∈ E(G), without loss of generality, assume f(u) > f(v).

Since f(u)−f(v) ≥ r+1, we have (r+2)f(u)
r+1 − (r+2)f(v)

r+1 ≥ r+2, so g(u)−g(v) ≥ r+2.
Hence g is an Nr+1-coloring with span nspr(G) + q. This completes the proof.

Note that the result in Theorem 2.5 is not always true if the assumption nspr(G) =
q(r + 1) + j does not hold. For instance, let G = K2 ∪ rK1 and H = K3; then
nspr(G) = r + 1 for any r. However, nspr+1(G ∪H) =∞ for any r ≥ 4.

Corollary 2.6. If G is a graph with r + 1 ≤ nspr(G) ≤ 2r + 1, then
nspr+1(G ∪ {x}) = nspr(G) + 1.

NO-HOLE (r + 1)-DISTANT COLORINGS 373

Proof. The corollary follows from Theorems 2.4 and 2.5.
Consider the graph G in Figure 2.1. According to Theorem 2.3, nsp1(G) ≥ 3 and

so the labeling in the figure gives that nsp1(G) = 3. According to Corollary 2.6, we
have nsp2(G ∪ {x}) = nsp1(G) + 1 = 4.

✍✌✎� ✍✌✎� ✍✌✎� ✍✌✎�
✍✌✎� ✍✌✎� ✍✌✎� ✍✌✎�
✍✌✎� ✍✌✎� ✍✌✎� ✍✌✎�

✍✌✎�

1

3

0

3

0

2

1

4

0

2x

4

0

3

G G ∪ {x}

nsp1(G) = 3 nsp2(G ∪ {x}) = 4

Fig. 2.1. Optimal N-coloring for G and optimal N2-coloring for G ∪ {x}.

3. Main results. In this section, we explore the minimum Nr-span for bipartite
graphs. It turns out that the number of isolated vertices in a bipartite graph plays
a key role for this problem. We give the values of nspr(G) for all bipartite graphs G
with at least r−2 isolated vertices. This result leads to complete solutions of nsp2(G)
for all bipartite graphs G.

In this section, a bipartite graph is conventionally denoted by G = (A,B, I, E),
where I is the set of all isolated vertices and (A,B) is a bipartition of all nonisolated
vertices such that each edge in G has one end in A and the other in B. A vertex v is
called an A-, B- or I-vertex if x ∈ A,B, or I, respectively.

The bipartite-complement Ĝ of a bipartite graph G = (A,B, I, E) with E �= ∅ is

the bipartite graph Ĝ with vertex set V (Ĝ) = A ∪B and edge set

E(Ĝ) = {ab : a ∈ A, b ∈ B, ab �∈ E}.
Note that the set of isolated vertices in Ĝ is not specified in the notation. Moreover,
we shall denote B′ the set of all B-vertices not adjacent to any A-vertex in Ĝ. If G is a
bipartite graph, then Ĝ is a subgraph of Gc, the complement of G (i.e., V (Gc) = V (G)
and E(Gc) = {uv : u �= v and uv /∈ E(G)}).

The N1-coloring for bipartite graphs has been studied by Roberts [16]. Although
the concept of the minimum N1-span was not introduced explicitly in [16], the follow-
ing theorem, which completely determines the values of nsp1(G) for bipartite graphs,
can be generated from [16].

Theorem 3.1 (see Roberts [16]). If G = (A,B, I, E) is a bipartite graph with
E(G) �= ∅, then

nsp1(G) =

2 if |I| ≥ 1,

3 if |I| = 0 and E(Ĝ) �= ∅,
∞ if |I| = 0 and E(Ĝ) = ∅.

374 GERARD J. CHANG, JUSTIE S.-T. JUAN, AND DAPHNE D.-F. LIU

As examples to Theorem 3.1, consider the graphs G1 and G2 in Figure 3.1. As
|I| ≥ 1 for G1, we have nsp1(G1) = 2. For G2, the facts |I| = 0 and E(Ĝ) �= ∅ imply
nsp2(G2) = 3.

✍✌✎� ✍✌✎� ✍✌✎� ✍✌✎�
✍✌✎� ✍✌✎� ✍✌✎� ✍✌✎�

✍✌✎� ✍✌✎�✍✌✎�

✑
✑

✑
✑

✑✑

✑
✑

✑
✑

✑✑◗
◗

◗
◗

◗◗

◗
◗

◗
◗

◗◗

◗
◗

◗
◗

◗◗✑
✑

✑
✑

✑✑❙
❙

❙
❙

❙
❙
❙�

�
�

�
�

�
�

0

0

1

3

3

2

0

0

2

2

1

G2 : |I| = 0 and E(Ĝ) �= ∅G1 : |I| ≥ 1

nsp1(G2) = 3nsp1(G1) = 2

Fig. 3.1. Two examples of optimal N-colorings for bipartite graphs.

Sakai and Wang [17] characterize the existence of an Nr-coloring by using the
Hamiltonian r-path. The d-path on n vertices, v1, v2, . . . , vn, has the edge set {vivj :
1 ≤ |i−j| ≤ d}. Figure 3.2 shows a 2-path with seven vertices. A 1-path on n vertices
is an ordinary path denoted as Pn. A Hamiltonian d-path of a graph G is a d-path
covering each vertex of G exactly once.

✍✌✎� ✍✌✎� ✍✌✎� ✍✌✎� ✍✌✎� ✍✌✎� ✍✌✎�
✤ ✜✤ ✜✤ ✜

✣ ✢✣ ✢
v1 v2 v3 v4 v5 v6 v7

Fig. 3.2. A 2-path with seven vertices.

Theorem 3.2 (see Sakai and Wang [17]). G has an Nr-coloring if and only if Gc

has a Hamiltonian r-path. Indeed, if f is an Nr-coloring such that f(v1) ≤ f(v2) ≤
. . . ≤ f(vn), then v1, v2, . . . , vn is a Hamiltonian r-path in Gc.

If the lower bound of nspr(G) in Theorem 2.3 is attained by some graph G,
according to Proposition 2.2, G must be bipartite. Such graphs do exist. In the next
theorem, we show a sufficient condition for such graphs.

Theorem 3.3. Suppose G = (A,B, I, E) is a bipartite graph with at least one
edge. If |I| ≥ r, then nspr(G) = r+1; if |I| ≤ r−1 and there exist {a1, a2, . . . , ar−|I|} ⊆
A and {b1, b2, . . . , br−|I|} ⊆ B such that ajbk /∈ E(G) for j + k ≥ r − |I| + 1, then
nspr(G) = 2r − |I|+ 1.

Proof. It is obvious that nspr(G) ≥ r + 1, since E(G) �= ∅.
If |I| ≥ r, coloring A-vertices with 0, B-vertices with r + 1, and I-vertices with

1, 2, . . . , r gives an Nr-coloring. Therefore, nspr(G) = r + 1.
If |I| ≤ r − 1, by Theorem 2.3, nspr(G) ≥ 2r − |I| + 1. Hence it suffices to find

NO-HOLE (r + 1)-DISTANT COLORINGS 375

an Nr-coloring with span at most 2r− |I|+1. Define a coloring by the following four
steps:

(1) color a1, a2, . . . , ar−|I| with 1, 2, . . . , r − |I|, respectively;

(2) color I-vertices with r − |I|+ 1, r − |I|+ 2, . . . , r;

(3) color br−|I|, br−|I|−1, . . . , b1 with r + 1, r + 2, . . . , 2r − |I|, respectively; and

(4) color all the remaining A-vertices with 0 and B-vertices with 2r − |I|+ 1.

By the assumption that ajbk /∈ E(G) for j + k ≥ r − |I|+ 1, it is easy to verify that
the coloring defined above is an Nr-coloring with span at most 2r − |I|+ 1.

Corollary 3.4. Let G = (A,B, I, E) be a bipartite graph with at least one edge.

(a) If |I| ≤ r − 1 and E(Ĝ) = ∅, then nspr(G) =∞.

(b) If |I| = r − 1, then nspr(G) = r + 2 if and only if E(Ĝ) �= ∅.
(c) If |I| = r − 2 and there exists a P4 in Ĝ, then nspr(G) = r + 3.

Proof. We need only to show (a), since (b) and (c) follow from Theorem 3.3.

Suppose |I| ≤ r − 1 and E(Ĝ) = ∅. Then, G − I is a complete bipartite graph
K|A|,|B|. Combining this with the assumption that |I| ≤ r− 1, G does not admit any
Nr-coloring, so nspr(G) =∞.

Combining Theorem 3.3 and Corollary 3.4(b), the values of nspr(G) for bipartite
graphs with at least r − 1 isolated vertices are settled. In the rest of the article,
we shall focus on the Nr-coloring for bipartite graphs G = (A,B, I, E) with at most
r − 2 isolated vertices. By Corollary 3.4(a), we may assume 2 ≤ |A| ≤ |B|. In the
rest of the section, we search for the exact value of nspr(G) to complete the case as

|I| = r − 2. By Corollary 3.4(c), it suffices to consider the case that Ĝ contains no
P4. We first show a lemma which is a key to settle this problem.

For any real number x, denote max{x, 0} by x+. For any two integers a and b,
a ≤ b, let [a, b] denote the set {a, a+ 1, a+ 2, . . . , b}.

Lemma 3.5. Let G = (A,B, I, E) be a bipartite graph with 2 ≤ m = |A| ≤ |B|,
|I| ≤ r − 2, and Ĝ contains no P4. If nspr(G) <∞, then the following are all true:

(a) In the graph Ĝ, every B-vertex is adjacent to at most one A-vertex.
(b) There exist an arrangement Π = (A1, A2, . . . , Am) of A and nonnegative inte-

gers d1 = 0, c1, d2, c2, d3, . . . , dm, cm = 0 such that deg
Ĝ
(Ak) = dk+ck for 1 ≤

k ≤ m and |I| ≥ q(Π) :=
∑m−1
k=1 qk, where qk = max{(r− ck)+, (r− dk+1)

+}.
(c) nspr(G) ≥ (m− 1)(2r + 1)− |I|.
(d) If B′ �= ∅, then |I| − q(Π) ≥ q′(Π) := min1≤k≤m−1 q

′
k, where q′k = min{(r −

ck)
+, (r − dk+1)

+}.
(e) If B′ �= ∅, then nspr(G) ≥ max{2r + 2, (m − 1)(2r + 1) − |I| + s(Π) + 1},

where s(Π) = min1≤k≤m−1{qk : q′k ≤ |I| − q(Π)}.
Proof. Suppose f is an optimal Nr-coloring for G. According to Theorem 3.2,

Gc has a Hamiltonian r-path P = v1, v2, . . . , v|V (G)| with 0 = f(v1) ≤ f(v2) ≤
· · · ≤ f(v|V (G)|). Without loss of generality, we assume the order of A-vertices on
the r-path P is Π = (A1, A2, . . . , Am). We call this an arrangement of A. Hence
f(A1) ≤ f(A2) ≤ · · · ≤ f(Am).

On P , let an A- (or B-) run be a maximal interval of consecutive A ∪ I- (or
B ∪ I-) vertices, starting and ending with A- (or B-) vertices. Note that there may
exist some I-vertices within one run or between two consecutive runs; and the runs
are alternating between A and B.

It is impossible to have two consecutive runs with at least two vertices in each.
For if it is possible, then there exist x, y ∈ A and z, w ∈ B whose order in P is
(x, y, z, w), and the vertices between x and w, other than y and z, are I-vertices.

376 GERARD J. CHANG, JUSTIE S.-T. JUAN, AND DAPHNE D.-F. LIU

Because |I| ≤ r − 2, (x− z − y − w) forms a P4 in Ĝ, a contradiction.
Analogously it is impossible to have two consecutive singleton runs (except pos-

sibly the first run and the last run). For if it is possible, then we get a P4 in Ĝ
by connecting the two consecutive singleton A-run and B-run with the B-vertex and
A-vertex before and after them.

We conclude that either all A-runs or all B-runs are singletons. As |A| ≤ |B|, all
A-runs are singletons and each B-run (except possibly the first run and/or the last
run) contains at least two vertices. Therefore between any Ak and Ak+1 on P , there
are only B- or I-vertices. Since |I| ≤ r − 2 and P is an Hamiltonian r-path in Gc,
there exist at least two B-vertices between Ak and Ak+1 that are adjacent to Ak.

To prove (a), suppose to the contrary that there exists v ∈ B such that vAk, vA� ∈
E(Ĝ) for some k < &. Then between Ak and A� on P there exists u ∈ B−{v} adjacent

to Ak in Ĝ. Thus (u − Ak − v − A�) forms a P4 in Ĝ, a contradiction. This proves
(a).

Claim. For all 1 ≤ k ≤ m− 1, we have f(Ak+1)− f(Ak) ≥ r + 2.
Proof of claim. Suppose f(Ak+1)−f(Ak) ≤ r+1 for some k. Then the B-vertices

between Ak and Ak+1 on P are adjacent to both Ak and Ak+1 in Ĝ, contradicting
(a).

Note that if A1 = vi, then P ′ = vi, vi−1, . . . , v2, v1, vi+1, vi+2, . . . , v|V (G)| is also
a Hamiltonian r-path in Gc, or, equivalently, f ′ defined by f ′(vj) = f(v1+i−j) for
1 ≤ j ≤ i and f ′(vj) = f(vj) for i < j ≤ |V (G)| is also an optimal Nr-coloring of
G. Therefore, without loss of generality, we may assume A1 = v1. Similarly, we may
assume that Am = v|V (G)|. Put

D1 := {y ∈ B : yA1 ∈ E(Ĝ) and f(y) < f(A1)} and d1 := |D1|,
C1 := {x ∈ B : xA1 ∈ E(Ĝ) and f(A1) ≤ f(x)} and c1 := |C1|,
Dk := {y ∈ B : yAk ∈ E(Ĝ) and f(y) ≤ f(Ak)} and dk := |Dk| for 2 ≤ k ≤ m,

Ck := {x ∈ B : xAk ∈ E(Ĝ) and f(Ak) < f(x)} and ck := |Ck| for 2 ≤ k ≤ m,
Ik := {z ∈ I : f(Ak) < f(z) < f(Ak+1)} and ik := |Ik| for 1 ≤ k ≤ m− 1,
I ′k := {z ∈ I : f(Ak) < f(z) ≤ f(Ak) + r} and i′k := |I ′k| for 1 ≤ k ≤ m− 1,
I ′′k := {z ∈ I : f(Ak+1)− r ≤ f(z) < f(Ak+1)} and i′′k := |I ′′k | for 1 ≤ k ≤ m− 1.

Then d1 = cm = 0 and deg
Ĝ
(Ak) = dk + ck for 1 ≤ k ≤ m. By (a), the Ci’s and

Dj ’s are all disjoint. By the claim, for any 1 ≤ k ≤ m, I ′k ∪ I ′′k ⊆ Ik (while I ′k and
I ′′k are not necessarily disjoint). Furthermore, it is clear that for any 1 ≤ k ≤ m− 1,
f−1[f(Ak)+1, f(Ak)+r] ⊆ Ck∪I ′k, since if f(Ak) < f(x) ≤ f(Ak)+r, then x ∈ Ck∪I ′k.
Similarly, f−1[f(Ak+1)− r, f(Ak+1)− 1] ⊆ Dk+1 ∪ I ′′k . Hence we have ck+ i′k ≥ r and
dk+1 + i′′k ≥ r, implying that ik ≥ max{i′k, i′′k} ≥ max{(r − ck)+, (r − dk+1)

+} = qk
for 1 ≤ k ≤ m− 1. Therefore,

(∗∗) |I| ≥
m−1∑
k=1

ik ≥
m−1∑
k=1

qk = q(Π).

This completes the proof of (b).
Now we have f−1[f(Ak) + 1, f(Ak) + r] ⊆ Ck ∪ I ′k ⊆ Ck ∪ Ik and f−1[f(Ak+1)−

r, f(Ak+1)−1] ⊆ Dk+1∪I ′′k ⊆ Dk+1∪Ik. Because Ck∩Dk+1 = ∅, at least r−ik colors of
[f(Ak+1)− r, f(Ak+1)−1] are not in [f(Ak)+1, f(Ak)+ r]. Thus f(Ak+1)−f(Ak) ≥
r + (r − ik) + 1 = 2r + 1 − ik for 1 ≤ k ≤ m − 1. Summing up, we get (c):
nspr(G) ≥ f(Am)− f(A1) ≥ (m− 1)(2r + 1)− |I|.

Now consider the case that B′ �= ∅; i.e., there exists some w ∈ B such that wAk �∈
E(Ĝ) for all 1 ≤ k ≤ m. Hence |f(w) − f(Ak)| ≥ r + 1 for all 1 ≤ k ≤ m. Assume

NO-HOLE (r + 1)-DISTANT COLORINGS 377

f(Ap) < f(w) < f(Ap+1) for some 1 ≤ p ≤ m−1. Then f(Ap+1)−f(Ap) ≥ 2r+2, so
I ′p ∩ I ′′p = ∅, implying that ip ≥ i′p+ i′′p ≥ (r− cp)+ +(r−dp+1)

+ = qp+ q′p. Replacing
ip ≥ qp + q′p to the last summation in (∗∗), we get |I| ≥ q(Π) + q′p ≥ q(Π) + q′(Π).
This proves (d).

Because f(Ap+1) − f(Ap) ≥ 2r + 2 ≥ 2r + 1 − ip + qp + 1, we have, from the
first inequality, nspr(G) ≥ f(Ap+1) − f(Ap) ≥ 2r + 2. Using the second inequality,
similar to the proof of (c), one can get nspr(G) ≥ (m − 1)(2r + 1) − |I| + qp + 1 ≥
(m− 1)(2r + 1)− |I|+ s(Π) + 1. This proves (e).

In the next result, we complete the solution of nspr(G) for bipartite graphs G =
(A,B, I, E) with |I| = r−2. Let s(G) = min s(Π), where Π runs over all arrangements
of A satisfying Lemma 3.5(b) and (d).

Theorem 3.6. Suppose G = (A,B, I, E) is a bipartite graph with 2 ≤ m = |A| ≤
|B|, 0 ≤ |I| = r − 2, and Ĝ has no P4. Then, nspr(G) <∞ if and only if Ĝ satisfies
Lemma 3.5(a), (b), and (d). In this case,

nspr(G) =

(2r + 1)(m− 1)− r + 2 if B′ = ∅,
2r + 2 if B′ �= ∅ and m = 2,
(2r + 1)(m− 1)− r + s(G) + 3 if B′ �= ∅ and m ≥ 3.

Proof. The necessity follows from Lemma 3.5. For the sufficiency, suppose
Π = (A1, A2, . . . , Am) is an arrangement of A satisfying Lemma 3.5(a), (b), and
(d). Moreover, assume s(Π) = s(G) when B′ �= ∅. By Lemma 3.5(a), any two A-

vertices have disjoint sets of neighbors in Ĝ. Then by Lemma 3.5(b), we can label

the neighbors of Ak in Ĝ by Ck,1, Ck,2, . . . , Ck,ck and Dk,1, Dk,2, . . . , Dk,dk+1
, respec-

tively, for 1 ≤ k ≤ m. In addition, since |I| ≥∑m−1
k=1 qk, there exist distinct I-vertices

Ik,1, Ik,2, . . . , Ik,qk for all k.
We shall complete the proof by considering the three cases.
Case 1. B′ = ∅. That is, B is the union of all the C-and D-vertices. It suffices to

find an Nr-coloring of G with span (2r+ 1)(m− 1)− r+ 2. (Then we not only prove
that Nr(G) < ∞ but also confirm that the span is optimal by Lemma 3.5(c).) We

first replace qm−1 by |I| −∑m−2
j=1 qj . Then qm−1 ≥ max{(r− cm−1)

+, (r− dm)+} and

|I| =∑m−1
j=1 qj . Indeed, letting B represent the C- and D-vertices and I for I-vertices

(without indicating the indices), we can line up all vertices of G as an Hamiltonian
r-path in Gc as

P = A1BB · · ·B︸ ︷︷ ︸
c1

II · · · I︸ ︷︷ ︸
q1

BB · · ·B︸ ︷︷ ︸
d2

A2 · · ·Am−1BB · · ·B︸ ︷︷ ︸
cm−1

II · · · I︸ ︷︷ ︸
qm−1

BB · · ·B︸ ︷︷ ︸
dm

Am.

Note that d1 = cm = 0. Define a coloring on G by the following three steps. (The
idea is to use each I-vertex to reduce the span by 1.)

(1) A-vertices: f(A1) = 0 and f(Ak+1) = f(Ak) + 2r+1− qk for 1 ≤ k ≤ m− 1.
(2) B-vertices: for all 1 ≤ k ≤ m− 1,

f(Ck,j) =

{
f(Ak) + j for 1 ≤ j ≤ r − qk − 1,
f(Ak) + r − qk for r − qk ≤ j ≤ ck,

f(Dk+1,j) =

{
f(Ak) + r + j for 1 ≤ j ≤ r − qk − 1,
f(Ak) + 2r − qk for r − qk ≤ j ≤ dk+1.

(3) I-vertices: f(Ik,j) = f(Ak) + r − qk + j for all qk > 0 and 1 ≤ j ≤ qk.

378 GERARD J. CHANG, JUSTIE S.-T. JUAN, AND DAPHNE D.-F. LIU

One can easily verify that f is an Nr-coloring for G with span (2r+1)(m− 1)− |I| =
(2r + 1)(m− 1)− r + 2.

Case 2. B′ �= ∅ and m = 2. Similar to Case 1, by Lemma 3.5(e), it suffices to
find an Nr-coloring of G with span nspr(G) = 2r+2. Define a coloring by f(A1) = 0,
f(A2) = 2r + 2, and f(z) = r + 1 for all vertices z in B′. Since |I| ≥ q(Π) + q′(Π) =
q1 + q′1 = (r− c1)+ + (r− d2)

+, there are enough I-vertices to use the colors between
0 and 2r + 2. Thus one can verify that this is an Nr-coloring of G with span 2r + 2.

Case 3. B′ �= ∅ and m ≥ 3. Again, by Lemma 3.5(e), it suffices to find an
Nr-coloring with span (2r + 1)(m− 1)− |I|+ s(G) + 1. Suppose s(Π) = qp for some
1 ≤ p ≤ m−1 with q′p ≤ |I|− q(Π). As before, we replace qi by qi+ |I|− q(Π)− q′p for
some i �= p. Then |I| = q1+q2+ · · ·+qp−1+(r−cp)++(r−dp+1)

++qp+1+ · · ·+qm−1.
All the C-, D-, and I-vertices are labeled the same as before, except the I-vertices
between Ap and Ap+1 are labeled as I ′p,1, I

′
p,2, . . . , I

′
p,(r−cp)+ , I

′′
p,1, I

′
p,2, . . . , I

′
p,(r−dp+1)+

.

Apply the same three-step coloring method used for the Case 1, except the colors for
the vertices between Ap and Ap+1 are defined by f(I ′p,j) = f(Ap) + r − (r − cp)+ + j
for 1 ≤ j ≤ (r− cp)+; f(w) = f(Ap)+ r+1 for all w ∈ B′; f(I ′′p,j) = f(Ap)+ r+1+ j
for 1 ≤ j ≤ (r − dp+1)

+; f(Ap+1) = f(Ap) + 2r + 2; and

f(Cp,j) =

{
f(Ap) + j for 1 ≤ j ≤ r − (r − cp)+ − 1,
f(Ap) + r − (r − cp)+ for r − (r − cp)+ ≤ j ≤ cp,

f(Dk,j) =

{
f(Ap) + r + 1 + (r − dp+1)

+ + j for 1 ≤ j ≤ r − (r − dp+1)
+ − 1,

f(Ap) + 2r + 1 for r − (r − dp+1)
+ ≤ j ≤ dp+1.

This gives an Nr-coloring for G with span (2r + 1)(m − 1) − |I| + s(G) + 1 = (2r +
1)(m− 1)− r + s(G) + 3.

Based on Lemma 3.5, using a similar process in the proof of Theorem 3.6, we
can also completely settle the case that I = ∅ and r ≥ 2. In this case, Lemma
3.5(b) means that qk = 0 for all k, or, equivalently, that Ĝ has two A-vertices of
degree at least r and the rest (m− 2) A-vertices of degree at least 2r. Furthermore,
Lemma 3.5(d) holds automatically, and s(Π) = 0. This implies that the lower bound
in Lemma 3.5(e) is simply (m − 1)(2r + 1) + 1. Hence the same labeling procedure
used in Theorem 3.6 gives the following result.

Theorem 3.7. Let G = (A,B, I, E) be a bipartite graph with 2 ≤ m = |A| ≤ |B|,
I = ∅, and Ĝ contains no P4. If r ≥ 2, then nspr(G) <∞ if and only if Lemma 3.5(a)

holds and Ĝ has two A-vertices of degree at least r and the other (m− 2) A-vertices
of degree at least 2r. In this case,

nspr(G) =

{
(2r + 1)(m− 1) if B′ = ∅,
(2r + 1)(m− 1) + 1 if B′ �= ∅.

By Corollary 3.4 and Theorems 3.3 and 3.7, we obtain the complete solutions of
nsp2(G) for bipartite graphs.

NO-HOLE (r + 1)-DISTANT COLORINGS 379

Theorem 3.8. If G = (A,B, I, E) is a bipartite graph with at least one edge and
1 ≤ m = |A| ≤ |B|, then

nsp2(G) =

3 if |I| ≥ 2;

4 if |I| = 1 and E(Ĝ) �= ∅;
5 if |I| = 0 and Ĝ has a P4;

5m− 5 if |I| = 0, B′ = ∅, and Ĝ is a disjoint union of m
stars, centered at A except that two of the stars have
at least 2 edges, each star has at least 4 edges;

5m− 4 same as the above, except B′ �= ∅;
∞ other than any of the above.

Figure 3.3 shows examples of Theorem 3.8.

✍✌✎� ✍✌✎� ✍✌✎� ✍✌✎� ✍✌✎� ✍✌✎�
✍✌✎� ✍✌✎� ✍✌✎� ✍✌✎� ✍✌✎� ✍✌✎�
✍✌✎� ✍✌✎� ✍✌✎� ✍✌✎� ✍✌✎� ✍✌✎�

✍✌✎�

✑
✑

✑
✑

✑✑

✑
✑

✑
✑

✑✑

✑
✑

✑
✑

✑✑◗
◗

◗
◗

◗◗

◗
◗

◗
◗

◗◗

◗
◗

◗
◗

◗◗

◗
◗

◗
◗

◗◗✑
✑

✑
✑

✑✑❙
❙

❙
❙

❙
❙
❙

❙
❙

❙
❙

❙
❙
❙�

�
�

�
�

�
�

�
�

�
�

�
�
�

0

0

1

3

3

2

0

0

1

4

4

3

2

0

1

2

5

4

3

G1: example for Case 1 G2: example for Case 2 G3: example for Case 3

nsp2(G1) = 3 nsp2(G2) = 4 nsp2(G3) = 5

	
	
	

	
	
	
	
	
	
	
	

	

	

	
	
	
	
	
	

❍❍❍❍❍❍❍

❍❍❍❍❍❍❍

❅
❅

❅
❅

❅
❅

❅

❅
❅

❅
❅

❅
❅

❅

✚
✚

✚
✚

✚
✚✚

❍❍❍❍❍❍❍

✘✘✘✘✘✘✘
✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✚
✚

✚
✚

✚
✚✚

✚
✚

✚
✚

✚
✚✚

✜
✜

✜
✜

✜
✜

✜
✜✜

✜
✜

✜
✜

✜
✜

✜
✜✜

✡
✡

✡
✡

✡
✡

✡
✡

✡
✡✡

10

5

0

9

8

7

6

4

3

2

1

6

0

5

4

3

3

2

1

G4: example for Case 4 G5: example for Case 5

nsp2(G4) = 10 nsp2(G5) = 6

Fig. 3.3. Five examples for Theorem 3.8.

380 GERARD J. CHANG, JUSTIE S.-T. JUAN, AND DAPHNE D.-F. LIU

Remark. This article is aimed at computing the values of nspT (G) for bipartite
graphs when T = {0, 1, . . . , r}. Another article by Chang, Juan, and Liu [1] deals
with the values of nspT (G) for unit-interval graphs when T = {0, 1}. The no-hole
T -colorings for some other T -sets and different families of graphs were studied by Liu
and Yeh [13]. It was proved [13] that if T is r-initial or T = [a, b], 1 ≤ a ≤ b, then
for any large n, there exists some graph on n vertices such that nspT (G) equals the
upper bound n− 1.

Acknowledgment. The authors are grateful to the two anonymous referees for
valuable comments.

REFERENCES

[1] G. J. Chang, S. Juan, and D. Liu, No-hole 2-distant colorings for unit interval graphs, Ars
Combinatoria, to appear.

[2] G. J. Chang, D. D.-F. Liu, and X. Zhu, Distance graphs and T -coloring, J. Combin. Theory
Ser. B, 75 (1999), pp. 259–269.

[3] M. B. Cozzens and F. S. Roberts, T -colorings of graphs and the channel assignment problem,
Congr. Numer., 35 (1982), pp. 191–208.

[4] M. B. Cozzens and F. S. Roberts, Greedy algorithms for T -colorings of complete graphs and
the meaningfulness of conclusions about them, J. Combin. Inform. System Sci., 16 (1991),
pp. 286–299.

[5] J. R. Griggs and D. D.-F. Liu, The channel assignment problem for mutually adjacent sites,
J. Combin. Theory Ser. A, 68 (1994), pp. 169–183.

[6] W. K. Hale, Frequency assignment: Theory and applications, Proc. IEEE, 68 (1980), pp. 1497–
1514.

[7] S. J. Hu, S. T. Juan, and G. J. Chang, T -Colorings and T -edge spans of graphs, Graphs
Combin., 15 (1999), pp. 295–301.

[8] S. T. Juan, The No-Hole T -Coloring Problem, Master Thesis, Department of Applied Math.,
National Chiao Tung University, Hsinchu, Taiwan, 1996.

[9] T. A. Lanfear, Radio Frequency Assignment and Graph Coloring, presented at the Third Ad-
vanced Research Institute in Discrete Applied Mathematics, RUTCOR, Rutgers University,
New Brunswick, NJ, 1988.

[10] D. D.-F. Liu, T -colorings of graphs, Discrete Math., 101 (1992), pp. 203–212.
[11] D. D.-F. Liu, On a conjecture of T -colorings, Congr. Numer., 103 (1994), pp. 27–31.
[12] D. D.-F. Liu, T -graphs and the channel assignment problem, Discrete Math., 161 (1996),

pp. 197–205.
[13] D. D.-F. Liu and R. Yeh, Graph homomorphism and no-hole T -coloring, Congr. Numer., 138

(1999), pp. 39–48.
[14] J. H. Rabinowitz and V. K. Proulx, An asymptotic approach to the channel assignment

problem, SIAM J. Algebraic Discrete Methods, 6 (1985), pp. 507–518.
[15] A. Raychaudhuri, Further results on T -coloring and frequency assignment problems, SIAM

J. Discrete Math., 7 (1994), pp. 605–613.
[16] F. S. Roberts, No-hole 2-distant colorings, Math. Comput. Modelling, 17 (1993), pp. 139–144.
[17] D. Sakai and C. Wang, No-hole (r+1)-distant colorings, Discrete Math., 119 (1993), pp. 175–

189.
[18] B. A. Tesman, T -Colorings, List T -Colorings and Set T -Colorings of Graphs, Ph.D. Disser-

tation, Department of Math., Rutgers University, New Brunswick, NJ, 1989.

TRANSFORMATIONS ON REGULAR NONDOMINATED COTERIES
AND THEIR APPLICATIONS∗

KAZUHISA MAKINO† AND TIKO KAMEDA‡

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 3, pp. 381–407

Abstract. A coterie under an underlying set U is a family of subsets of U such that every pair
of subsets has at least one element in common, but neither is a subset of the other. A coterie C
under U is said to be nondominated (ND) if there is no other coterie D under U such that, for every
Q ∈ C, there exists Q′ ∈ D satisfying Q′ ⊆ Q.

We introduce the operation σ which transforms a ND coterie to another ND coterie. A regular
coterie is a natural generalization of a vote-assignable coterie. We show that any regular ND coterie
C can be transformed to any other regular ND coterie D by judiciously applying the σ operation to
C at most |C|+ |D| − 2 times.

As another application of the σ operation, we present an incrementally polynomial-time algorithm
for generating all regular ND coteries. We then introduce the concept of a g-regular functional as
a generalization of availability. We show how to construct an optimum coterie C with respect to a
g-regular functional in O(n3|C|) time, where n = |U |. Finally, we discuss the structures of optimum
coteries with respect to a g-regular functional.

Key words. coterie, nondominatedness, regular coterie, availability, mutual exclusion, positive
self-dual Boolean function, regular self-dual Boolean function, g-regular functional

AMS subject classifications. 68M14, 68M15, 68P15, 68Q25, 68R05

PII. S0895480100371110

1. Introduction. A coterie C under an underlying set U = {1, 2, . . . , n} is a
family of subsets (called quorums) of U satisfying the intersection property (i.e., for
any pair S,R ∈ C, S∩R �= ∅ holds) and minimality (i.e., no quorum in C contains any
other quorum in C) [18, 23]. The concept of a coterie has applications in diverse areas,
such as mutual exclusion in distributed systems [13, 18, 23], data replication protocols
[14], name servers [27], selective dissemination of information [39], and distributed
access control and signatures [30].

For example, to achieve mutual exclusion in a distributed system, let the elements
in U represent the sites in the distributed system. A process is allowed to enter a
critical section only if it can get permissions from all the members of a quorum
Q ∈ C, where each site is allowed to issue at most one permission at a time. By the
intersection property, it is guaranteed that at most one process can enter the critical
section at any time.

A coterie C under U is said to dominate another coterie D (�= C) under U if, for
each quorum Q ∈ D, there is a quorum Q′ ∈ C satisfying Q′ ⊆ Q. A coterie which is
not dominated by any other coterie is said to be nondominated (ND) [18]. ND coteries
are important in practical applications, since they have maximal “efficiency” in some
sense [4, 18, 21].

∗Received by the editors April 17, 2000; accepted for publication (in revised form) June 6, 2001;
published electronically August 29, 2001. An extended abstract of this paper appears in Proceedings
of the Nineteenth ACM Symposium on Principles of Distributed Computing (PODC 2000), Portland,
OR, 2000, pp. 279–288. This work was supported in part by the Scientific Grant in Aid, by the
Ministry of Education, Science, Sports, and Culture of Japan, and in part by the Natural Sciences
and Engineering Research Council of Canada.

http://www.siam.org/journals/sidma/14-3/37111.html
†Division of Systems Science, Graduate School of Engineering Science, Osaka University, Toyon-

aka, Osaka, 560-8531, Japan (makino@sys.es.osaka-u.ac.jp)
‡School of Computing Science, Faculty of Applied Sciences, Simon Fraser University, Burnaby,

British Columbia, V5A 1S6 Canada (tiko@cs.sfu.ca)

381

382 KAZUHISA MAKINO AND TIKO KAMEDA

Given a family C of subsets of U , which is not necessarily a coterie, we define
a positive (i.e., monotone) Boolean function fC such that fC(x) = 1 if the Boolean
vector x ∈ {0, 1}n is greater than or equal to the characteristic vector of some subset1

in C, and 0 otherwise, where n = |U |. It was shown in [20] that C is a coterie if and
only if fC is dual-minor, and C is ND if and only if fC is self-dual. (See section 2.2.)
Based on this characterization, the methods developed in the rich field of Boolean
functions can be exploited to derive various properties of coteries and ND coteries.

A coterie C is said to be vote-assignable if there exist a vote assignment w : U 	→
R

+ and a threshold t ∈ R
+ such that w(S) ≥ t if and only if S ⊇ Q for some Q ∈ C

[18, 19, 37], where R
+ is the set of nonnegative real numbers and w(S) =

∑
i∈S w(i).

It is easy to see that there is a one-to-one correspondence between vote-assignable
coteries (resp., ND coteries) C and dual-minor (resp., self-dual) threshold Boolean
functions fC . (For the definition of a threshold Boolean function, see section 2.) The
vote-assignable coteries are important and have been used in many practical problems,
since they can be handled efficiently (see, e.g., [18, 19, 37, 38]). We assume in this
paper that a vote assignment w satisfies w(i) ≥ w(j) for all i < j, since we are
interested in coteries which are nonequivalent under permutation on U . A coterie
C is equivalent to a coterie C ′ under permutation if C can be transformed into C ′

by permuting the elements of U . For example, C = {{1, 2}, {1, 3}} is equivalent to
C ′ = {{2, 3}, {2, 1}} under permutation. A coterie C is said to be regular if, for each
Q ∈ C and every pair (i, j) ∈ U ×U with i < j, i �∈ Q and j ∈ Q, there exists Q′ ∈ C
such that Q′ ⊆ (Q\{j})∪{i}.2 By definition (and the discussion in section 2), a vote-
assignable coterie C is always regular, though in general the converse is not true. The
regular Boolean functions were defined as a generalization of the threshold functions
[28]. It is known that most regular coteries are vote-assignable [28]; in particular, all
regular ND coteries under U with n = |U | ≤ 9 are vote-assignable.

Among the important problems regarding coteries are the following:
(i) decide whether a given coterie is ND (equivalently, whether a given positive

dual-minor function is self-dual);
(ii) construct “optimal” ND coteries according to a certain criterion, such as

availability and load [29] (equivalently, construct “optimal” positive self-dual
functions); and

(iii) generate all ND coteries (equivalently, all positive self-dual functions) sys-
tematically.

Unfortunately, the complexity of problem (i) is still unknown [8, 16, 22], although
a result by Fredman and Khachiyan [17] suggests that it is unlikely that the problem
is NP-hard. [8, 16] give a number of interesting equivalent problems which arise in
various fields of applications. However, it is known that if we restrict ourselves to
regular coteries, (i) is polynomially solvable [6, 32].

Although (i) is an interesting problem, we do not consider (i) further in this paper.
Instead, we focus on problems (ii) and (iii). As for (ii), let us consider the availability
of a coterie, where the concept of availability has been extensively studied under
different names in reliability theory (see, e.g., [35]). Assume that each element can be
in either of two states, operational or inoperational, and takes on its state randomly
and independently, element i being operational (resp., inoperational) with probability
pi (resp., 1− pi). Given operational probabilities pi, i ∈ U , where we assume without
loss of generality that 1 ≥ p1 ≥ p2 ≥ · · · ≥ pn ≥ 0, the availability of a coterie C is

1The ith component of the characteristic vector is 1 (0) if i ∈ U is (not) contained in the subset.
2This definition was motivated by the definition of regular Boolean functions. See section 2.3.

TRANSFORMATIONS ON REGULAR NONDOMINATED COTERIES 383

the probability that the set of operational elements contains at least one quorum in
C. Availability is undoubtedly an important concept in practical applications, and
hence it is natural to construct a coterie with the maximum availability.

The availability of coteries has been studied extensively [1, 5, 15, 33, 36, 38]. It is
known [1, 36] that the elements i ∈ U with pi < 1/2 can be ignored; i.e., there exists
a maximum-availability coterie C such that no quorum in C contains i. (In the case
where pi < 1/2 holds for all i, C = {{1}} has the maximum availability [1, 15, 33].)
Thus, we shall assume that

(1 ≥) p1 ≥ p2 ≥ · · · ≥ pn ≥ 1/2.

It is also known that if either p1 = 1 or p1 ≤ 1/2, then C = {{1}} has the maximum
availability. If 1 �= p1 > 1/2, on the other hand, it is demonstrated in [36, 38] that the
coterie Cmax , given below, maximizes availability. First define the weight for i ∈ U
by

w∗(i) = log2(pi/(1 − pi))(1)

and introduce the notation w∗(S) =
∑
i∈S w

∗(i) for S ⊆ U . Now, Q ∈ Cmax if
(a) w∗(Q) (= w∗(U \Q)) = w∗(U)/2 and 1 ∈ Q (1 is an element of U), or
(b) Q is a minimal subset of U satisfying w∗(Q) > w∗(U)/2, and Q does not

contain any quorum of type (a).
Since this coterie Cmax is vote-assignable, Amir and Wool [1], Spasojevic and

Berman [36], and Tong and Kain [38] proposed algorithms to compute a vote as-
signment w from w∗, called tie-breaking algorithm, in order to remove case (a). An
exponential algorithm is proposed in [38] to find the “optimal” tie-breaking rule, while
Amir and Wool [1] and Spasojevic and Berman [36] present polynomial-time approxi-
mation algorithms for it. The main problem with the above definition of Cmax is that
there may exist a subset S ⊆ U such that w∗(S) = w∗(U \ S) (case (a)), because of
which a simple vote assignment w (showing that Cmax is vote-assignable) is not easily
obtainable, and that the weight w∗(i) is, in general, not a rational number; hence we
cannot compute w∗(S) =

∑
i∈S w

∗(i) in polynomial time. For the above reasons, no
polynomial algorithm for constructing maximum-availability coteries was known. In
this paper, we present a polynomial-time algorithm for it. More precisely, we define a
“g-regular” functional as a generalization of availability (see section 6) and then show
that, given a g-regular functional Φ, we can compute a coterie C which maximizes Φ
in O(n3|C|) time, where |C| is the number of quorums in C.

Problem (iii) is known to be useful to solve (ii) [9, 18]. To solve (ii), we first
enumerate all (or some) ND coteries efficiently and select the best one under a certain
criterion, which is not easily computable. This procedure is useful when n is small
or when we have enough time to compute it. We feel that (iii) is mathematically
interesting, giving us an insight into the structure of ND coteries (or, equivalently,
self-dual Boolean functions).

The generation of all ND coteries in a certain subclass of vote-assignable ND
coteries was discussed in [28], which is used to give a lower bound on the number of all
vote-assignable ND coteries. However, the procedure is not polynomial and computes
a proper subclass of vote-assignable ND coteries. Garcia-Molina and Barbara [18]
proposed an algorithm to generate all ND coteries in a certain superclass of regular
ND coteries. However, it is also not polynomial. Bioch and Ibaraki [9] later came
up with a polynomial-time algorithm to generate all ND coteries, and compiled a
list containing all ND coteries of up to seven elements, which are essentially different

384 KAZUHISA MAKINO AND TIKO KAMEDA

(i.e., nonequivalent under permutation). We remark here that their algorithm is not
polynomial if equivalent duplicates are to be deleted from the output. In fact, they
compiled a list of all ND coteries under seven or fewer elements by first running their
algorithm and then selecting nonequivalent representatives from among them. In
this paper, we present a polynomial algorithm to generate all regular ND coteries.
Since no regular ND coterie C is equivalent to any other regular ND coterie C ′ (�= C)
under permutation (see Lemma 2.2), our algorithm does not output ND coteries which
are equivalent under permutation. Although our algorithm outputs only regular ND
coteries, it is practically useful because all ND coteries under n = 5 or fewer elements
are all regular (if we consider their representatives), and when n is relatively small, a
large fraction of ND coteries are regular [28]. Moreover, if the objective function of
(ii) cited above is g-regular (e.g., the availability of a coterie), then we can restrict
our attention to regular coteries.

After defining necessary terminology in section 2 (we use Boolean terminology,
which is simpler than that of set theory), we discuss in section 3 two operations,
named ρ and σ, which transform the positive self-dual function f (representing a ND
coterie) into another positive self-dual function (representing another ND coterie) by
making a minimal change in the set of minimal true vectors of f . The ρ operation was
introduced in [9], and σ was implicitly introduced in [18], where it is called coterie
transformation.

Section 4 shows that any regular self-dual function f (representing a regular ND
coterie) can be transformed into any other regular self-dual function g (represent-
ing any other regular ND coterie) by judiciously applying the σ operation to f at
most |minT (f)| + |minT (g)| − 2 times. (For the definition of minT (f), see section
2.) In sections 5 and 6, we consider the problems of generating all regular self-dual
functions and of computing an optimal self-dual function with respect to a g-regular
functional Φ (see the definition of g-regularity in section 6) as applications of the
above transformation.

In addition to the theory of coteries, the concepts of self-duality and regularity
play important roles in diverse areas such as computational learning theory (e.g., iden-
tification of positive Boolean functions [8, 10, 24, 25]), threshold logic [28], operations
research [6, 11, 31, 32], clutters in set theory [7], minimal transversals in hypergraphs
[16], and coherent systems of reliability theory [35]. The results of this paper are
relevant to all these problems.

2. Definitions and basic properties. A Boolean function, or a function in
short, of n variables is a mapping f : {0, 1}n → {0, 1}, where v ∈ {0, 1}n is called a
Boolean vector (a vector in short). If f(v) = 1 (resp., 0), then v is called a true (resp.,
false) vector of f . The set of all true vectors (resp., false vectors) of f is denoted
by T (f) (resp., F (f)). Throughout this paper, the constant functions with T (f) = ∅
(empty) and F (g) = ∅ are denoted by f = ⊥ and g = �, respectively. For any two
functions f and g, we write f ≤ g if T (f) ⊆ T (g). For a vector v = (v1, v2, . . . , vn),
we define ON (v) = {j | vj = 1} and OFF (v) = {j | vj = 0}.

The argument x of function f is represented as a vector x = (x1, x2, . . . , xn),
where each xi is a Boolean variable. A variable xi is said to be relevant if there exist
two vectors v and w such that f(v) �= f(w), vi �= wi, and vj = wj for all j �= i;
otherwise, it is said to be irrelevant. The set of all relevant variables of a function
f is denoted by Vf ⊆ V = {x1, x2, . . . , xn}. A literal is either a variable xi or its
complement xi, which are referred to as a positive or negative literal, respectively.
The complement of vector x = (x1, x2, . . . , xn) is defined by x = (x1, x2, . . . , xn). A

TRANSFORMATIONS ON REGULAR NONDOMINATED COTERIES 385

term t is a conjunction (
∧
i∈P (t) xi) ∧ (

∧
j∈N(t) xj) of literals such that P (t), N(t) ⊆

{1, 2, . . . , n} and P (t) ∩ N(t) = ∅. For example, t1 = x1x4x5x6 is a term, while
t2 = x2x4x2 is not. In particular, the term t with P (t) = N(t) = ∅ represents �. A
disjunctive normal form (DNF) is a disjunction of distinct terms. It is easy to see that
any function f can be represented in DNF whose variable set is Vf . We sometimes do
not distinguish a formula (e.g., DNF) from the function it represents if no confusion
arises.

2.1. Positive functions. For a pair of vectors v, w ∈ {0, 1}n, we write v ≤ w
if vj ≤ wj holds for all j ∈ V , and v < w if v ≤ w and v �= w, where we define
0 < 1. For a set of vectors S ⊆ {0, 1}n, min≥ S (resp., max≥ S) denotes the set of all
minimal (resp., maximal) vectors in S with respect to ≥. For example, for a function
f , min≥ T (f) denotes the set of all minimal true vectors of f , and max≥ F (f) denotes
the set of all maximal false vectors of f . We sometimes use minS (resp., maxS)
instead of min≥ S (resp., max≥ S) if no confusion arises. A function f is said to be
positive or monotone if v ≤ w always implies f(v) ≤ f(w). A prime implicant of a
function f is a term (i.e., monomial) t such that t ≤ f , but t′ �≤ f for any proper
subterm t′ of t. There is a one-to-one correspondence between minT (f) and the set
of all prime implicants of f such that a vector v corresponds to the term tv defined by
tv = xi1xi2 · · ·xik if vij = 1, j = 1, 2, . . . , k, and vi = 0 otherwise. For example, the
vector v = (1010) corresponds to the term tv = x1x3. In particular, if v = (00 · · · 0),
then tv = �. Note that tv ≤ tw (as functions) holds if and only if v ≥ w. We
also use the notation tv to denote the term xj1xj2 · · ·xjl , where {j1, j2, . . . , jl} =
{1, 2, . . . , n} \ {i1, i2, . . . , ik}. For the above v = (1010), we have tv = x2x4.

It is known that a positive function f is uniquely determined by minT (f) (hence
a positive function f can be represented by a string of length ≤ n|minT (f)|) and
that f has the unique minimal disjunctive normal form (MDNF), consisting of all the
prime implicants of f , where N(t) = ∅ for each prime implicant t. In this paper, we
sometimes represent the MDNF of a positive function such as f = x1x2 +x2x3 +x3x1

in a simplified form f = 12 + 23 + 31, using only the subscripts of the literals. The
set of minimal true vectors of this function is minT (f) = {(110), (011), (101)} if
f is a 3-variable function. Coteries can be conveniently modeled by Boolean func-
tions based on the fact that minT (f) can represent a family of subsets, none of
which includes the other. For example, the above minT (f) represents a coterie
C = {{1, 2}, {2, 3}, {3, 1}}, while T (f) represents the family of all subsets that contain
a member of C.

2.2. Dual-comparable functions. The dual of a function f , denoted fd, is
defined by

fd(x) = f(x),

where f and x denote the complement of f and x, respectively. As is well known, fd

is obtained from f by interchanging + (OR) and · (AND), as well as the constants 0
and 1. Recall that for any two functions f and g, we write f ≤ g if T (f) ⊆ T (g), and
f < g if f ≤ g and f �= g. We say that f is covered by g if f ≤ g. It is easy to see
that (f + g)d = fdgd, (fg)d = fd + gd, f ≤ g if and only if fd ≥ gd, and so on. A
function is called dual-minor if f ≤ fd, dual-major if f ≥ fd, and self-dual if f = fd.
It is known [20] that

1. f is dual-minor if and only if at most one of v and v belongs to T (f) for any
v ∈ {0, 1}n;

386 KAZUHISA MAKINO AND TIKO KAMEDA

2. f is dual-major if and only if at least one of v and v belongs to T (f) for any
v ∈ {0, 1}n; and

3. f is self-dual if and only if exactly one of v and v belongs to T (f) for any
v ∈ {0, 1}n.

For example, f = 123 is dual-minor since fd = 1 + 2 + 3 satisfies f ≤ fd. The
dual of f = 12 + 23 + 31 is

fd = (1 + 2)(2 + 3)(3 + 1) = 12 + 23 + 31.

This function f is self-dual and is called the basic majority function; it is known to
be the only positive self-dual function of three relevant variables. There is no positive
self-dual function of exactly two relevant variables. However, each function f = xi is
a positive self-dual function of one variable.

If f is positive, then fd is also positive. In this case, an alternative definition of fd

is given by the condition that v ∈ T (fd) if and only if v is a transversal of minT (f);
i.e., it satisfies ON (v) ∩ ON (w) �= ∅ for all w ∈ minT (f). Let

CSD(n): the class of all positive self-dual functions of n variables,
CDMA(n): the class of all positive dual-major functions of n variables,
CDMI (n): the class of all positive dual-minor functions of n variables.

Note that in these definitions functions may have some irrelevant variables.

2.3. Regular, 2-monotonic, and threshold functions. A positive function
f is said to be regular if, for every v ∈ {0, 1}n and every pair (i, j) with i < j, vi = 0
and vj = 1, the following condition holds:

f(v) ≤ f(v + e(i) − e(j)),(2)

where e(k) denotes the unit vector which has a 1 in its kth position and 0 in all other
positions.

In order to define an important partial order on {0, 1}n, we first define the concept
of the profile of a vector v ∈ {0, 1}n as follows:

prof v(k) =
∑
j≤k

vj ,

where k = 1, 2, . . . , n. If v, w ∈ {0, 1}n, where v �= w, satisfy prof v(k) ≤ prof w(k) for
all k, then we write v ≺ w (or w � v), and we say that w majorizes v. If v ≺ w or
v = w, then we write v � w (or w � v). It is helpful to visualize the profile as in
Figure 2.1.

1 4 5 6 7 832 k

Profile

Fig. 2.1. The profiles prof v(k) (solid lines) and prof w(k) (dashed lines).

TRANSFORMATIONS ON REGULAR NONDOMINATED COTERIES 387

In Figure 2.1 the profiles of v = (00101001) and w = (01100001) are depicted
in the solid staircase and dashed staircase, respectively. The dashed staircase is not
visible where it overlaps with the solid staircase. It is easy to see that if v is majorized
by w, then the profile of w does not go below the profile of v.

It is clear from the above definition that v ≺ w if and only if v � w, since
prof v(k) = k − prof v(k). Note that v ≤ w implies v � w, but the converse is not
always true. A function f is said to be profile-monotone if v ≺ w implies f(v) ≤ f(w).
The following lemma is proved in [28].

Lemma 2.1 (see Muroga [28]). A function f is regular if and only if f is profile-
monotone.

For two functions f and g, we say that f is equivalent to g under permutation if
permuting variables of f produces g.

Lemma 2.2. Two different regular functions are not equivalent under permuta-
tion.

Proof. Let f and g be regular functions such that g can be obtained from f by
a permutation π, where we regard π as the permutation on indices; i.e., we write
π(i) = j instead of π(xi) = xj . We claim that f = g, which proves the lemma. Let
i and j be indices satisfying i < j and π(i) > π(j). Note that if there exist no such
indices, then π is the identity permutation, implying f = g. By the regularity of f ,
we have

f(v) ≤ f(v + e(i) − e(j))(3)

for every v ∈ {0, 1}n with vi = 0 and vj = 1, and by the regularity of g, we have
g(w) ≤ g(w + eπ(j) − eπ(i)) for every w ∈ {0, 1}n with wπ(j) = 0 and wπ(i) = 1, that
is,

f(v) ≥ f(v + e(i) − e(j))(4)

for every v ∈ {0, 1}n with vi = 0 and vj = 1. By combining (3) and (4),

f(v) = f(v + e(i) − e(j))

holds for every v ∈ {0, 1}n with vi = 0 and vj = 1. This means that f is symmetric
in variables xi and xj . Namely, the function f ′ obtained from f by the permutation

π′(k) =

i if k = j,
j if k = i,
k otherwise

is identical to f (i.e., f ′ = f). Since π can be obtained by a concatenation of such
permutations π′, it follows by induction that f = g.

For a set of vectors S ⊆ {0, 1}n, min�S (resp., max� S) denotes the set of all
minimal (resp., maximal) vectors in S with respect to �. For any set of vectors
S ⊆ {0, 1}n, we have min�S ⊆ minS (= min≥ S) and max� S ⊆ maxS (= max≥ S),
since v ≥ w implies v � w. In particular, we have min�T (f) ⊆ minT (f); i.e., any
element of minT (f) \ min�T (f) majorizes an element of min�T (f). It follows from
Lemma 2.1 that a regular function f is uniquely determined by min�T (f).

A positive function f is called 2-monotonic if there exists a linear ordering on
V for which f is regular. The 2-monotonicity and related concepts have been stud-
ied in various contexts in fields such as threshold logic [6, 12, 28, 32], game theory

388 KAZUHISA MAKINO AND TIKO KAMEDA

[35], hypergraph theory [11], and learning theory [10, 24, 25]. The 2-monotonicity
was originally introduced in conjunction with threshold functions (e.g., [28]), where a
positive function f is a threshold function if there exist n nonnegative real numbers
(weights) w1, w2, . . . , wn and a nonnegative real number (threshold) t such that

f(x) =

{
1 if

∑
wixi ≥ t,

0 if
∑

wixi < t.

As this f satisfies (2) by permuting variables so that wi > wj implies i < j, a threshold
function is always 2-monotonic, although the converse is not true [28].

It is known [18] that there are Ω(22cn

) self-dual functions, where c denotes some

positive constant, but only O(2n
2

) threshold self-dual functions. It is not known if
2-monotonic self-dual functions are substantially more than threshold self-dual func-
tions.

3. The operations ρ and σ. Let f be a positive function of n variables.
Throughout this paper, we assume that f is nontrivial in the sense that f �= ⊥,�
and n ≥ 1. Given a vector v ∈ minT (f), the operation ρv applied to f removes v
from T (f) and then adds v to T (f) [9]. More precisely, while adding v, all the vectors
larger than v are also added to T (f). Therefore,

T (ρv(f)) = (T (f) \ {v}) ∪ T≥(v),(5)

where

T≥(v) = {w ∈ {0, 1}n | w ≥ v}.
An equivalent definition is

ρv(f) = f\v + tv + tvt
d
v,(6)

where f\v denotes the function defined by all the prime implicants of f except tv, and

tdv denotes the dual of tv. We note that if tv = xi1xi2 · · ·xik and tv = xj1xj2 · · ·xjl ,
then

tvt
d
v = xi1xi2 · · ·xik(xj1 + xj2 + · · · + xjl)

represents all the vectors larger than v. As seen in Example 3.1, the expression (6) is
not necessarily in MDNF, even if f\v is represented by its MDNF, because some of the

prime implicants in tv + tvt
d
v may cover or may be covered by some prime implicants

in f\v.
Let us note that the operation ρ is essentially the same as the coterie transfor-

mation (CT) in [18] except that CT assumes the following additional conditions: (i)
|OFF (v)| ≥ 2, and (ii) there is at least one prime implicant in tvt

d
v which is not

covered by f\v. In this sense, CT is a special case of the ρ operation.
Given a vector v ∈ minT (f) and a variable set I with Vf ⊆ I ⊆ V , we define the

operation σ(v;I) by

σ(v;I)(f) = f\v + t
v[I]

+ tv[I]t
d

v[I]
,(7)

where v[I] denote the projection of v on I; e.g., if v = (1100), I1 = {x1, x2, x3}, and
I2 = {x2, x3}, then v[I1] = (110) and v[I2] = (10). By definition, we have σ(v;V) = ρv.
This operation σ(v;I) is implicitly used in [18].

TRANSFORMATIONS ON REGULAR NONDOMINATED COTERIES 389

Example 3.1. Consider a positive function of n = 7 variables,

f = 12 + 13 + 145 + 234 + 235.

For this function, we have Vf = {1, 2, 3, 4, 5}.3 For v = (1100000) and w = (0111000),
we show below how operations ρ and σ are applied.

ρv(f) = 13 + 145 + 234 + 235 + 34567 + 12(3 + 4 + 5 + 6 + 7)

= 124 + 125 + 126 + 127 + 13 + 145 + 234 + 235 + 34567,

ρw(f) = 12 + 13 + 145 + 235 + 1567 + 234(1 + 5 + 6 + 7)

= 12 + 13 + 1567 + 2346 + 2347 + 235,

σ(v;Vf)(f) = 13 + 145 + 234 + 235 + 345 + 12(3 + 4 + 5)

= 124 + 125 + 13 + 145 + 234 + 235 + 345,

σ(w;Vf)(f) = 12 + 13 + 145 + 235 + 15 + 234(1 + 5)

= 12 + 13 + 15 + 235.

Let f be a function on the variable set V = {1, 2, . . . , n}. For a variable set I ⊆ V ,
the projection of f on I, denoted by Proj I(f), is the function on I obtained from f
by fixing xi = 0 for all xi ∈ V \ I, i.e.,

Proj I(f)(x1, x2, . . . , x|I|) = f(x1, x2, . . . , x|I|, 0, 0, . . . , 0)

if I = {x1, x2, . . . , x|I|}. For a variable set J ⊇ V , the expansion of f to J , denoted
by ExpJ(f), is the function on J obtained from f by adding irrelevant variables
xi ∈ J \ V . By definition, f and its expansion can be represented by the same DNF.

For I ⊇ Vf , we have

σ(v;I)(f) = ExpV (ρv[I](Proj I(f))).(8)

Thus σ has properties similar to those of ρ. See, for example, Theorem 3.2 below.
Now, for a specified class C(n) of positive functions of n variables, we say that

ρ (resp., σ) preserves C(n) if ρv(f) ∈ C(n) holds for all f ∈ C(n) and v ∈ minT (f)
(resp., σ(v;I)(f) ∈ C(n) holds for all f ∈ C(n), v ∈ minT (f), and I ⊇ Vf).

Theorem 3.2. The operations ρ and σ defined above preserve the classes CSD(n),
CDMA(n), and CDMI (n).

Proof. This theorem is proved for ρ in [9]. Consider any function f ∈ CSD(n) and
any set I satisfying Vf ⊆ I ⊆ V . If f = fd, then clearly Proj I(f) = Proj I(f

d). We
thus have Proj I(f) ∈ CSD(|I|), and hence ρv(Proj I(f)) ∈ CSD(|I|) by the above-cited
result in [9]. It is clear that, for any g ∈ CSD(|I|), we have ExpV (g) ∈ CSD(n). Thus
by (5), σ(v;I) preserves CSD(n), similarly for CDMA(n) and CDMI (n).

Note that if f is self-dual, then ρv(f), v ∈ minT (f), is specified simply by

T (ρv(f)) = (T (f) \ {v}) ∪ {v},(9)

i.e., by interchanging v with v in T (f). This follows from (5) and the fact that
ρv(f) ∈ CSD(n), hence |T (ρv(f)| = |T (f)| = 2n−1. To see the effect of σ(v;I) on T (f),
where Vf ⊆ I ⊆ V , define

v[I]∗ = {u ∈ {0, 1}n | u[I] = v[I]}.
3We sometimes represent a variable set as an index set; e.g., {x1, x2} is represented as {1, 2}.

390 KAZUHISA MAKINO AND TIKO KAMEDA

It is easy to see that

T (σ(v;I)(f)) = (T (f) \ v[I]∗) ∪ v[I]∗ .(10)

To see the difference between (9) and (10), refer to Example 3.1, where I = Vf .
Now consider a sequence of transformations from a positive self-dual function f

to another positive self-dual function g,

f0 (= f) −→ f1 −→ f2 −→ . . . −→ fm1 (= g),
g0 (= f) −→ g1 −→ g2 −→ . . . −→ gm2

(= g),

where fi+1 = ρv(i)(fi), v
(i) ∈ minT (fi), gi+1 = σ(w(i);Ii)(gi), w

(i) ∈ minT (gi), and
Ii ⊇ Vgi . We can see that m1,m2 ≥ |minT (f) \ minT (g)| and m1 ≥ |T (f) \ T (g)|.
The latter implies that m1 might be exponential in n and |minT (f)|, while m2 might
be small. In the next section, we consider the ρ and σ operations for regular self-dual
functions, and give a transformation algorithm between any two regular self-dual
functions f and g of n variables, which satisfy

m2 ≤ |minT (f)| + |minT (g)| − 2.

4. Transformation of regular self-dual functions. The goal of this section is
to present an efficient algorithm, TRANS-REG-SD, which transforms a given regular
self-dual function f to the one-variable regular self-dual function g = x1. It applies a
sequence of σ operations to f , generating a sequence of regular self-dual functions in
the process. As we will show, this algorithm can be used to transform a given regular
self-dual function of n variables to any other regular self-dual function of n variables,
some of which may be irrelevant. We need to prove a number of lemmas to achieve
this goal.

We start with the following lemma, which shows that ρv preserves profile-
monotonicity (i.e., regularity) if v satisfies a certain condition. (We have already seen
that ρv preserves self-duality.)4 Recall that ρv(f) is specified by (9), and therefore in
the proof we concentrate on the vectors v and v.

Lemma 4.1. Let f be a regular self-dual function, and let v ∈ minT (f). ρv(f) is
regular if and only if v ∈ min�T (f) and v �≺ v.

Proof. By definition, ρv(f) is regular (i.e., profile-monotone) if

ρv(f)(u) ≤ ρv(f)(w) for any u ≺ w.(11)

Let us first consider the only-if part. Recall that ρv(f) can be specified by (9).
Thus we have ρv(f)(v) = 0 and ρv(f)(v) = 1, which, together with (11), implies
v �≺ v. Moreover, since v ∈ minT (f), if v �∈ min�T (f), then there exists a vector
u ∈ min�T (f) majorized by v, i.e., u ≺ v. (See the paragraph after Lemma 2.1.)
Now we have ρv(f)(v) = 0 and ρv(f)(u) = 1, which contradicts (11) with w = v.
Thus v ∈ min�T (f) holds.

We now turn to the proof of the if part and show that ρv(f) is profile-monotone.
Equation (11) clearly holds if u,w /∈ {v, v}, since f is profile-monotone. (See (9).) If
u = v in (11), then the left-hand side becomes ρv(f)(v) = 0 by (9), and (11) holds
for any w. Similarly, if w = v in (11), then the right-hand side becomes ρv(f)(v) = 1
by (9), and (11) holds for any u. Now assume that u = v (≺ w), in which case

4As we commented before, the ρ operation is a special case of the σ operation.

TRANSFORMATIONS ON REGULAR NONDOMINATED COTERIES 391

w �= v by the condition in the lemma. Then we have v � w, and v ∈ min�T (f)
implies f(w) = 0, hence f(w) = ρv(f)(w) = 1. Thus (11) holds. Finally, assume that
w = v (� u), in which case u �= v by the condition in the lemma. v ∈ min�T (f)
implies f(u) = 0, hence ρv(f)(u) = 0. Thus (11) again holds.

The following lemma shows how to choose v to be used in ρv(f) to guarantee that
ρv(f) is regular.

Lemma 4.2. Let f be a regular self-dual function of n (≥ 2) variables. If v ∈
min�T (f) and vn = 1, then ρv(f) is regular.

Proof. By Lemma 4.1 we have only to show v �≺ v. We have f(v− e(n)) = 0 from
v ∈ min�T (f). Thus, the self-duality of f implies f(v + e(n)) = 1, which, together
with v ∈ min�T (f), in turn implies v + e(n) �≺ v. It follows from v + e(n) �≺ v and
vn = 1 that v �≺ v.

Interestingly, the existence of a vector v satisfying the condition in Lemma 4.2 is
equivalent the relevance of xn to f , as proved in the following lemma.

Lemma 4.3. For a regular function f , xn is relevant to f if and only if there
exists a vector v ∈ min�T (f) such that vn = 1.

Proof. If such a vector v exists, then we have f(v) = 1 and f(v − e(n)) = 0 (by
v ∈ min�T (f)). Thus xn is relevant to f .

Conversely, if xn is relevant, then there exists a vector w ∈ minT (f) such that
wn = 1, since, otherwise, the MDNF of f does not contain variable xn, and hence
xn is irrelevant. The proof is complete if we show w ∈ min�T (f). Assume that w �∈
min�T (f). Then there exists u ∈ min�T (f) such that u ≺ w. Note that w ∈ minT (f)
and u ∈ min�T (f) imply u �� w − e(n). Otherwise, by the profile-monotonicity of
f , we would have f(w − e(n)) ≥ f(u) = 1, a contradiction to w ∈ minT (f). From
u �� w − e(n) and u ≺ w, it follows that un = 1 (possible only if n ≥ 2), implying the
only-if part.

Lemma 4.2 deals with the case where xn is relevant to f . Before dealing with the
case where xn is irrelevant to f , we first prove the following proposition.

Proposition 4.4. Let f be a regular function. For any i, j ∈ V such that i < j,
if xj is relevant to f , then so is xi.

Proof. Assume that xj is relevant, but xi is not. Then there must be two vectors,
v and w, such that f(v) > f(w), where vk = wk for all k (1 ≤ k ≤ n) except k = j,
vj = 1, and wj = 0. Now define two vectors, v′ = (v1, . . . , vi−1, 0, vi+1, . . . , vn) and
w′ = (w1, . . . , wi−1, 1, wi+1, . . . , wn). We thus have v′ ≺ w′. Since xi is irrelevant, we
should have

f(v′) = f(v) > f(w) = f(w′),

a contradiction to the profile-monotonicity (regularity) of f .

The above proposition implies that xi is relevant to f if and only if Vf ⊇
{1, 2, . . . , i}; in particular, xn is relevant to f if and only if Vf = {1, 2, . . . , n} = V .
Corollary 4.5 generalizes Lemma 4.2 to the case where xn may be irrelevant to f .

Corollary 4.5. Let f be a regular self-dual function such that |Vf | = i (≥ 2).
If v ∈ min�T (f) and vi = 1, then σ(v;Vf)(f) is regular.

Proof. Let I = Vf in (8). Then ρv(Proj Vf
(f)) is a regular function on Vf by

Lemma 4.2. This completes the proof, since ExpV () preserves regularity.

We now have the theoretical foundation for TRANS-REG-SD. By Lemma 4.2 and
Corollary 4.5, if xn is relevant to a given f , we can use transformation ρv(f), with
some v, to generate a new regular self-dual function and repeat this procedure as long

392 KAZUHISA MAKINO AND TIKO KAMEDA

as xn is relevant. Once xn becomes irrelevant to the newly generated function, f ′, we
use the σ operation with respect to Vf ′ , and so forth.

What remains is the discussion of data we need to keep track of in implementing
a sequence of σ transformations. It will be used later in computing the complexity of
TRANS-REG-SD. To represent the sequence of regular self-dual functions {f ′} that
TRANS-REG-SD generates, we represent each such function f ′ in terms of minT (f ′)
and min�T (f ′) (see Lemma 4.8). The following proposition and corollary will prepare
us for Lemma 4.8. For a vector v, let us introduce the following notation:

T�(v) = {w | w � v} and T≺(v) = {w | w ≺ v}.

Proposition 4.6. u ∈ T�(v) is a minimal member with respect to ≺ in T�(v) if
and only if prof u(i) = prof v(i) + 1 for some i, 1 ≤ i ≤ n, and prof u(k) = prof v(k)
for all k �= i.

Proof. For simplicity, we present an informal “picture proof” using Figure 4.1. In
Figure 4.1 (a) and (b), it is clear that the vector v whose profile is represented by the
solid staircase is majorized by the vector u whose profile is represented by the dashed
staircase and that u is a minimal vector with respect to ≺ in T�(v). The dashed
staircase in Figure 4.1 (c) shows a nonminimal vector w with profw(n) = |ON (w)| =
profv(n) = |ON (v)|. w is nonminimal, since it majorizes another vector u ∈ T�(v),
whose profile satisfies profu(3) = 1 and profu(4) = 2. Similarly, it is easy to see that
any member of T�(v) violating the conditions of this proposition majorizes another
member of T�(v).

1 4 5 6 7 832 k 1 4 5 6 7 832 k

1 4 5 6 7 832 k

(a) (b)

(c)

Fig. 4.1. A “picture proof” of Proposition 4.6.

Formula (12) in the following corollary follows immediately from the above propo-
sition. Formula (13) is dual to (12).

Corollary 4.7.

min�T�(v) =

{v + e(j) − e(j+1) | vj = 0, vj+1 = 1, 1 ≤ j ≤ n− 1}

∪ {v + e(n)} if vn = 0,
{v + e(j) − e(j+1) | vj = 0, vj+1 = 1, 1 ≤ j ≤ n− 1} if vn = 1.

(12)

TRANSFORMATIONS ON REGULAR NONDOMINATED COTERIES 393

max�T≺(v) =

{v − e(j) + e(j+1) | vj = 1, vj+1 = 0, 1 ≤ j ≤ n− 1}

∪ {v − e(n)} if vn = 1,
{v − e(j) + e(j+1) | vj = 1, vj+1 = 0, 1 ≤ j ≤ n− 1} if vn = 0.

(13)

We now show the effect of operation ρv on minT (f) and min�T (f).
Lemma 4.8. Let f be a regular self-dual function of n (≥ 2) variables, and let

v ∈ min�T (f) with vn = 1. Then we have

minT (ρv(f)) = minT (f) \ ({v} ∪ {v + e(j) | max OFF (v) < j ≤ n}) ∪ {v},(14)

min�T (ρv(f)) = min�T (f) \ ({v} ∪ min�T�(v)) ∪ {v}(15)

∪{u ∈ min�T�(v) | u �� z for all z ∈ (min�T (f) \ {v}) ∪ {v}}.
Proof. By (9), we need to consider only the influence of (i) adding v to T (f) and

(ii) removing v from T (f). To follow this proof, it will be helpful to have the following
example: For a function f = 12+13+145+234+235 of five variables, if v = (10011),
then v = (01100), max OFF (v) = 2, ρv(f) = 12 + 13 + 234 + 235 + 23 + 145(2 + 3) =
12+13+23, min�T (f) = {(10100), (10011), (01101)}, and min�T (ρv(f)) = {(01100)}.

(14)(i). By the self-duality of f , we have v ∈ maxF (f), hence v ∈ minT (ρv(f)).
(See, e.g., the prime implicant 23 of ρv(f) in Example 3.1.) Let us next consider
vectors of the form v+e(j), j ∈ ON (v) (= OFF (v)), which may cease to be a minimal
member as a result of operation (i). Note that these vectors belong to T (f), since
v ∈ maxF (f). We claim that v + e(j) ∈ minT (f) if and only if j > max OFF (v).
(See then the prime implicants 234 and 235 of f in Example 3.1.) If j > max OFF (v),
v + e(j) ∈ minT (f) holds, since otherwise there exists a vector w ∈ minT (f) such
that w < v + e(j). Since w �= v and w < v + e(j), w ≤ v + e(j) − e(i) holds for
some i ∈ OFF (v) (= ON (v)). Since i < j, we have w ≺ v. Since f(v) = 0 by the
self-duality of f , it follows from Lemma 2.1 that f(w) = 0 holds, a contradiction to
w ∈ minT (f). This proves the if part of our claim.

Let j ∈ ON (v) (= OFF (v)) with j ≤ max OFF (v) and consider the vector
w = v + e(j) − e(maxOFF(v)). Since j ∈ ON(v), we have j < max OFF (v). Thus
w � v, and hence v � w holds. If f(w) = 0, then f(w) = 1 holds by the self-duality
of f . Since v � w, we have v �∈ min�T (f), a contradiction. Thus f(w) = 1, implying
that v + e(j) �∈ minT (f) holds in this case.

(14)(ii). Since v �∈ minT (ρv(f)), there may be a j ∈ OFF (v) such that u = v+e(j)

belongs to minT (ρv(f)). Since f(v) = 1, f(v + e(j) − e(n)) = 1, i.e., v + e(j) − e(n) ∈
T (f), follows from the regularity of f . Thus no vector of the form v + e(j) belongs to
minT (ρv(f)), since there obviously exists a w ∈ minT (f) satisfying w ≤ v + e(j) −
e(n) < v + e(j), a contradiction.

(15)(i). It is easy to see that v ∈ min�T (ρv(f)) holds, since otherwise f(v) = 0
and there exists a vector w such that w ≺ v and f(w) = 1, a contradiction to the
regularity of f . Now consider any vector w ∈ min�T (f) majorizing v, i.e., satisfying
w � v. Such a w must be removed from min�T (f) to construct min�T (ρv(f)).
Clearly, each such w is contained in min�T�(v) (e.g., w = (01110) ∈ min�T (f)
corresponding to the prime implicant 234 of f in Example 3.1).

(15)(ii). As noted in (14)(ii), we have v �∈ minT (ρv(f)), a fortiori, v �∈ min�T (ρv(f)).
Let us consider the vectors in min�T�(v), given by (12), since, besides v, only they
may be contained in min�T (ρv(f)) \ min�T (f). Note that a vector u ∈ min�T�(v)
belongs to min�T (ρv(f)), provided there is no vector z ∈ min�T (f) \ {v} ∪ {v} such
that z ≺ u. This is because min�T (f) \ ({v} ∪ min�T�(v)) ∪ {v} ⊆ min�T (ρv(f))
(see (15)(i) above) and all vectors in min�T�(v) majorizing v.

394 KAZUHISA MAKINO AND TIKO KAMEDA

From the proof of Lemma 4.8 (case (14)(i)), we can see that v + e(n) ∈ minT (f).
Since vn = 1 implies n > max OFF (v), {v+e(j) | max OFF (v) < j ≤ n} is nonempty,
and (14) implies the following lemma.

Lemma 4.9. Let f be a regular self-dual function of n (≥ 2) variables, and let
v ∈ min�T (f) with vn = 1. Then

|minT (ρv(f))| ≤ |minT (f)| − 1,(16)

minT (ρv(f))xn=1 ∪ {v, v + e(n)} = minT (f)xn=1,(17)

where Sxn=1 denotes the set {v ∈ S | vn = 1}.
We are now ready to describe the transformation algorithm, TRANS-REG-SD. If

we repeatedly apply the ρv operation (with different v’s, of course) to a regular self-
dual function f , until there is no vector v ∈ min�T (f) with vn = 1, then by Lemmas
4.2, 4.3, and 4.9 we have a regular self-dual function f ′ to which xn is irrelevant. This,
together with (17), implies that |minT (f)n| is even. Note that f ′ is not unique; i.e., it
depends on the sequence of vectors v ∈ min�T (f) with vn = 1 that are used in ρv. For
example, consider a function f = 12+13+145+234+235 of five variables. For vectors
v = (10011) and w = (01101), ρv(f) = 12 + 13 + 23 and ρw(f) = 12 + 13 + 14 + 234,
respectively.

Now Vf ′ = {1, 2, . . . , j1} holds for some j1 ≤ n − 1. If j1 = 1, we have f ′ = x1

and we are done. If j1 �= 1, on the other hand, we apply σ(v;Vf′) operations to f ′

instead of σ(v;Vf) (= ρv) until there is no vector v ∈ min�T (f ′) with vj1 = 1. Since
all the lemmas presented in this section are still valid for σ(v;Vf′) and vj1 = 1 in

place of σ(v;Vf) (= ρv) and vn = 1, we obtain a regular self-dual function f ′′ whose
relevant variable set is Vf ′′ = {1, 2, . . . , j2} with j2 < j1. By repeating this argument,
we reach the one-variable regular self-dual function x1. Formally, this sequence of
transformations can be stated as follows.

Algorithm TRANS-REG-SD

Input: minT (f), where f is a regular self-dual function.

Output: Regular self-dual functions f0 (= f), f1, f2, . . . , fm (= x1).

Step 0: Let i = 0 and f = f0.
Step 1: Output fi. If fi = x1, then halt.

Step 2: fi+1 = σ(v(i);Vfi
)(fi), where v(i) ∈ min�T (fi) and v

(i)
maxVfi

= 1. i := i+1.

Return to Step 1.

By (16), the number m in the output from algorithm TRANS-REG-SD satisfies
m ≤ |minT (f)| − 1. Since every self-dual function f satisfies ρv(ρv(f)) = f (see (9)),
we can transform x1 into any regular self-dual function g by repeatedly applying the
σ operation to x1 at most |minT (g)| − 1 times. Thus we have the following theorem.

Theorem 4.10. Let f and g be any two regular self-dual functions. Then f can
be transformed into g by repeatedly applying σ operations to f at most |minT (f)| +
|minT (g)| − 2 times.

In the subsequent sections, we consider the problems of generating all regular self-
dual functions and of computing an optimum self-dual function with respect to a “g-
regular” functional Φ (for the definition of g-regularity, see section 6) as applications
of algorithm TRANS-REG-SD.

5. Generation of all regular self-dual functions. Let CR-SD(n) denote the
class of all regular self-dual functions of n variables. We present in this section an
algorithm to generate all functions in CR-SD(n) by applying the operation σ. The algo-

TRANSFORMATIONS ON REGULAR NONDOMINATED COTERIES 395

rithm is incrementally polynomial [22] in the sense that the ith function φi ∈ CR-SD(n)

is output in polynomial time in n and
∑i−1
j=0 |minT (φj)| for i = 1, 2, . . . , |CR-SD |.

To visualize the algorithm, we first define an undirected graph Gn = (CR-SD(n), E),
where (g, f) ∈ E, if there exists a vector v ∈ min�T (g) such that σ(v;I)(g) = f for
some I ⊇ Vg.

Example 5.1. Figure 5.1 shows the graph G5.5 (Ignore the arrows on some edges
for now.)

❡

�
�

�✒

❅
❅

❅�✻

❡ ❡❡

❅
❅

❅

✻

❡

✻

❡

✻

❡

f0 = 1

f1 = 12 + 13 + 23

f2 = 12 + 13 + 14+ 234

f3 = 12 + 13 + 14 + 15+ 2345

f4 = 12 + 13+ 145+ 234 + 235

f5 = 12+ 134 + 135 + 145 + 234 + 235 + 245

f6 = 123 + 124 + 125 + 134 + 135 + 145 + 234 + 235 + 245 + 345

Fig. 5.1. The graph G5: the prime implicants corresponding to the vectors in min�T (fi) are
set in boldface.

Theorem 4.10 implies that Gn is connected. Moreover, the condition (g, f) ∈ E
holds if and only if (f, g) ∈ E; i.e., Gn is indeed undirected, as shown by the following
proposition. For a vector v ∈ {0, 1}n and I ⊆ V , let v[I]0 denote the vector u defined
by ON (u) = ON (v) ∩ I; i.e., u[I] = v[I] and the remaining components of u, if any,
are all set to 0’s.

Proposition 5.2. Let f ∈ CR-SD(n) and g = σ(w;I)(f) for w ∈ min�T (f)
such that I ⊇ Vf and w[I] �≺ w[I]. Then g ∈ CR-SD(n) and f = σ(u;I)(g), where
u = w[I]0 ∈ min�T (g).

Proof. g ∈ CR-SD(n) follows from Theorem 3.2 and Lemma 4.1. From (10), we
have

T (g) = (T (f) \ w[I]∗) ∪ w[I]∗ .

Let f ′ = σ(u;I)(g). Then

T (f ′) = (T (g) \ w[I]∗) ∪ w[I]∗ .

We thus have T (f ′) = T (f), hence f ′ = f . u = w[I]0 ∈ min�T (g) follows from
Lemma 4.1 and the fact that f is regular.

5Note that in this section the subscripts of the functions {fi} are reversed from those used in
TRANS-REG-SD; for example, f0 now denotes the function x1.

396 KAZUHISA MAKINO AND TIKO KAMEDA

Example 5.3. For example, consider the function f = f2 = 12 + 13 + 14 + 234 in
Figure 5.1, where we assume n = 5. We have min�T (f2) = {(10010), (01110)}. Pick
w = (10010) ∈ min�T (f2), which satisfies w[I] �≺ w[I] for I = Vf4 . It is easy to see
that g = σ(w;I)(f2) = 12+13+14(2+3+5)+235+234 = 12+13+145+234+235 = f4.
For u = w = (01101) ∈ min�T (g), we have σ(u;I)(g) = 12+13+234+235(1+4)+14 =
f2. Note that w[I]0 = w[I] since I = V .

For two distinct vectors u = (u1, . . . , un) and v = (v1, . . . , vn), we say that u is
lexicographically smaller than v, written u <· v, if for some k (1 ≤ k ≤ n) uk < vk
and ui = vi for all i (1 ≤ i < k). Thus among the vectors in {0, 1}3, for example, we
have (000) <· (001) <· (010) <· (011) <· (100) <· (101) <· (110) <· (111).

Let f0 = x1 be the designated function in CR-SD(n) and consider the problem of
transforming an arbitrary function g ∈ CR-SD(n) to f0 by repeatedly applying the σ
operation as in algorithm TRANS-REG-SD. Note that the transformation path from
a given g to f0 is not unique. Thus, to make the path unique, we choose for the σ
operation the lexicographically smallest vector ṽ ∈ min�T (g) such that ṽmaxVg

= 1.
Let µ be such an operation, i.e.,

µ(g) = σ(ṽ;Vg)(g).(18)

In this way, we define a directed spanning tree of Gn, RTn = (CR-SD(n), ART), such
that (g, f) is a directed arc in ART if and only if µ(g) = f . If µ() is applied recursively
to g, we eventually reach a function h such that Vh ⊂ Vg (see (17)). For example, in
Figure 5.1, we have Vf2 ⊂ Vf4 . Thus, RTn is an in-tree rooted at f0 = x1. In Figure
5.1, ART is indicated by the thick arcs.

Our algorithm GEN-REG-SD presented later in this section, which generates all
regular self-dual functions of n variables for a given n, will traverse RTn from f0

in a depth-first manner in the reverse direction of the arcs in ART , outputting each
regular self-dual function f when it first visits f . This type of enumeration is called
reverse search in [2, 3] and has been applied to many other enumeration problems
such as the extreme points of a convex polyhedron, the arrangements of hyperplanes,
the triangulations of a polygon, matroid bases, and so on. When RTn is traversed
from f0, for each arc (g, f) ∈ ART , the end node f (nearer the root) is visited before
the end node g (farther from the root). Unfortunately, when we first visit node f we
cannot identify the incoming arcs (in ART) towards node f from among the edges in
E (of Gn). In other words, knowing f , we cannot find g such that (g, f) ∈ ART . Note
that (18) computes f given g, not the other way around. In Lemma 5.5 below, we
find the “inverse” of (18) in the sense that u in Proposition 5.2 coincides with ṽ in
(18).

The following lemma is essentially a restatement of Lemma 4.8 in a slightly gen-
eralized form.

Lemma 5.4. Let f, g ∈ CR-SD(n) satisfy f = µ(g) = σ(ṽ;Vg)(g), where ṽ is the

lexicographically smallest vector in min�T (g)xmax Vg=1. With w = (ṽ)[Vg]0 , we have

minT (f) = minT (g) \ ({ṽ} ∪ {w + e(j) |,(19)

max(OFF (ṽ) ∩ Vg) < j ≤ maxVg}) ∪ {w},
minT (g) = (minT (f) \ {w}) ∪ {ṽ}(20)

∪ {w + e(j) | max(ON (w) ∩ Vg) < j ≤ maxVg},
min�T (f) = min�T (g) \ ({ṽ} ∪ min�T�(w;Vg)) ∪ {w}(21)

∪ {u ∈ min�T�(ṽ;Vg) | u �� z for all z ∈ (min�T (g) \ {ṽ}) ∪ {w}},

TRANSFORMATIONS ON REGULAR NONDOMINATED COTERIES 397

min�T (g) = min�T (f) \ ({w} ∪ min�T�(ṽ;Vg)) ∪ {ṽ}(22)

∪ {u ∈ min�T�(w;Vg) | u �� z for all z ∈ (min�T (f) \ {w}) ∪ {ṽ}},

where T�(v; I) = {u | u � v,ON (u) ⊆ I} for a vector v and an index set I ⊆ V .

Proof. The proof follows from Lemma 4.8, which is a special case of this lemma
(Vg = V).

Note that by (20) we have w + e(maxVg) ∈ minT (g), implying ṽ <· w + e(maxVg),
hence ṽ1 = 0 and w1 = 1, since w1 = ṽ1. In Lemma 5.4, conceptually, ṽ was explicitly
chosen first, and w was specified in terms of ṽ. The following lemma will enable
us to choose w explicitly, so that ṽ is chosen implicitly. Note that condition (c) in
Lemma 5.5 involves the lexicographic order in min�T (f), which one can compute
given f , while ṽ in (18) is defined in terms of the lexicographically smallest vector in
min�T (g), which one can compute given g. Note also that ṽ is unique for a given
regular self-dual function g, but vector w which satisfies the conditions of Lemma 5.5
is in general not unique for a given regular self-dual function f . This reflects the fact
that a nonroot node in graph RTn has one parent but in general has more than one
child node.

Lemma 5.5. Let f ∈ CR-SD(n) and g = σ(w;Vg)(f) for w ∈ min�T (f)6 such that
w[Vg] �≺ w[Vg] and Vg ⊇ Vf . Then f = µ(g) (= σ(ṽ;Vg)(g)) i.e., (g, f) ∈ ART (the arc
set of RTn), if and only if

(a) wmaxVg
= 0,

(b) w1 = 1, and
(c) w[Vg]0 is lexicographically smaller than any vector in min�T (f)xmax Vg=1.

Proof. Let us first consider the only-if part, assuming f = σ(ṽ;Vg)(g), where ṽ is
the lexicographically smallest vector in min�T (g)xmax Vg=1 as in Lemma 5.4. Then

g = σ(w;Vg)(f) implies that w = (ṽ)[Vg]0 . Since ṽmaxVg = 1 by definition, we have
wmaxVg

= 0, hence (a) holds.

(b) was shown above in the comment immediately after Lemma 5.4. To prove (c),
by (21), it suffices to show that ṽ <· w and that ṽ is lexicographically smaller than
any vector in the set min�T�(ṽ;Vg), since any vector u in the first term in (21) with
umaxVg = 1 must be lexicographically larger than ṽ by definition of ṽ. The former
follows immediately from (b) and ṽ = w[Vg]0 , and the latter is obvious, since u ≺ v
implies that u <· v for any vectors u and v.

To prove the if part, let ṽ = w[Vg]0 . We want to show that ṽ is lexicographically
the smallest in min�T (f)xmax Vg=1. By (c) and (22), it suffices to show that ṽ is
lexicographically smaller than any vector in min�T�(w;Vg) (the last term in (22)).
This is obvious since w1 = 1 and ṽ1 = 0.

Example 5.6. Using Lemma 5.5, we can construct RTn = (CR-SD(n), ART).
RT 6 = (CR-SD(6), ART) is shown in Figure 5.2.

The function numbers in the figure denote those regular self-dual functions of six
variables shown in the following table, which was derived from the work by Bioch and
Ibaraki [8]. (Some function numbers have been changed.)

6This means that (g, f) ∈ E (the edge set of Gn). g depends on the choice of w.

398 KAZUHISA MAKINO AND TIKO KAMEDA

#1

#3

#8

#5 #6 #7

#2

#4

Graph RT for |V| = 6.

Vf = {1,2,...,5}

Vf = {1,2,...4}

Vf = {1,2,3}

Vf = {1}

#9 #10 #13 #17 #11 #14 #18 #12 #16 #20 #21
Vf = {1,2,...,6}

#15 #19

Fig. 5.2. RT6 = (CR-SD (6), ART).

|Vf | Function

1 1 1∗

2 3 12+13+23†

3 4 12+13+14∗+234†

4 5 12+13+14+15∗+2345†

5 12+13∗+145∗+234+235†

6 12∗+134+135+145+234+235+245†

7 123+124+125+134+135+145+234+235+245+345†

8 6 12+13+14+15+16+23456†

9 12+13+14∗+156+2345+2346†

10 12+13∗+145+146+156+2345+2346+2356†

11 12+13∗+145+146+234+2356†

12 12+13∗+234+235+236† +1456

13 12∗+134+135+136+145+146+156+2345+2346+2356 +2456†

14 12∗+134+135+136+145+146+234+2356+2456†

15 12∗+134+135+136+145+234+235+2456†

16 12∗+134+135+136+234+235+236+1456+2456†

17 123+124+125+126+134+135+136+145+146+156+2345+2346+2356

+2456+3456†

18 123+124+125+126+134+135+136+145+146+234+2356+2456+3456†

19 123+124+125+126+134+135+136+145+234+235+2456+3456†

20 123+124+125+126+134+135+136+234+235+236+1456+2456+3456†

21 123+124+125+126+134+135+145+234+235+245+3456†

In the table, the prime implicants corresponding to the vectors in min�T (f) are shown
in boldface. Let tw denote the prime implicant corresponding to vector w ∈ minT (f);
i.e., tw contains the variable xi as a factor if and only if i ∈ ON(w). In other words,
i ∈ P (tw) if and only if i ∈ ON(w) and N(tw) = ∅. (For the definition of P () and
N(), see the beginning of section 2.) ∗ indicates a prime implicant tw such that vector
w satisfies the conditions of Lemma 5.5. When each function is called g, the prime
implicant tv with † corresponds to the unique vector ṽ.

In general, each vector w with wmaxVf
= 1 implies that f has (n − maxVf)

children due to w in RTn, one each for |Vg| = |Vf | + 1, . . . , n. Similarly, each vector
w with wmaxVf

= 0 implies that f has (n− maxVf + 1) children due to w, one each
for |Vg| = |Vf |, |Vf | + 1, . . . , n. For example, it is observed in Figure 5.2 that tw = 14
in function #3 gives rise to 6−4 = 2 children, while tw = 15 in function #4 gives rise

TRANSFORMATIONS ON REGULAR NONDOMINATED COTERIES 399

to just 6−5=1 child. Similarly, tw = 145 in function #5 gives rise to just one child,
while tw = 13 in function #5 gives rise to 6−5+1 = 2 children, and so forth.

Note that if Vg �= Vf (i.e., Vg ⊃ Vf), Lemma 5.5 implies that f = µ(g) if and only
if w1 = 1, since Vg ⊃ Vf and w ∈ min�T (f) imply conditions (a) and (c) are vacuous
in this case. Thus, for an index set I ⊃ Vf , any vector w ∈ min�T (f) that satisfies
w1 = 1 and w[I] �≺ w[I] produces g = σ(w;I)(f) such that f = µ(g).

We now discuss the data structures for minT (f) and min�T (f). The set minT (f)
is represented by a binary tree, denoted by B(minT (f)), of height n, in which the left
edge (resp., right edge) from a node at depth j− 1 (the root is at depth 0) represents
the case xj = 1 (resp., xj = 0). A leaf node t of B(S) at depth n stores the vector
v ∈ S (⊆ {0, 1}n), the components of which correspond to the edges of the path from
the root to t. In order to have a compact representation, the edges with no descendant
leaves are removed from B(S).

Example 5.7. Figure 5.3 shows B(minT (f)) for minT (f) = {v(1) = (110000),
v(2) = (101000), v(3) = (100110), v(4) = (011100), v(5) = (011010)} (i.e., f = 12 +
13 + 145 + 234 + 235).

With this data structure, it is easy to see that we can apply operations MEMBER
(i.e., check if v ∈ S), INSERT (i.e., update S := S ∪ {v}), and DELETE (i.e., update
S := S \ {v}) all in O(n) time. Moreover, since the rightmost (resp., leftmost) path
in B(S) represents the lexicographically smallest (resp., largest) vector in S, we can
output from B(S) the lexicographically smallest/largest vector in S in O(n) time.

Let Vi = {1, 2, . . . , i} and define α : {0, 1}n → Z
+ by

α(v) = min({ i | v[Vi] �≺ v[Vi], ON (v) ⊆ Vi ⊆ V } ∪ {n + 1}).(23)

By definition, if no i satisfies the condition on the right-hand side, α(v) = n+1 holds.
We can easily see that v[Vi] �≺ v[Vi] holds for all i ≥ α(v), if α(v) < n + 1. Based
on this α(v) and max ON (v), we decompose min�T (f) into many subsets as follows:
min�T (f) =

⋃
j≤i≤n+1
j=1,2,...,n

min�T (f)(i,j), where

min�T (f)(i,j) = {v ∈ min�T (f) | α(v) = i, max ON (v) = j}.

For the above example function f = 12 + 13 + 145 + 234 + 235, we have min�T (f) =
{v(2) = (101000), v(3) = (100110), v(5) = (011010)}. From this, we get
min�T (f)(5,3) = {v(2)}, min�T (f)(5,5) = {v(3), v(5)}, and min�T (f)(i,j) = ∅, other-
wise.

Our algorithm keeps min�T (f) as
⋃

j≤i≤n+1
j=1,2,...,n

B(min�T (f)(i,j)) and
⋃n
j=1 B(min�

T (f)j), where min�T (f)j =
⋃n+1
i=j min�T (f)(i,j).

We start depth-first search from the root f0. Note that min�T (f0)(1,1) = (10 . . . 0)
and Vf0 = {1}. During the depth-first search, when we visit node f , we first set up I :=
Vf as the index set. In the order (i, j) = (1, 1), . . . , (1,max I−1), (2, 1), . . . , (2,max I−
1), . . . , (max I, 1), . . . , (max I,max I−1), we then check if the lexicographically largest

w(i,j) in min�T (f)(i,j) satisfies (b) w
(i,j)
1 = 1 and (c) that the vector v(i,j), defined

by ON (v(i,j)) = OFF (w(i,j)) ∩ I, is lexicographically smaller than any vector in
min�T (f)max I (i.e., min�T (f)xmax I=1

). If there exists such a vector w(i,j), we move
to g = σ(w(i,j);I)(f). Since w(i,j) satisfies conditions (a), (b), and (c) of Lemma 5.5, we

have f = µ(g). Moreover, if w(i,j) does not satisfy (b) (resp., (c)), then no vector in
u ∈ min�T (f)(i,j) satisfies (b) (resp., (c)). This means that we do not have to check

the vectors in min�T (f)(i,j) other than w(i,j). Thus, if no w(i,j) (i = 1, 2, . . . ,max I,

400 KAZUHISA MAKINO AND TIKO KAMEDA

❡

❡ ❡

❡❡❡

❡❡ ❡❡

❡ ❡ ❡ ❡ ❡

❡ ❡ ❡ ❡ ❡

❡ ❡ ❡ ❡ ❡

✘✘✘✘✘✘✘✘✘
✏✏✏✏✏

�����
✏✏✏✏✏

✟✟✟✟
✟✟✟✟

❍❍❍❍
❍❍❍❍

❅
❅

�
�

❅
❅

�
�

❅
❅

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

x1 =1 x1 =0

x2 =1 x2 =0 x2 =1

x3 =0
x3 =1 x3 =0

x3 =1

x4 =0

x4 =0 x4 =1
x4 =1

x4 =0

x5 =0 x5 =0
x5 =1

x5 =0 x5 =1

x6 =0 x6 =0 x6 =0 x6 =0 x6 =0

v(1) v(2) v(3) v(4) v(5)

Fig. 5.3. A binary tree B(minT (f)), where f = 12 + 13 + 145 + 234 + 235 (a function of six
variables).

j = 1, 2, . . . ,max I− 1) satisfies (b) and (c), then we check if max I = n. If so,
we return to h = µ(f) from f (if f = f0 = x1, then halt); otherwise, we update
I := I ∪ {max I + 1} and again check if w(i,j) satisfies (b) and (c).

When the depth-first search returns to f from g by backtracking (i.e., f = µ(g) =
σ(v(i∗,j∗);Vg) (g)), we set I := Vg and move on to the vector w′ which lexicographically

follows w(i∗,j∗) in min�T (f)(i∗,j∗). If this w′ satisfies conditions (b) and (c) of Lemma

5.5, then we move to g′ = σ(w′;I)(f); otherwise, check if w(i,j) satisfies (b) and (c),
according to the ordering (i, j) = (i∗, j∗ + 1), . . . , (i∗,max I−1), (i∗ + 1, 1), . . . , (i∗ +
1,max I−1), . . . , (max I, 1), . . . , (max I,max I−1).

This procedure has the advantage that there is no need to maintain the data of
the entire search tree RTn but only the information about the current function is
sufficient. Our algorithm can be stated formally as follows:

Algorithm GEN-REG-SD
Input: A positive integer n.
Output: All regular self-dual functions of n variables.

Step 0: Let f := f0, I := Vf , w := (11 · · · 1), and output f . /* Note that (11 · · · 1)
is the special vector, indicating that no σ operation is applied to f .*/

Step 1: If w = (11 · · · 1), then go to Step 2. /* In this case, no σ operation was applied

to f .*/

Else if I = Vf , then go to Step 3. /* In this case, Vg = Vf holds for g = σ(w,I)(f);

i.e., we have applied the σ operation with I = Vf previously.*/

Else, go to Step 4. /* In this case, Vg ⊃ Vf holds for g = σ(w,I)(f); i.e., we have

applied the σ operation with I ⊃ Vf previously, and hence we already applied the

σ operation for with Vi, where Vf ⊆ Vi ⊂ I.*/

Step 2: Try to find the lexicographically largest w′ = w(i,j) in min�T (f)(i,j) satisfy-

ing the two conditions of Lemma 5.5, (b) w
(i,j)
1 = 1 and (c) the vector v(i,j),

defined by ON (v(i,j)) = OFF (w(i,j)) ∩ I, is lexicographically smaller than
any vector in min�T (f)max I , in the order (i, j) = (1, 1), . . . , (1,max I−1),
(2, 1), . . . , (2,max I−1), . . . , (max I, 1), . . . , (max I,max I−1). /* Recall

TRANSFORMATIONS ON REGULAR NONDOMINATED COTERIES 401

I = Vf . First apply σ with the index set I = Vf .*/

Then consider the following four cases:
(i) There is a w′ satisfying the above conditions: Let f := σ(w′;I)(f) and

w := (11 · · · 1), output f , and return to Step 1 (downward move).
(ii) There is no such w′ and max I < n:7 Try to find the lexicographically

largest w′′ = w(i,j) in min�T (f)(i,j) satisfying (b) w
(i,j)
1 = 1, according

to the ordering (i, j) = (1, 1), . . . , (1,maxVf), (2, 1), . . . , (2,maxVf), . . . ,
(n, 1), . . . , (n,maxVf).
If there is no such w′′, then go to either case (iii) or (iv). Else, let w′′ ∈
min�T (f)(i∗,j∗). Then let I := Vi∗ (= {1, 2, . . . , i∗}) if i∗ ≥ max I + 2;
otherwise, let I := I ∪ {max I + 1}, f := σ(w′′;I)(f), and w := (11 · · · 1),
output f , and return to Step 1 (downward move).

(iii) There is no such w′ or w′′, and f = f0: Halt (all functions have been
output).

(iv) There is no such w′ or w′′, and f �= f0: Let v be the lexicographically
smallest vector in min�T (f)maxVf

. Update f , I, and w by letting I :=
Vf , f := µ(f) = σ(v;Vf)(f), and ON (w) = OFF (v) ∩ I, respectively.
Return to Step 1 (backtrack).

Step 3: Let w ∈ min�T (f)(i∗,j∗). Try to find the vector w′ satisfying conditions
(b) and (c) of Lemma 5.5, according to the ordering (1) the vector that
lexicographically follows w in min�T (f)(i∗,j∗), followed by (2) w(i,j), where
(i, j) = (i∗, j∗ + 1), . . . , (i∗,max I−1), (i∗ + 1, 1), . . . , (i∗ + 1,max I−1), . . . ,
(max I, 1), . . . , (max I,max I−1). /*Try to apply σ with the current I with

I = Vf .*/

Then consider the four cases of Step 2.
Step 4: Let w ∈ min�T (f)(i∗,j∗). Try to find the vector w′ satisfying (b) w′1 = 1,

according to the ordering (1) the vector that lexicographically follows w
in min�T (f)(i∗,j∗), followed by (2) w(i,j), where (i, j) = (i∗, j∗ + 1), . . . ,
(i∗,maxVf), (i∗+1, 1), . . . , (i∗+1,maxVf), . . . , (max I, 1), . . . , (max I,maxVf).
/*Try to apply σ with the current I with I ⊃ Vf .*/

Then consider the four cases of Step 2.

In case (ii), we check if there exist a set I ′′ ⊃ I and a vector w′′ ∈ min�T (f) such
that f = µ(g), where g = σ(w′′;I′′)(f). Since I ′′ ⊃ I ⊇ Vf , we just check if w′′1 = 1, as
noted in the second paragraph after Example 5.6. According to the orderings on w′

and w′′, algorithm GEN-REG-SD traverses RTn depth-first; i.e., each arc in RTn is
traversed only twice, downward and upward.

To analyze the time complexity of GEN-REG-SD, we need two more lemmas.

Lemma 5.8. Given the data structures B(minT (f)), B(min�T (f)(i,j)) (j =
1, 2, . . . , n, i = j, j + 1, . . . , n+ 1) and B(min�T (f)j) (j = 1, 2, . . . , n), each iteration
of Steps 1 ∼ 4 in algorithm GEN-REG-SD computes either w′ or w′′ (or concludes
that no such vector exists) in O(n3) time.

Proof. Since we can check if a given vector u satisfies (b) and (c) of Lemma 5.5
in O(n) time, and since there are 2n2 candidates for either w′ or w′′, each iteration
requires O(n× n2) = O(n3) time.

Lemma 5.9. Let f, g ∈ CR-SD(n) satisfy f = µ(g). Let f = σ(v;I)(g) and
g = σ(w;I)(f). Given the data structures for g (i.e., B(minT (g)), B(min�T (g)(i,j))
(i = 1, 2, . . . , n + 1, j = 1, 2, . . . , n), and B(min�T (g)j) (j = 1, 2, . . . , n)), v, and I,

7Note that I ⊇ Vf , and hence min�T (f)j = ∅ holds for all j ≥ max I + 1.

402 KAZUHISA MAKINO AND TIKO KAMEDA

we can compute data structures of f in O(n3) time. Similarly, given data structures
of f , w, and I, we can compute data structures of g in O(n3) time.

Proof. We shall prove only the first assertion of the lemma, since the second
assertion can be proved analogously. It directly follows from (19) in Lemma 5.4 that
we can compute B(minT (f)) in O(n2) time.

As for the rest, it suffices to show that, given a vector u, the membership u ∈
min�T (f) can be checked in O(n2) time, since at most n vectors are deleted from or
added to min�T (g) to construct min�T (f) by (21) and (12). Note that a vector u is
contained in min�T (f) if and only if f(z) = 0 holds for all vectors z ∈ max� T≺(u).
From (13), we have at most n such vectors z. Moreover, we can check if a given vector
z satisfies f(z) = 1 in O(n) time if B(minT (f)) is prepared [34]. This completes the
proof.

By Lemmas 5.8 and 5.9, each iteration of Step 1 can be carried out in O(n3) time,
except for the outputting of function f . Since each arc (g, f) ∈ ART is traversed twice,
algorithm GEN-REG-SD requires O(n3|CR-SD(n)|) time, plus the time for outputting
all functions in CR-SD(n), i.e., O(nMsum) time, where

Msum =
∑

f∈CR-SD (n)

|minT (f)|.

Algorithm GEN-REG-SD clearly requires O(nMmax) space, where

Mmax = max
f∈CR-SD (n)

|minT (f)|.

Thus we have the following theorem.
Theorem 5.10. Algorithm GEN-REG-SD generates all functions in CR-SD(n)

and is incrementally polynomial. It requires O(n3|CR-SD(n)| + nMsum) time and
O(nMmax) space.

Corollary 5.11. All functions in CR-SD(n) can be scanned in O(n3|CR-SD(n)|)
time.

By Lemma 2.2, the regular functions are all representatives of equivalence classes
under permutation; i.e., there is no regular function f that is equivalent to another
regular function g (�= f) under permutation. Therefore, our algorithm generates the
nonequivalent functions. Let us remark that the algorithms in [9, 18] are not polyno-
mial if we try to output only nonequivalent functions.

It is known that the positive self-dual functions of up to n = 5 variables are
all threshold functions (and hence regular if we consider the representatives), but
there are many nonregular self-dual functions for n ≥ 6, even if we consider the
representatives (see Example 5.6). Moreover, it is known [28] that all regular positive
self-dual functions for n ≤ 9 are threshold functions.

6. Optimum self-dual function for regular functional Φ. Let ϕ be a
pseudo-Boolean function; i.e., ϕ is a mapping from {0, 1}n to the set of real num-
bers R. A pseudo-Boolean function ϕ is said to be g-regular if ϕ(v) ≥ ϕ(w) holds for
all pairs of vectors v and w with v � w. For a Boolean function f , let

Φ(f) =
∑

v∈T (f)

ϕ(v),(24)

where ϕ is a pseudo-Boolean function. The functional Φ is also said to be g-regular
if ϕ is g-regular. As an example of a g-regular pseudo-Boolean functional of interest,

TRANSFORMATIONS ON REGULAR NONDOMINATED COTERIES 403

we cite the availability of a Boolean function, defined as follows. Each element i ∈ V
has the operational probability pi (0 ≤ pi ≤ 1); i.e., the ith element is operational
with the probability pi, while it is failed with the probability 1− pi. We assume that
each element takes on its state independently. Then the availability A(f) of a Boolean
function f is defined by

A(f) =
∑

v∈T (f)

 ∏
i∈ON (v)

pi
∏

i∈OFF(v)

(1 − pi)

 .(25)

If we interpret T (f) as the set of states in which the n-element system defined by
the Boolean function f is working, then A(f) represents the probability that the
system represented by f is working. The availability has been studied extensively
[35], especially in the case where f represents ND coteries (i.e., f is positive self-dual)
[1, 5, 15, 33, 36, 38]. It is known [1, 36] that any element i with pi < 1/2 can be
ignored; i.e., xi is irrelevant for all positive self-dual functions f having the maximum
availability. The only exception is when all the elements have pi < 1/2. In this case,
it is known [1] that f = xj has the maximum availability, where j is the element such
that pj ≥ pi for all i. Thus, we can assume that pi ≥ 1/2 holds for all i. Moreover,
we assume without loss of generality that

p1 ≥ p2 ≥ · · · ≥ pn ≥ 1/2.

Now, let ϕ(v) =
∏
i∈ON (v) pi

∏
i∈OFF(v)(1 − pi). Then we have Φ(f) = A(f). It

follows from the assumption on the order of probabilities that A(f) is g-regular.
In this section, we consider the functions f that maximize g-regular functional Φ

among all self-dual functions.
Lemma 6.1. Given a g-regular function ϕ, let Φ be a g-regular functional defined

by (24). Then the following statements regarding f are equivalent.
(i) Φ(f) is maximum among all self-dual functions.
(ii) All vectors v ∈ T (f) satisfy ϕ(v) ≥ ϕ(v).
(iii) All vectors v ∈ min�T (f) satisfy ϕ(v) ≥ ϕ(v).
Proof. Let us prove (i) =⇒ (ii) =⇒ (iii) =⇒ (i). Since (ii) =⇒ (iii) is obvious, we

show (i) =⇒ (ii) and (iii) =⇒ (i).
(i) =⇒ (ii): If there exists a vector v ∈ T (f) such that ϕ(v) < ϕ(v), then the

function g defined by T (g) = (T (f) \ {v}) ∪ {v} satisfies Φ(g) > Φ(f). Since g is
self-dual, Φ(f) is not maximum among all self-dual functions.

(iii) =⇒ (i): Assume that Φ(f) is not maximum among all self-dual functions.
Then there exists a self-dual function g such that Φ(g) > Φ(f). Since Φ(g) > Φ(f),
some vector v ∈ T (f) \ T (g) satisfies ϕ(v) < ϕ(v). For this v, let w be a vector in
min�T (f) such that w � v. By the g-regularity of ϕ, ϕ(w) ≤ ϕ(v) holds. Moreover,
since w � v by w � v, ϕ(w) ≥ ϕ(v) holds. Thus, we have

ϕ(w) ≤ ϕ(v) < ϕ(v) ≤ ϕ(w).

This means that this w satisfies w ∈ min�T (f) and ϕ(w) < ϕ(w).
Theorem 6.2. Let Φ(f) be a g-regular functional defined by (24). Then there

exists a regular self-dual function f which maximizes Φ(f) among all self-dual func-
tions.

Proof. Let f be a regular self-dual function that maximizes Φ among all regular
self-dual functions. We claim that f in fact maximizes Φ among all self-dual functions.

404 KAZUHISA MAKINO AND TIKO KAMEDA

If not, by Lemma 6.1, there exists a vector v ∈ min�T (f) such that ϕ(v) < ϕ(v). Note
that v �� v holds, since otherwise (i.e., v � v) ϕ(v) ≥ ϕ(v), a contradiction. Thus,
it follows from Lemma 4.1 that ρv(f) is regular and self-dual. Moreover, by (9), we
have Φ(ρv(f)) > Φ(f), which contradicts the assumption.

However, there may be nonregular functions f that also maximize Φ(f). For
example, let p1 = p2 = 1/2. Then f1 = x1, f2 = x2, f3 = x1, and f4 = x2 have the
maximum availability, and, clearly, f2, f3, and f4 are not regular. (f3 and f4 are not
even positive.)

A pseudo-Boolean function ϕ is said to be properly g-regular if ϕ(v) > ϕ(w) holds
for all pairs of vectors v and w with v � w. The functional Φ defined by (24) is also
said to be properly g-regular if ϕ is properly g-regular.

The next theorem is a weak uniqueness result for Theorem 6.2, showing that any
optimal coterie is regular if Φ(f) is properly g-regular.

Theorem 6.3. Let Φ(f) be a properly g-regular functional defined by (24). Then
any function f that maximizes Φ(f) among all self-dual functions is regular.

Proof. Assume that a nonregular function f maximizes Φ(f) among all self-dual
functions. Since f is nonregular, there exists two vector v and w with v � w such
that f(v) = 0 and f(w) = 1. By Lemma 6.1, we have ϕ(w) ≥ ϕ(w). This, together
with v � w (and w � v), implies that ϕ(v) > ϕ(v), which contradicts the assumption
by Lemma 6.1.

The above theorem directly implies the following corollary.

Corollary 6.4. Let pi, i = 1, 2, . . . , n, be the operational probability of the ith
element. If p1 > p2 > · · · > pn > 1/2, then any function f that maximizes the
availability A(f) among all self-dual functions is regular.

Algorithm OPT-REG-SD

Input: A membership oracle of g-regular function ϕ.

Output: A regular self-dual function f that maximizes Φ(f) among all self-dual
functions.

Step 0: Let i := 1 and f := x1.
Step 1: While ∃v ∈ min�T (f) such that vi = 0, v[Vi] �� v[Vi] and ϕ(v′) < ϕ(v′)

for v′ = v +
∑n
j=i+1 e

(j), let f := σ(v;Vi)(f), where Vi = {1, 2, . . . , i}.
Step 2: If i = n, output f and halt. Otherwise, i := i + 1 and return to Step 1.

Note that the set min�T (f) in the “while” statement of Step 1 is updated as a
result of applying the σ transformation to f in Step 2.

Example 6.5. Let us consider the availability of the 6-variable functions, when
p1 = 9/10, p2 = 6/7, p3 = 4/5, p4 = 7/10, and p5 = 3/5. Recall that Φ(f) = A(f) is
given by (25). We apply algorithm OPT-REG-SD to this Φ(f).

Step 0: Let i := 1 and f := x1 (thus, min�T (f) = {(10000)}). Let u = (10000).
First iteration of Steps 1-2: Since u1 = 1, skip Step 1. Step 2 sets i := 2.
Second iteration of Steps 1-2: Since u[V2] = (10) � u[V2] = (01) for the only vector

u in min�T (f), skip Step 1. Step 2 sets i := 3.
Third iteration of Steps 1-2: Vector u ∈ min�T (f) satisfies u3 = 0, u[V3] = (100) ��

u[V3] = (011), but ϕ(10011) = 9/10× 1/7× 1/5× 7/10× 3/5 = 189/17500 >
ϕ(01100) = 1/10× 6/7× 4/5× 3/10× 2/5 = 144/17500. (If we were to apply
σ(u;V3) to f , we would have Φ(σ(u;V3)(f) < Φ(f).) Thus skip Step 1. Step 2
sets i := 4.

Fourth iteration of Steps 1-2: Vector u satisfies u4 = 0, u[V4] = (1000) �� u[V4] =
(0111). Moreover, we have ϕ(10001) < ϕ(01110), since ϕ(10001) = 9/10 ×
1/7×1/5×3/10×3/5 = 81/17500 and ϕ(01110) = 1/10×6/7×4/5×7/10×

TRANSFORMATIONS ON REGULAR NONDOMINATED COTERIES 405

2/5 = 336/17500. Thus f is transformed to

f := σ(u;V4)(f) = 12 + 13 + 14 + 234.

For this new f , we have min�T (f) = {u = (10010), v = (01110)}. Since
u4 = v4 = 1, we skip Step 1. Step 2 sets i := 5.

Fifth iteration of Steps 1-2: u satisfies u5 = 0, u[V5] = (10010) �� u[V5] = (01101).
Moreover, we have ϕ(10010) < ϕ(01101), since ϕ(10010) = 9/10×1/7×1/5×
7/10 × 2/5 = 126/17500 and ϕ(01101) = 1/10 × 6/7 × 4/5 × 3/10 × 3/5 =
216/17500. Thus f is transformed to

f := σ(u;V5)(f) = 12 + 13 + 14(2 + 3 + 5) + 234 + 235

= 12 + 13 + 145 + 234 + 235.(26)

As a result, we have min�T (f) = {u = (10100), v = (10011), w = (01101)}.
Since v5 = w5 = 1, we need to consider only u = (10100). Since u5 = 0,
u[V5] = (10100) �� u[V5] = (01011), but ϕ(10100) = 216/17500 > ϕ(01011) =
126/17500, skip Step 1. Since i = n = 5, output function f given by (26) and
halt.

As mentioned in the introduction, the weights (log2 9, log2 6, 2, log2(7/3), log2(3/2))
defined by (1) produce an optimal vote-assignable coterie, since tie-breaking is un-
necessary here. However, some weights are irrational, and hence we cannot exactly
compute the sum of the weights w∗(S) =

∑
i∈S w

∗(i).
Let fi, i = 1, 2, . . . , n, be the function f after the ith iteration of Step 1 of

algorithm OPT-REG-SD has been completed. Then clearly Vfi ⊆ Vi (= {1, 2, . . . , i})
holds. Moreover, we have the following lemma.

Lemma 6.6. Let fi, i = 1, 2, . . . , n, be as defined above. For each i = 1, 2, . . . , n,
all vectors v ∈ min�T (fi) with v[Vi] �� v[Vi] satisfy

ϕ(v′) ≥ ϕ(v′),(27)

where v′ = v +
∑n
j=i+1 e

(j).
Proof. If i = 1, then f1 = x1, and the lemma holds in this case, since min�T (f1) =

{v = (100 · · · 0)} and v[V1] � v[V1].
Assuming it holds for i = k, consider the case where i = k + 1. Let us consider

the vector v ∈ min�T (fk+1) with v[Vk+1] �� v[Vk+1]. If vk+1 = 0, then v satisfies
ϕ(v′) ≥ ϕ(v′), where v′ = v +

∑n
j=k+2 e

(j), since otherwise, v would have been
removed from T (fk+1) in Step 1 by applying the operation σ(v;Vk+1) to fk+1. This
contradicts the definition of fk+1.

If vk+1 = 1, on the other hand, there are two possibilities: (1) fk(v) = 0 and (2)
fk(v) = 1. In case (1), since v ∈ T (fk+1) \T (fk), f was updated by f := σ(v′;Vk+1)

(f)

in the (k + 1)st iteration of Step 1. Therefore, we have ϕ(v′) ≥ ϕ(v′).
In case (2), assuming ϕ(v′) < ϕ(v′), we derive a contradiction. Vfk ⊆ Vk im-

plies fk(v − e(k+1)) = 1. Since v[Vk+1] �� v[Vk+1], we have (v − e(k+1))[Vk] ��
(v − e(k+1))[Vk]. Note that (v − e(k+1))′ = v − e(k+1) +

∑n
j=k+1 e

(j) = v′. Thus,

if v − e(k+1) ∈ min�T (fk), by assumption, fk would have been updated by fk :=
σ(v−e(k+1);Vk)(fk). This contradicts the definition of fk. Now, since v − e(k+1) �∈
min�T (fk), there exists a vector w ∈ min�T (fk) such that w � v − e(k+1). We
can easily see that this w satisfies w[Vk] �� w[Vk] and ϕ(w′) < ϕ(w′), where w′ =
w+

∑n
j=k+1 e

(j). This implies that fk would have been updated by fk := σ(w;Vk)(fk),
again a contradiction.

406 KAZUHISA MAKINO AND TIKO KAMEDA

Lemma 6.7. Let fn be as defined above. Then fn maximizes Φ among all self-dual
functions.

Proof. Lemma 6.6 asserts (when i = n) that all vectors v ∈ min�T (fn) with
v �� v satisfy ϕ(v) ≥ ϕ(v). As for vectors v ∈ min�T (fn) with v � v, the g-regularity
of ϕ implies ϕ(v) ≥ ϕ(v). Together with Lemma 6.1, this completes the proof.

Theorem 6.8. Algorithm OPT-REG-SD correctly outputs a regular self-dual
function f that maximizes Φ among all self-dual functions in O(n3|minT (f)|) time.

Proof. Since the algorithm’s correctness follows from Lemma 6.7, we consider
only its time complexity.

Let us assume that OPT-REG-SD generates the following sequence of functions:
fm (= x1) → fm−1 → . . . → f0, where f0 is the output of algorithm OPT-REG-SD.
Then there must be a sequence of transformations, f0 → f1 → . . . → fm, which can
be generated by algorithm TRANS-REG-SD. This means that m ≤ |minT (f0)|.

As in algorithm GEN-REG-SD, we use binary trees B as the data structures of
minT (f) and min�T (f) in the following way: For a vector v, define β(v) by

β(v) = min

i ≥ max ON (v) | ϕ(v′) < ϕ(v′) for v′ = v +

n∑
j=i+1

e(j)

 ∪ {n + 1}

 .

It is clear that ϕ(v′) < ϕ(v′) holds for v′ = v+
∑n
j=i+1 e

(j) with i ≥ β(v), if β(v) ≤ n.
Algorithm OPT-REG-SD then prepares B(minT (f)) and {B(min�T (f)(i,j)) | i =
1, 2, . . . , n + 1, j = 1, 2, . . . , n}, where

min�T (f)(i,j) = {v ∈ min�T (f) | i = max{α(v), β(v)}, j = max ON (v)}.
As in the time complexity analysis of algorithm GEN-REG-SD, we can prove that
each iteration of Step 1 in algorithm OPT-REG-SD can be executed in O(n3) time.
Thus it requires O(n3|minT (f)|) time in total.

Acknowledgment. The authors thank the anonymous referees for their helpful
and constructive comments which improved the presentation of this paper.

REFERENCES

[1] Y. Amir and A. Wool, Optimal availability quorum systems: Theory and practice, Inform.
Process. Lett., 65 (1998), pp. 223–228.

[2] D. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of
arrangements and polyhedra, Discrete Comput. Geom., 8 (1992), pp. 295–313.

[3] D. Avis and K. Fukuda, Reverse search for enumeration, Discrete Appl. Math., 65 (1996),
pp. 21–46.

[4] D. Barbara and H. Garcia-Molina, The vulnerability of vote assignment, ACM Trans. Com-
puter Systems, 4 (1986), pp. 187–213.

[5] D. Barbara and H. Garcia-Molina, The reliability of voting mechanisms, IEEE Trans.
Comput., 36 (1987), pp. 1197–1208.

[6] P. Bertolazzi and A. Sassano, An O(mn) time algorithm for regular set-covering problems,
Theoret. Comput. Sci., 54 (1987), pp. 237–247.

[7] L.J. Billera, On the composition and decomposition of clutters, J. Combinatorial Theory Ser.
B, 11 (1971), pp. 234–245.

[8] J.C. Bioch and T. Ibaraki, Complexity of identification and dualization of positive Boolean
functions, Inform. Comput., 123 (1995), pp. 50–63.

[9] J.C. Bioch and T. Ibaraki, Generating and approximating positive non-dominated coteries,
IEEE Trans. Parallel Distrib. Systems, 6 (1995), pp. 905–914.

[10] E. Boros, P.L. Hammer, T. Ibaraki, and K. Kawakami, Polynomial-time recognition of
2-monotonic positive Boolean functions given by an oracle, SIAM J. Comput., 26 (1997),
pp. 93–109.

TRANSFORMATIONS ON REGULAR NONDOMINATED COTERIES 407

[11] V. Chvátal and P.L. Hammer, Aggregation of inequalities in integer programming, Ann.
Discrete Math., 1 (1977), pp. 145–162.

[12] Y. Crama, Dualization of regular Boolean functions, Discrete Appl. Math., 16 (1987), pp.
79–85.

[13] S.B. Davidson, Replicated data and partition failures, in Distributed Systems, S. Mullender,
ed., Addison-Wesley, Reading, MA, 1989.

[14] S.B. Davidson, H. Garcia-Molina, and D. Skeen, Consistency in partitioned networks, ACM
Comput. Surveys, 17 (1985), pp. 341–370.

[15] K. Diks, E. Kranakis, K. Krizanc, B. Mans, and A. Pelc, Optimal coteries and voting
schemes, Inform. Process. Lett., 51 (1994), pp. 1–6.

[16] T. Eiter and G. Gottlob, Identifying the minimal transversals of a hypergraph and related
problems, SIAM J. Comput., 24 (1995), pp. 1278–1304.

[17] M.L. Fredman and L. Khachiyan, On the complexity of dualization of monotone disjunctive
normal forms, J. Algorithms, 21 (1996), pp. 618–628.

[18] H. Garcia-Molina and D. Barbara, How to assign votes in a distributed system, J. ACM,
32 (1985), pp. 841–860.

[19] D.K. Gifford, Weighted voting for replicated data, in Proceedings of the 7th Symposium on
Operating System Principles, Pacific Grove, CA, ACM, 1979, pp. 150–162.

[20] T. Ibaraki and T. Kameda, A theory of coteries: Mutual exclusion in distributed systems,
IEEE Trans. Parallel Distrib. Systems, 4 (1993), pp. 779–794.

[21] T. Ibaraki, H. Nagamochi, and T. Kameda, Optimal coteries for rings and related networks,
in Proceedings of the 12th International Conference on Distributed Computing Systems,
Yokohama, Japan, 1992, pp. 650–656.

[22] D.S. Johnson, M. Yannakakis, and C.H. Papadimitriou, On generating all maximal inde-
pendent sets, Inform. Process. Lett., 27 (1988), pp. 119–123.

[23] L. Lamport, Time, clocks, and the ordering of events in a distributed system, Comm. ACM,
21 (1978), pp. 558–565.

[24] K. Makino and T. Ibaraki, The maximum latency and identification of positive Boolean
functions, SIAM J. Comput., 26 (1997), pp. 1363–1383.

[25] K. Makino and T. Ibaraki, A fast and simple algorithm for identifying 2-monotonic positive
Boolean functions, J. Algorithms, 26 (1998), pp. 291–305.

[26] K. Makino and T. Kameda, Efficient generation of all regular non-dominated coteries, in
Proceedings of the Nineteenth ACM Symposium on Principles of Distributed Computing
(PODC 2000), Portland, OR, 2000, pp. 279–288.

[27] S.J. Mullender and P.M.B. Vitányi, Distributed match-making, Algorithmica, 3 (1988), pp.
367–391.

[28] S. Muroga, Threshold Logic and Its Applications, Wiley-Interscience, New York, 1971.
[29] M. Naor and A. Wool, The load, capacity and availability of quorum systems, SIAM J.

Comput., 27 (1998), pp. 423–447.
[30] M. Naor and A. Wool, Access control and signatures via quorum secret sharing, IEEE Trans.

Parallel Distrib. Systems, 9 (1998), pp. 909–922.
[31] U.N. Peled and B. Simeone, Polynomial-time algorithm for regular set-covering and threshold

synthesis, Discrete Appl. Math., 12 (1985), pp. 57–69.
[32] U.N. Peled and B. Simeone, An O(nm)-time algorithm for computing the dual of a regular

Boolean function, Discrete Appl. Math., 49 (1994), pp. 309–323.
[33] D. Peleg and A. Wool, The availability of quorum systems, Inform. and Comput., 123 (1995),

pp. 210–223.
[34] J.S. Provan and M.O. Ball, Efficient recognition of matroids and 2-monotonic systems, in

Applications of Discrete Mathematics, R. Ringeisen and F. Roberts, eds., SIAM, Philadel-
phia, 1988, pp. 122–134.

[35] K.G. Ramamurthy, Coherent Structures and Simple Games, Kluwer Academic Publishers,
Dordrecht, the Netherlands, 1990.

[36] M. Spasojevic and P. Berman, Voting as the optimal static pessimistic scheme for managing
replicated data, IEEE Trans. Parallel Distrib. Systems, 5 (1994), pp. 64–73.

[37] R.H. Thomas, A majority consensus approach to concurrency control, ACM Trans. Database
Systems, 4 (1979), pp. 180–209.

[38] Z. Tong and R.Y. Kain, Vote assignments in weighted voting mechanisms, in Proceedings of
the 7th Symposium on Reliable Distributed Systems, 1988, pp. 138–143.

[39] T.W. Yan and H. Garcia-Molina, Distributed selective dissemination of information, in
Proceedings of the 3rd International Conference on Parallel and Distributed Information
Systems, 1994, pp. 89–98.

ON APPROXIMATING THE ACHROMATIC NUMBER∗

GUY KORTSARZ† AND ROBERT KRAUTHGAMER‡

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 3, pp. 408–422

Abstract. The achromatic number problem is to legally color the vertices of an input graph
with the maximum number of colors, denoted ψ∗, so that every two color classes share at least one
edge. This problem is known to be NP-hard.

For general graphs we give an algorithm that approximates the achromatic number within a
ratio of O(n · log logn/ logn). This improves over the previously known approximation ratio of

O(n/
√

logn), due to Chaudhary and Vishwanathan [Proceedings of the Eighth Annual ACM-SIAM

Symposium on Discrete Algorithms, New Orleans, LA, 1997, pp. 558–563].

For graphs of girth at least 5 we give an algorithm with an approximation ratio O(min{n1/3,
√
ψ∗}).

This improves over an approximation ratio O(
√
ψ∗) = O(n3/8) for the more restricted case of

graphs with girth at least 6, due to Krysta and Loryś [Proceedings of the Seventh Annual European
Symposium on Algorithms, Lecture Notes in Comput. Sci. 1643, Springer-Verlag, Berlin, 1999, pp.
402–413].

We also give the first hardness result for approximating the achromatic number. We show that
for every fixed ε > 0 there is no 2− ε approximation algorithm, unless P = NP .

Key words. achromatic number, graph coloring, approximation algorithms

AMS subject classifications. 68Q25, 68W25, 05C15

PII. S0895480100379579

1. Introduction. A coloring (a.k.a. legal coloring) of a graph G(V,E) is an
assignment of colors to the graph vertices such that whenever two vertices are adjacent,
they are colored differently. A k-coloring is one that uses k colors. A coloring is called
complete (or achromatic) if for every pair of distinct colors, there exist two adjacent
vertices which are assigned these two colors. The achromatic number ψ∗(G) of a graph
G is the largest number k such that G has a complete k-coloring. (For known results
on ψ∗(G) see the surveys of Edwards [5] and Hughes and MacGillivray [13]).

Yannakakis and Gavril [17] proved that the problem of computing the achro-
matic number of a graph, called the achromatic number problem, is NP-hard. We are
therefore interested in algorithms that find approximate solutions. An approximation
algorithm with a ratio α ≥ 1 (called in short an approximation ratio α) for the achro-
matic number problem is an algorithm that runs in polynomial time and finds for an
input graph G a complete coloring with at least ψ∗(G)/α colors. Throughout, let n
denote the number of vertices in the input graph G, let m denote the number of edges
in it, and let ψ∗ = ψ∗(G) be its achromatic number.

1.1. Previous work. Yannakakis and Gavril [17] proved that the achromatic
number problem is NP-hard. In [6], Farber et al. show that the problem is NP-hard
on bipartite graphs. In [1], Bodlaender shows that the problem is NP-hard on graphs

∗Received by the editors October 16, 2000; accepted for publication (in revised form) June 4,
2001; published electronically August 29, 2001. A preliminary version of this paper appeared in
Proceedings of the Twelfth Annual Symposium on Discrete Algorithms, Washington, D.C., 2001, pp.
309–318.

http://www.siam.org/journals/sidma/14-3/37957.html
†Department of Computer Science, Open University of Israel, 16 Klauzner St., Ramat-Aviv, Israel

(guyk@oumail.openu.ac.il).
‡Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,

Rehovot 76100, Israel (robi@wisdom.weizmann.ac.il). The research of this author was supported in
part by a Dora Ostre memorial scholarship.

408

ON APPROXIMATING THE ACHROMATIC NUMBER 409

that are simultaneously cographs and interval graphs. In [3], Cairnie and Edwards
show that the problem is NP-hard on trees.

Chaudhary and Vishwanathan [4] give the first sublinear approximation algorithm
for the achromatic problem with an approximation ratio O(n/

√
log n). They conjec-

ture that it can be approximated within a much better ratio of O(
√
ψ∗) and give an

algorithm with this approximation ratio of O(
√
ψ∗) = O(n7/20) for graphs with girth

(length of the shortest simple cycle) at least 7. For trees they give an algorithm with
approximation ratio 7.

Krysta and Loryś [14] give an algorithm with an approximation ratio O(
√
ψ∗) =

O(n3/8) for graphs with girth at least 6, proving for these graphs the conjecture of [4].
For trees, they improve the approximation ratio to 2.

1.2. Related problems. An independent set in a graph is a subset of the ver-
tices, every two of which are nonadjacent. The size of the largest independent set in
G is denoted by α(G).

A coloring of a graph is a partition of the vertex set into color classes, each of
which is an independent set. A possible “greedy” approach for obtaining a complete
coloring is to iteratively remove from the graph maximal independent sets of small
size. (Maximality here is with respect to containment.) However, the problem of
finding a minimum maximal independent set cannot be approximated within a ratio
n1−ε for any ε > 0, unless P=NP [8].

A related notion is the chromatic number χ(G) of a graph G, which is the smallest
number k such that G has a (complete) k-coloring. Clearly, ψ∗(G) ≥ χ(G). The
chromatic number problem, i.e., computing χ(G), is also NP-hard.

In many respects, the achromatic number problem differs from the chromatic
number problem. For example, when ψ∗(G) = O(1), a complete coloring with ψ∗(G)
colors can be found in polynomial time, e.g., by guessing

(
ψ∗(G)

2

)
“critical” edges

(see [6] for a more efficient algorithm). In contrast, even when χ(G) = 3, it is NP-
hard to find a 3-coloring.

From the aspect of approximation, the chromatic number χ(G) appears to be

understood relatively well: an algorithm with an approximation ratio ofO(n (log log n)2

(log n)3)

is given in [9], and an n1−ε hardness of approximation (for every fixed ε > 0, assuming
NP�⊆ZPP) is shown in [7]. It is conjectured [4] that the achromatic number ψ∗(G)
can be approximated better than that of the chromatic number, namely, within ratio
O(
√
ψ
∗
).

1.3. Our results. Our results narrow, in three different ways, the (currently
huge) gap in the approximation ratio of the achromatic number problem. We improve
the known approximation ratio for general graphs (upper bound); we give the first
hardness of approximation result (lower bound); and we extend the family of graphs
for which the O(

√
ψ∗) approximation ratio (that is conjectured in [4]) is known to

hold.
In section 2 we give an algorithm with an approximation ratio O(n log log n/ log n)

for general graphs, improving over the previous O(n/
√
log n) ratio of [4]. The algo-

rithm actually produces a complete Ω(logψ∗/ log logψ∗)-coloring. We remark that a
similar result is not known for some related problems such as the maximum indepen-
dent set and the chromatic number. Namely, it is not known whether an independent
set of size roughly logα(G) can be found in polynomial time or whether G can be
colored in polynomial time with 2O(χ(G)) colors.

Our approximation algorithm for general graphs uses a result of Máté [16] for

410 GUY KORTSARZ AND ROBERT KRAUTHGAMER

finding a complete Ω(logψ∗/ log logψ∗)-coloring in a restricted family of graphs called
irreducible graphs. (See section 2 for the definition of irreducibility.) For certain
bipartite graphs (those that can be significantly reduced in a sense that is described
in section 2) we devise another algorithm whose approximation ratio is significantly
better.

In section 3 we give an approximation algorithm with a ratio O(min{√ψ∗, n1/3})
for graphs of girth at least 5. In terms of ψ∗, our ratio of O(

√
ψ∗) proves the conjecture

of [4] for the special case of graphs with girth at least 5, extending the previously
known result of [14] for (the more restricted case of) graphs with girth at least 6. In
terms of n, our ratio of O(n1/3) for graphs with girth at least 5 improves over the
previously known ratios for (the more restricted cases of) graphs with girth at least
6 and 7, namely, the O(n3/8) ratio of [14] and the O(n7/20) ratio of [4], respectively.

Our proof also gives a lower bound ψ∗ ≥ m/n in graphs of girth at least 5 (recall
that m is the number of edges in the graph), which may be of independent interest
in the context of graph theory. This lower bound does not hold for graphs of girth 4,
as demonstrated by a complete bipartite graph whose achromatic number is 2.

In section 4 we show that for any fixed ε > 0, the achromatic number problem
cannot be approximated within a ratio 2 − ε, unless P = NP . No hardness of
approximation was previously known for this problem. In particular, our reduction
shows that it is NP-hard to decide whether a graph has a complete coloring with
all color classes of size exactly 2. In contrast, for a complete coloring with all color
classes of size exactly 1, the graph has to be a complete graph (i.e., a clique), and so
the corresponding decision problem is in P.

1.4. Preliminaries. For the algorithms, we may assume that ψ∗(G) is known,
e.g., by exhaustively searching over the n possible values or by using binary search.
Throughout, an algorithm is considered efficient if it runs in polynomial time.

For a subset U of the vertices, let G[U] be the subgraph of G induced on U .
We say that a vertex v is adjacent to U if v is adjacent to at least one vertex in U .
Otherwise, we say that v is independent of U . Two subsets of vertices U,W are said
to be adjacent if they contain a pair of vertices u ∈ U,w ∈ W which are adjacent in
G. We also say that U,W share an edge in G. In a complete coloring, every two color
classes are adjacent to each other. The girth of a graph is the length of its shortest
simple cycle.

A partial complete coloring of G is a complete coloring of an induced subgraph
G[U], namely, a coloring of a subset of the vertices such that each color class is adjacent
to every other color class. The next straightforward lemma is well known [16, 5, 4, 14].

Lemma 1.1. A partial complete coloring can be extended greedily to a complete
coloring of the entire graph.

Proof. Consider a yet uncolored vertex. It can be added to one of the independent
sets unless it is adjacent to all color classes, in which case this vertex can form a new
color class.

Let G \ v denote the graph resulting from removing a vertex v (and its incident
edges) from G. The next two lemmas follow from the definition of the achromatic
number.

Lemma 1.2. ψ∗(G)− 1 ≤ ψ∗(G \ v) ≤ ψ∗(G) for any vertex v in the graph G.

Lemma 1.3.
(
ψ∗

2

) ≤ m and hence ψ∗ ≤ O(
√
m).

Semi-independent matchings. A collection M of edges of a graph G is called
a matching if no two edges in M have a common endpoint. A matching M =

ON APPROXIMATING THE ACHROMATIC NUMBER 411

{(x1, y1), . . . , (xk, yk)} is called independent if no edge of G\M connects two matched
vertices, i.e., both X = {x1, . . . , xk} and {y1, . . . , yk} are independent sets, and for
all i �= j, it holds that xi is not adjacent to yj .

A matching M = {(x1, y1), . . . , (xk, yk)} is called semi-independent if both X =
{x1, . . . , xk} and {y1, . . . , yk} are independent sets, and for all j > i, it holds that xi is
not adjacent to yj . (Here we assume that the edges of M are ordered from 1 to k and
that the endpoints of each edge are also ordered. Note that xi may be adjacent to yj
for j < i, which makes the difference between an independent and a semi-independent
matching.)

A semi-independent matching can be used to obtain a partial complete coloring,
as demonstrated in the next lemma. This lemma is also used in [16], and a weaker
version, based on an independent matching, is used in [4].

Lemma 1.4. Given a semi-independent matching of size
(
t
2

)
in a graph, a partial

complete t-coloring of the graph can be computed efficiently.
Proof. First color x1, . . . , xt−1 with colors 2, . . . , t, respectively, and color all

their matched vertices y1, . . . , yt−1 with color 1. Next color xt, . . . , x2t−3 with colors
3, 4, . . . , t, respectively, and color all their matched vertices yt, . . . , y2t−3 with color 2.
Proceed similarly until for some i, xi is colored with color t and its matched vertex
yi is colored with color t− 1. This happens for i =

(
t
2

)
, as each pair of distinct colors

appears in exactly one edge (xj , yj). The lemma follows.

2. Algorithm for general graphs. Our main result in this section is an algo-
rithm with an approximation ratio O(n · log log n/ log n) for the achromatic number
problem on general graphs. For bipartite graphs we give another algorithm whose
approximation ratio is better in certain cases.

2.1. The equivalence graph. Hell and Miller [11] define the following equiv-
alence relation (called the reducing congruence) on the vertex set of a graph G (see
also [5, 13]). Two vertices in G are equivalent if they have the same set of neighbors
in the graph.

Let r1, . . . , rq denote the different equivalence classes of G, where q is the number
of equivalence classes. Let S(ri) denote the vertices that belong to the class ri. Each
vertex in S(ri) is called a copy of ri. Note that two equivalent vertices cannot be
adjacent to each other in G, so S(ri) forms an independent set in G.

The equivalence graph (also called the reduced graph) of G, denoted Q, is a graph
whose vertices are the equivalence classes ri and whose edges connect two vertices
ri, rj whenever a vertex of S(ri) is adjacent in G to a vertex in S(rj). Note that if
ri, rj are adjacent in Q, the subgraph induced by G on S(ri) ∪ S(rj) is a complete
bipartite graph. The equivalence graph can be used to obtain a complete coloring of
G, as shown in the following lemma.

Lemma 2.1. A partial complete t-coloring of the equivalence graph Q implies a
partial complete t-coloring of G (which can be computed efficiently). Hence, ψ∗(G) ≥
ψ∗(Q).

Proof. The proof follows easily by replacing each vertex of Q with an arbitrary
copy of it from G.

2.2. Irreducible graphs. A graph is called irreducible if all its equivalence
classes are singletons, i.e., consist of a single vertex.

Máté [16] shows that the achromatic number of an irreducible graph on n vertices
is lower bounded by Ω(logn/ log log n). The proof of [16] essentially gives an efficient
algorithm for finding such a coloring, as stated in the next theorem. For completeness,

412 GUY KORTSARZ AND ROBERT KRAUTHGAMER

we review the algorithm in the appendix. We remark that Erdős constructed a family
of graphs that nearly match this Ω(logn/ log log n) lower bound, as their achromatic
number is O(log n), see [16, section 2] for more details.

Theorem 2.2 (Máté [16]). There exists a polynomial time algorithm that com-
putes for an irreducible graph on n vertices a partial complete Ω(log n/ log log n)-
coloring.

Corollary 2.3. There exists a polynomial time algorithm that computes for a
graph with q equivalence classes a partial complete Ω(log q/ log log q)-coloring.

Proof. Note that the equivalence graph Q is always irreducible, and hence Theo-
rem 2.2 yields an algorithm that finds a partial complete Ω(log q/ log log q)-coloring of
Q. By Lemma 2.1 this coloring implies a partial complete Ω(log q/ log log q)-coloring
of G.

For q ≥ nΩ(1), this corollary clearly yields an approximation ratio O(n · log log n/
log n). To obtain such an approximation ratio for general graphs we next deal with
the case that q is small. Note that in general, q might be as small as log2 ψ

∗.

2.3. Algorithm for general graphs. The next theorem is the main result of
this section.

Theorem 2.4. A complete Ω(logψ∗/ log logψ∗)-coloring can be computed effi-
ciently.

To prove the theorem, it suffices to assume that q < (ψ∗)α for a constant 0 <
α < 1, as otherwise the theorem follows from Corollary 2.3 since log q/ log log q =
Ω(logψ∗/ log logψ∗). (This assumption on q will be used only at the final step of the
algorithm.)

The first step of the algorithm is to remove from G the vertices whose equivalence
class is of size smaller than ψ∗/2q. Let V̂ denote these vertices and then |V̂ | ≤
q · (ψ∗/2q) = ψ∗/2. Let G′ = G \ V̂ denote the resulting graph, let Q′ be the
equivalence graph of G′, and let q′ be the number of vertices in Q′.

It suffices to find a partial complete Ω(logψ∗/ log logψ∗)-coloring of G′, since G′

is an induced subgraph of G. By considering G′ instead of G, we lose only a constant
factor in the achromatic number because by Lemma 1.2, ψ∗(G′) ≥ ψ∗(G) − |V̂ | ≥
ψ∗/2. The advantage of G′ is that all its equivalence classes are relatively large.
Indeed, when V̂ is removed from G, some equivalence classes of G are removed, and
the rest either remain intact or merge with each other. Hence any equivalence class
of G′ is of size at least ψ∗/2q.

The next goal of the algorithm will be to find as many as possible independent
sets of Q′ (not necessarily disjoint; i.e., a vertex in Q′ may belong to more than one
independent set) such that there is an edge (in the graph Q′) between every two of
these sets. The reason is that we can later replace the vertices from Q′ with their
copies from G′. We can actually replace each of these vertices with a distinct copy
from G′ (and obtain a coloring of G′), since for each vertex of Q′ there are sufficiently
many copies in G′.

For a set A of vertices of Q′, let NQ′(A) denote the neighbors of A in the equiv-
alence graph Q′, i.e., all the vertices of Q′ that are adjacent to A in the graph
Q′. Call two (not necessarily disjoint) subsets A,B of vertices in Q′ equivalent if
NQ′(A) = NQ′(B).

The algorithm iteratively constructs a collection Si of (not necessarily disjoint)
independent sets in Q′ with the property that no two sets in Si are equivalent, i.e.,
NQ′(A) �= NQ′(B) for all A �= B ∈ Si. The initial collection S1 consists of all the
vertex subsets of size one in Q′; i.e., S1 consists of all the sets {u} where u is a vertex

ON APPROXIMATING THE ACHROMATIC NUMBER 413

in Q′. Clearly, each set in S1 is an independent set and no two sets are equivalent.
The next collection Si+1 is constructed from Si as follows. Start with Si+1 = Si and
go over all A ∈ Si and all vertices u of Q′ which are independent of A. For every
combination of A and u, insert the set A∪{u} into Si+1, unless Si+1 already contains
a set that is equivalent to it. It follows that no two sets in Si+1 are equivalent; i.e.,
NQ′(A) �= NQ′(B) for all A �= B ∈ Si+1.

We next claim that Si contains an equivalent for every independent set in Q′

whose size is at most i.

Lemma 2.5. For any independent set A in Q′ with |A| ≤ i, there exists a set
B ∈ Si such that NQ′(A) = NQ′(B).

Proof. The proof proceeds by induction on i. For i = 1 the lemma follows from
the fact that S1 contains all the subsets of one vertex of Q′.

Assuming that the lemma holds for i ≥ 1, we show that it holds for i + 1. Let
A be an independent set of size i + 1 in Q′. Then A = Â ∪ {u} for some Â and
u with |Â| = i. By the induction hypothesis, there exists a set B′ ∈ Si which is
equivalent to Â, i.e., NQ′(Â) = NQ′(B′). The set B′ ∪ {u} is then equivalent to A

because NQ′(B′ ∪ {u}) = NQ′(Â ∪ {u}) = NQ′(A). Since B′ ∈ Si we conclude that
Si+1 contains a set that is equivalent to B′ ∪ {u} and thus to A, as desired.

The algorithm iteratively computes the collection Si for i = 1, 2, . . . , until the
first time that |Si| ≥ ψ∗/2. The following lemma guarantees that this happens within
q′ iterations, where clearly q′ ≤ n.

Lemma 2.6. |Sq′ | ≥ ψ∗(G′) ≥ ψ∗/2.
Proof. An optimal complete coloring of G′ uses at least ψ∗/2 colors. Each color

class in this coloring is an independent set of G′, and hence defines an independent
set in Q′. No two of these independent sets of Q′ are equivalent because their corre-
sponding color classes in G′ share at least one edge. Each of these independent sets
is of size at most q′ because there are q′ vertices in the graph Q′, and there is no need
to take a vertex of Q′ more than once. So by Lemma 2.5, Sq′ contains an equivalent
for each of these independent sets. It follows that |Sq′ | ≥ ψ∗(G′) ≥ ψ∗/2.

Given the collection Si with |Si| ≥ ψ∗/2, define the following graph Gi whose
vertex set is Si (i.e., each vertex in Gi is an independent set in Q′). Two vertices are
joined by an edge in the graph Gi if the two corresponding independent sets share an
edge in Q′. It is not difficult to see that the graph Gi is irreducible. Indeed, every two
of its vertices correspond to two sets A,B ∈ Si that are not equivalent in Q′. Thus,
there exists a vertex uj of Q′ which is independent of A but adjacent to B or vice
versa. Since the set {uj} (or a set equivalent to it) belongs to Si, it corresponds to a
vertex of Gi which is adjacent to exactly one of A and B.

Finally, apply Theorem 2.2 on Gi and compute for it a partial complete Ω(log |Si|/
log log |Si|)-coloring. Since |Si| ≥ ψ∗/2, the number of colors is Ω(logψ∗/ log logψ∗).
Each color class is an independent set in Gi and thus corresponds to an independent set
of Q′. Every two color classes in Gi share an edge (in Gi), and thus their corresponding
independent sets in Q′ share an edge (in Q′). Now replace each vertex of these
Ω(logψ∗/ log logψ∗) independent sets of Q′ with a distinct copy of it from G′. Recall
that each vertex of Q′ has at least ψ∗/2q > (ψ∗)1−α/2� logψ∗/ log logψ∗ copies in
G′. By replacing each vertex of Q′ with a distinct copy of it from G′ we therefore
obtain a partial complete Ω(logψ∗/ log logψ∗)-coloring of G′, which concludes the
proof of Theorem 2.4.

Theorem 2.7. The achromatic number can be approximated within a ratio of
O(n · log log n/ log n).

414 GUY KORTSARZ AND ROBERT KRAUTHGAMER

Proof. The proof follows from the O(ψ∗ · log logψ∗/ logψ∗) approximation ratio
of Theorem 2.4 since ψ∗ ≤ n.

2.4. Algorithm for bipartite graphs. We give an algorithm for bipartite
graphs that is based on the algorithm for general graphs but does not use the re-
sult of Máté. This algorithm obtains an improved approximation ratio compared to
Corollary 2.3 when q, the number of equivalence classes of G, is not too large.

Theorem 2.8. The achromatic number of a bipartite graph can be approximated
within a ratio of O(max{q,√ψ∗}).

Proof. As in the algorithm of Theorem 2.4 for general graphs, we first find a
collection Si with |Si| ≥ ψ∗/2. (Note that no restriction on q is needed for this part.)
Instead of the final step, which constructs the graph Gi and applies on it Theorem 2.2,
we exploit the bipartiteness of G as follows.

G is bipartite, and henceG′ is bipartite. Q′ is also bipartite, since each equivalence
class of G′ is a subset of vertices all of which are from the same side of G′.

Let W 1,W 2 denote the two sides of Q′, and “project” Si on each side W j , as
follows. Start with T j = ∅ and go over all A ∈ Si. For every such A, insert A ∩W j

into T j , unless T j already contains a set that is equivalent to it. It follows that no
two sets in T j are equivalent.

By definition, Si is closed, up to equivalence, under (the operation of) taking
nonempty subsets; i.e., if Si contains a set A, then for every nonempty B ⊂ A, there
is some set equivalent to B in Si. Therefore, every set in Si is equivalent to either a
set in T 1, or a set in T 2, or the union of a set from T 1 and a set from T 2. Since no
two sets in Si are equivalent, we conclude that |Si| ≤ |T 1| + |T 2| + |T 1| · |T 2|, and
hence either |T 1| or |T 2| is at least Ω(√|Si|).

Let A be the larger of the two sets T 1, T 2, and thus |A| = Ω(
√|Si|) = Ω(

√
ψ∗).

Without loss of generality, we assume A = T 1. Observe that every set in A is an
independent set in Q′. We will now apply on A a divide-and-conquer technique so
that every two sets in it will share an edge.

Similarly to the well-known Quicksort algorithm, choose a vertex p ∈ W 2 to be
a pivot element and separate the collection A into nonempty A+ and A−, where A+

consists of the sets that are adjacent to p (in Q′), and A− consists of the sets that
are independent of p (in Q′). (We show below that there always exists such a pivot
p ∈ W 2, which can be found using exhaustive search). Add p to every set B ∈ A−,
i.e., those sets that are not adjacent to p. Possibly, a set B already contains p in
which case the operation has no effect. Observe that now every set B ∈ A− shares
an edge with every set C ∈ A+ because p ∈ B and C is adjacent to p. For each of
A+,A− apply the same procedure recursively, unless every two subsets in it already
share an edge.

The resulting sets are independent sets, since a vertex p is added to a set B only
if B is independent of p, and initially every set in T 1 ⊆ Si is an independent set. In
addition, every two of the resulting sets share an edge, since either (i) the two sets
are separated at some point in the recursion, and then the pivot guarantees that they
share an edge; or (ii) the two sets are never separated in the recursion, and then the
stopping condition for the recursion guarantees that they share an edge.

We now show that if a collection Â contains two sets B̂ and Ĉ which share no
edge, then there exists a pivot p ∈ W 2 that separates Â into two nonempty parts.
In the beginning of the recursive process the two sets B̂ and Ĉ were B ∈ T 1 and
C ∈ T 1, respectively. The recursive process may add only vertices to a set, and
so B ⊆ B̂ and C ⊆ Ĉ. Since B and C are two different sets in T 1, they are not

ON APPROXIMATING THE ACHROMATIC NUMBER 415

equivalent (in Q′), and hence there is a vertex p (in Q′) that is adjacent to exactly
one of B,C. However, Q′ is bipartite and both B,C ∈ T 1 contain only vertices from
W 1, so p ∈W 2. We claim that p is also adjacent to exactly one of B, C and is hence a
pivot that separates Â into two nonempty parts. Indeed, the vertices of B̂ \B and of
Ĉ \C are added as pivots at some point in the recursion. They must be from W 2 and
are thus independent of p ∈W 2. We conclude p is adjacent to exactly one of B̂, Ĉ as
claimed.

We thus find Ω(
√
ψ∗) independent sets in Q′, every two of which share an edge.

Now replace each vertex of these independent sets with a distinct copy of it from
G′. Recall that each vertex of Q′ has at least ψ∗/2q copies in G′, so we can obtain
a partial complete min{ψ∗/2q,Ω(√ψ∗)}-coloring of G′, which concludes the proof of
Theorem 2.8.

3. Algorithms for graphs with girth at least 5. In this section we give an
algorithm with an approximation ratio O(min{n1/3,

√
ψ∗}) for the achromatic number

problem on graphs with girth at least 5. We note in passing that for every such graph,
ψ∗ ≥ m/n.

A star is a graph in which one of its vertices, called the head of the star, is
connected to all other vertices, called the leaves of the star. Usually, it is also required
that the leaves of the star are not connected to each other, but for graphs of girth
larger than 3, this follows immediately.

3.1. Partial complete m/n-coloring.

Theorem 3.1. For any graph of girth at least 5, a partial complete m/n-coloring
can be computed in polynomial time, and, in particular, ψ∗(G) ≥ m/n.

Proof. Iteratively remove from the graph any vertex whose degree is smaller than
m/n. The graph does not turn empty as less than m edges are removed. In the
remaining graph G′, all degrees are at least m/n.

Consider in G′ an arbitrary vertex v, its neighbors N(v), and the set of vertices
at distance 2 from v, denoted N2(v). Let N(v) = {x1, . . . , xk} with k ≥ m/n. Let Ri
denote the star connecting xi to its neighbors in N2(v). Note that the stars Ri are
vertex disjoint, or otherwise a cycle of length 4 (or less) is formed. In particular, for
any i �= j there is no edge between the head of Ri and a leaf of Rj . Since all degrees
in G′ are at least m/n, each Ri has at least m/n− 1 leaves.

We now use the stars R1, . . . , R�m/n� to obtain a partial complete �m/n�-coloring.
(We ignore vertices outside these stars.) Iteratively, for i = 1, . . . , �m/n�, color with
color i the head of the star Ri and one leaf from each of the stars Rj with i < j ≤
�m/n� so that a total of �m/n� − i+1 vertices are colored with color i. The one leaf
from each star Rj is chosen by going iteratively over j = i+ 1, i+ 2, . . . , �m/n�, each
time choosing (and coloring with color i) an arbitrary leaf of Rj which was not yet
colored and is independent of all the vertices that were previously colored with color
i. To see that such a leaf of Rj always exists, observe that (i) Rj contains at least
(�m/n�−1)−(i−1) uncolored leaves; (ii) the head of Ri is independent of all the leaves
of Rj ; and (iii) a leaf of Rj′ for i < j′ < j is adjacent to at most one leaf of Rj , or
otherwise a cycle of length 4 is formed. Hence, at least (�m/n�−1)−(i−1)−(j−i−1) =
�m/n� − j + 1 ≥ 1 leaves of Rj can be chosen.

It follows that the vertices that are colored with each color i form an independent
set. Moreover, each color class i contains a leaf from Rj for i < j ≤ �m/n�. This leaf
is adjacent to the head of Rj , which is colored by j, and thus color class i is adjacent
to every color class j > i. Hence, this coloring is a partial complete �m/n�-coloring.

416 GUY KORTSARZ AND ROBERT KRAUTHGAMER

By Lemma 1.1 this coloring can be extended to a complete coloring of the entire graph
G.

Theorem 3.1 implies a relatively simple O(
√
n) approximation ratio. We further

improve this ratio in the next subsections.
Theorem 3.2. There is an approximation algorithm with a ratio O(

√
n) for the

achromatic number problem on graphs with girth at least 5.
Proof. ψ∗ ≤ O(

√
m) by Lemma 1.3. If m < n, then ψ∗ = O(

√
n), and any greedy

complete coloring will have at least one color, and hence a ratio O(
√
n). If m ≥ n,

the algorithm of Theorem 3.1 finds a complete coloring with at least m/n colors, and
its ratio is thus O(n/

√
m) = O(

√
n).

3.2. An O(
√
ψ∗) approximation algorithm.

Theorem 3.3. For every graph of girth at least 5, a partial complete Ω(
√
ψ∗)-

coloring can be computed in polynomial time, and hence the achromatic number can
be approximated within a ratio of O(

√
ψ∗).

Proof. In what follows, we describe the algorithm together with its analysis. The
algorithm is also depicted more schematically in Figure 3.1.

Algorithm Girth.
(1) Let ρ← �√ψ∗�.
(2) Vh ← {v ∈ V : deg(v) ≥ ρ}.
(3) If |Vh| ≥ ρ,

then return partial complete ρ-coloring of Vh∪N(Vh) using Lemma 3.4.
(4) G′′ ← G \ Vh,R ← ∅, r ← 0.
(5) While G′′ contains edges,

(a) pick a nonisolated vertex u in G′′;
(b) remove from G′′ the vertex u and all its neighbors, and insert them

into R.
(c) r ← r + 1.

(6) If |R| ≥ ρ3/16,
then return a partial complete Ω(

√
r)-coloring of G[R] using Lemma 3.5.

(7) Return a partial complete mR/nR-coloring of G[R] using Theorem 3.1,
where mR and nR are the number of edges and vertices in G[R].

Fig. 3.1. Algorithm for graphs of girth at least 5.

Let ρ = �√ψ∗�. (Recall we assumed that ψ∗ is known.) Let Vh be the set of
vertices whose degree in G is at least ρ, and let N(Vh) be the set of the neighbors
of Vh in G. If Vh contains at least ρ vertices, then we use Lemma 3.4 to compute a
partial complete ρ-coloring of (the subgraph induced on) Vh ∪N(Vh), and the desired
Ω(
√
ψ∗)-coloring follows.
So from now on we assume that |Vh| ≤ ρ− 1 and let G′ ← G \Vh. By Lemma 1.2

we know that ψ∗(G′) ≥ ψ∗ − ρ+1 ≥ ψ∗/2+ 1. G′ is an induced subgraph of G, so it
suffices to compute a partial complete Ω(

√
ψ∗)-coloring of G′.

We partition the vertices of G′ into two disjoint sets R and I as follows. Initially,
let G′′ ← G′,R ← ∅, and while G′′ contains edges, iteratively perform the following
2 operations: (a) pick a nonisolated vertex u in G′′; (b) remove from G′′ the vertex
u and all its neighbors and insert them into R. Note that when removing this star,
some vertices of G′′ which are not removed may become isolated vertices and remain
in G′′ in all the iterations. Let I be the (possibly empty) set of vertices that remain in

ON APPROXIMATING THE ACHROMATIC NUMBER 417

G′′ at the end of this process (i.e., when G′′ has no edges). If I is not empty, then it
is an independent set in G. Indeed, G′′ is obtained from G by operations of removing
vertices, so G and G′′ have exactly the same edges inside I.

Let r be the number of iterations in the above process. Note that in each iteration,
we insert into R a star (consisting of a vertex u and its neighbors in the corresponding
iteration), and hence R can be partitioned to r disjoint subsets, each corresponding
to a star in G.

Consider the case that |R| ≥ ρ3/16. Since all vertices in G′ have degree less than
ρ (in G and hence also in G′), each of the r stars (of R) is of size at most ρ, and hence
r ≥ |R|/ρ ≥ ρ2/16. Each of these r stars contains at least one leaf. We can thus use
Lemma 3.5 to compute a partial complete Ω(

√
r)-coloring of G[R], the subgraph of

G that is induced on these r stars. Since Ω(
√
r) = Ω(ρ) = Ω(

√
ψ∗), this coloring is as

desired.

In the case that |R| < ρ3/16, we apply the algorithm of Theorem 3.1 on the graph
G[R] = G′ \ I. Let nR and mR be the number of vertices and edges, respectively, in
G[R]. Clearly, nR = |R| < ρ3/16 = O((ψ∗)3/2), so let us give a lower bound on mR.
The number of edges in G′ is at least

(
ψ∗/2+1

2

) ≥ (ψ∗)2/8 by Lemma 1.3. Since I is
an independent set also in G′, all the edges in G′ which are adjacent to I are also
adjacent to R. By the upper bound ρ on the degrees in G′, we get that the number
of these edges is at most |R| · ρ ≤ ρ4/16 ≤ (ψ∗)2/16. It follows that the number of
edges in G′ \ I is mR ≥ ψ∗2/8 − ψ∗2/16 = Ω(ψ∗2). Hence, mR/nR = Ω(

√
ψ∗), and

Theorem 3.1 produces a partial complete Ω(
√
ψ∗)-coloring.

To finish the proof of Theorem 3.3, we need to prove Lemmas 3.4 and 3.5.

Lemma 3.4. If |Vh| ≥ ρ, a partial complete ρ-coloring of (the subgraph of G
induced on) Vh ∪N(Vh) can be computed in polynomial time.

Proof. Consider the stars that each vertex of Vh defines (together with its neigh-
bors) in G, denoted Q1, . . . , Q|Vh|. Each star Qi contains at least ρ leaves, since the
degree of each vertex of Vh is at least ρ. Note that the stars Q1, . . . , Qk need not be
disjoint. However, the heads of the stars are distinct, since they are distinct vertices
in Vh.

We now proceed with coloring the stars Q1, . . . , Qρ similarly to the coloring of
the stars R1, . . . , Rm/n in the proof of Theorem 3.1. Iteratively, for i = 1, . . . , ρ, color
with the ith color the head of the star Qi and one leaf from each of the stars Qj with
i < j ≤ ρ, so a total of ρ−i+1 vertices are colored with color i. The ρ−i leaves of the
stars Qj for i < j ≤ ρ are chosen iteratively for j = i+ 1, i+ 2, . . . , ρ, each iteration
coloring with color i a leaf of Qj which was not colored yet and is independent of all
the vertices that were previously colored with color i. To see that such a leaf of Qj

always exists, observe that (i) Qj contains at least ρ − (i − 1) uncolored leaves; (ii)
each vertex which was previously colored with color i is adjacent to at most one leaf
of Qj , or otherwise a cycle of length 4 is formed. Since the number of vertices which
were previously colored with color i is j− i, at least ρ− (i−1)− (j− i) = ρ− j+1 ≥ 1
leaves of Qj can be chosen.

It follows that the vertices that are colored with each color i form an independent
set. Moreover, each color class i contains a leaf from Qj for i < j ≤ ρ. This leaf is
adjacent to the head of Qj , which is colored by j, and thus the color class i is adjacent
to every color class j > i. Hence, this coloring is a partial complete ρ-coloring.

Lemma 3.5. If r ≥ ρ2/16, then a partial complete Ω(
√
r)-coloring of the subgraph

of G induced on the r stars of R can be computed in polynomial time.

Proof. Let x1, . . . , xr be the heads of the r stars and choose arbitrarily one edge

418 GUY KORTSARZ AND ROBERT KRAUTHGAMER

(xi, yi) from each star. This gives a matching with r edges. (Observe that each star
contains at least one leaf, since the vertex u chosen is not an isolated vertex.)

We now proceed with a partial
√
r/8-coloring for the vertices of the matching

(x1, y1), . . . , (xr, yr) as follows. (In a sense, this extends the coloring from Lemma 1.4.)
Iteratively, for j = 1, 2, . . . ,

√
r/8, perform the following four operations: (a) find

candidates to be colored by color j, which are the vertices yi that are yet uncolored
and are independent of the vertices that were already colored by j; (b) find in the
induced subgraph (of G) on these candidates yi an independent set Ij of size

√
r/8−j;

(c) color all the vertices of Ij with color j; (d) color each of the vertices xi which are
matched to Ij with a distinct color from the set {j + 1, j + 2, . . . ,

√
r/8}.

To see that operation (b) is always feasible, consider an iteration j. Less than
r/64 of the yi vertices are colored because each previous iteration colors less than√
r/8 of them. In addition, j − 1 ≤ √r/8 vertices were already colored with j (these

are xi vertices), and each of them has less than ρ ≤ 4
√
r neighbors in G, so the

number of yi candidates to be colored by color j is at least r − r/64− 4
√
r · √r/8 >

r/3. By Lemma 3.6 we know that one can efficiently find an independent set of size√
r/3/3 ≥ √r/8 in the subgraph induced on these candidates.

Lemma 3.6. Let G be a graph of girth 5 on n vertices. Then an independent set
of G of size

√
n/3 can be found in polynomial time.

Proof. The average degree d̄ is at most 2
√
n as a graph with girth 5 has at most

n
√
n edges; cf. [2]. Turan’s theorem implies that G has an independent set of size

n/(d̄+1) ≥ √n/3. Furthermore, a simple greedy algorithm finds such an independent
set; see, for example, [10].

3.3. An O(n1/3) approximation algorithm. In terms of n we have the fol-
lowing ratio.

Theorem 3.7. The achromatic number problem can be approximated within a
ratio of O(n1/3) in graphs with girth at least 5.

Proof. If m > n4/3, then Theorem 3.1 gives a ratio of O(n/
√
m) = O(n1/3) as

desired. If m ≤ n4/3, then ψ∗ ≤ O(
√
m) = O(n2/3) and the required ratio follows

from Theorem 3.3.

4. Hardness of approximation. In this section we prove NP-hardness for the
problem of approximating the achromatic number within a ratio of 2− ε. The same
reduction shows that it is NP-hard to decide whether a graph has a complete coloring
with all color classes of size exactly 2 (or, alternatively, at most 3).

Our reduction uses a graphs operation called the (disjoint) union of graphs. We
remark that Hell and Miller [12] give a tight analysis of the effect of this operation on
the achromatic number from an extremal point of view.

Theorem 4.1. For every fixed ε > 0, it is NP-hard to approximate the achromatic
number within a ratio of 2− ε.

Proof. Our starting point is a reduction that creates a gap in the chromatic
number χ(G) in the following way. Given an input x for an NP-complete language L,
one can efficiently produce a graph G(V,E) which satisfies (let n = |V |).

(1) If x ∈ L, then for a certain χ̂, the graph G can be (legally) colored with χ̂
colors, i.e., χ(G) ≤ χ̂, so that all color classes will be of equal size n/χ̂.

(2) If x �∈ L, then every independent set in G is of size at most α̂, i.e., α(G) ≤ α̂,
for a certain α̂ < n/χ̂. (Hence χ(G) ≥ n/α̂.)

This reduction creates a gap of n/α̂χ̂ > 1 in the chromatic number of G. Lund and
Yannakakis [15] have shown such reductions (see also [7]). The gap that is created

ON APPROXIMATING THE ACHROMATIC NUMBER 419

in these reductions is an arbitrarily large constant. (We remark that for every fixed
δ > 0, a larger gap of n1−δ can be obtained using randomized reductions.)

Lemma 4.2. For every fixed ε > 0, there exists a reduction as above with gap
n/α̂χ̂ ≥ 1/ε.

To produce a gap for the achromatic number problem, start with the graph G
from the reduction of Lemma 4.2 and construct from it a graph H on n(χ̂+1) vertices
as follows. H is the union of Ḡ, the edge complement of G, and a complete χ̂-partite
graph on the vertex set W which consists of χ̂ parts W1, . . . ,Wχ̂, each of size n/χ̂.
In other words, the vertex set of H is V ∪W1 ∪ · · · ∪Wχ̂; its edges inside V form the
graph Ḡ; a vertex from a set Wi is connected by an edge to a vertex of a set Wj if
and only if i �= j; and there are no other edges (e.g., between V and W).

We first show that if x ∈ L, then ψ∗(H) ≥ n. If x ∈ L, then there is a coloring of
G with χ̂ colors so that all color classes are of equal size n/χ̂. Let Vi denote the ith
color class in this coloring for i = 1, . . . , χ̂. Each color class Vi is an independent set
in G and thus a clique in Ḡ and in H. Let us pair each vertex of Vi with a distinct
vertex of Wi (observe that |Vi| = n/χ̂ = |Wi|), so there would be exactly n pairs, one
for each vertex of V .

We claim that considering each of the n pairs as a distinct color class gives a
complete n-coloring of H, and hence ψ∗(H) ≥ n. Indeed, each pair is an independent
set because it contains one vertex from each of V,W and there are no edges between
these two sets. To see that there is an edge between every two pairs, consider two
arbitrary pairs. Suppose that one pair has a vertex from Vi and a vertex from Wi,
and the other pair has a vertex from Vj and a vertex from Wj . If i = j, then the
two vertices from Vi are connected because Vi forms a clique in Ḡ and thus in H. If
i �= j, then the vertex from Wi and the vertex from Wj are connected. Each of the 2n
vertices of H belongs to some pair, and hence the n pairs form a complete n-coloring
of H as claimed.

Now consider the case that x �∈ L. Let l = ψ∗(H), and let C1, . . . , Cl be the
corresponding color classes. Observe that a color class Ck is an independent set and
thus contains vertices from at most one set Wj . So every class can be identified by
a particular Wj from which it contains vertices, or it may contain no vertices from
W = ∪jWj .

First consider the classes Ck which contain no vertices from V , and let l0 denote
the number of such classes. By the above observation, each of these l0 classes is entirely
contained in one set Wj . Furthermore, each of these l0 color classes is contained in a
different Wj , since each Wj is an independent set, and every two color classes share
an edge. Therefore, l0 ≤ χ̂.

Next consider the color classes Ck which contain exactly one vertex from V and
possibly some vertices from W , and let l1 denote the number of these classes. We
group these classes according to the observation above as follows. Let Ij denote the
classes which contain exactly one vertex from V and one or more vertices from Wj ,
and let I0 denote the classes which consist of a single vertex of V and no vertices of
W . Then l1 = |I0 ∪ I1 ∪ · · · Iχ̂|.

The classes in Ij , for j ≥ 1, cannot be connected to each other using their Wj

vertices because Wj is an independent set. Since these color classes share an edge,
they must be connected using their vertices from V . However, each of these classes
has exactly one vertex from V , so these vertices from V form a clique in Ḡ. A clique
in Ḡ is of size at most α̂ (since x �∈ L), and hence |Ij | ≤ α̂ for every j ≥ 1. A similar
argument applies for I0 and also for I0 ∪ I1 (i.e., their corresponding vertices in V

420 GUY KORTSARZ AND ROBERT KRAUTHGAMER

must form a clique), and hence also |I0 ∪ I1| ≤ α̂. We conclude that

l1 = |I0 ∪ I1 ∪ · · · ∪ Iχ̂| ≤ χ̂ · α̂.
Finally, consider the remaining color classes Ck, i.e., those that contain two or

more vertices from V and possibly some vertices fromW , and let l2 denote the number
of such classes. These l2 classes contain together the remaining n − l1 vertices of V ,
and hence the number of such classes is l2 ≤ (n− l1)/2.

The total number of classes Ck in a complete coloring is thus

l = l0 + l1 + l2 ≤ l0 + l1 +
n− l1
2

≤ χ̂+
n+ χ̂ · α̂

2
.

Since α̂ ≥ 1, we can have in Lemma 4.2 that χ̂ ≤ χ̂ · α̂ ≤ εn, and hence

ψ∗(H) = l ≤ n(1 + 3ε)

2
.

We conclude that for any fixed ε > 0 there is a gap of 2/(1 + 3ε) between the
achromatic number of H in the cases x ∈ L and x �∈ L. Since ε > 0 is arbitrarily
small, we can obtain any gap of 2− ε as desired.

Theorem 4.3. It is NP-hard to decide whether an input graph has a complete
coloring with all color classes of size exactly 2 or whether every complete coloring of
the graph has a color class of size at least 4.

Proof. Consider the reduction from the proof of Theorem 4.1. If x ∈ L, then
there is a complete coloring of H with every color class of size exactly 2. If x �∈ L,
then a complete coloring of H can use at most n(1 + 3ε)/2 colors; since H has 2n
vertices, there must be a color class of size at least 2n

n(1+3ε)/2 > 3.

Appendix. An algorithm for irreducible graphs.
We describe below an efficient algorithm for finding a partial complete

Ω(log n/ log log n)-coloring of an irreducible graph G. The algorithm follows from
the results of Máté [16].

1. Find greedily a (legal) coloring of G by iteratively removing from the graph
a maximal independent set. Let I1, . . . , Ip be the color classes, i.e., the inde-
pendent sets that are removed in the iterations.

2. If the greedy coloring uses more than logn colors, then return this coloring.
(Note that the greedy coloring is complete.)

3. Assume without loss of generality that I = I1 is the largest of the independent
sets. (Note that |I| ≥ n/ log n.)

4. Fix an arbitrary total order ≺ on the vertices of I.
5. For each unordered pair x, y ∈ I fix a distinguisher dx,y, which is a vertex

that is adjacent to exactly one of x, y. Let f({x, y}) be the color of dx,y in the
greedy coloring of step 1. (Note that dx,y �∈ I and thus f(x, y) ∈ {2, . . . , k}.)

6. For each unordered triple x, y, z ∈ I let g({x, y, z}) be the following boolean
value. Assuming that x ≺ y ≺ z, let g({x, y, z}) be 0 if dx,y and z are adjacent
in G, and 1 otherwise.

7. Iteratively construct I = S0 ⊃ S1 ⊃ · · · ⊃ Sl, and a set Z = {z0, . . . , z2l−1},
as follows. Start with S0 ← I and let M ← log−2 |I|. While |Si| ≥ 50M−3,
construct Si+1:
(a) let z2i ← min≺ Si and z2i+1 ← min≺ Si \ {z2i};
(b) partition Si \ {z2i, z2i+1} into S0

i+1 and S1
i+1, where Sri+1 consists of the

vertices x ∈ Si \ {z2i, z2i+1} with g({z2i, z2i+1, x}) = r;

ON APPROXIMATING THE ACHROMATIC NUMBER 421

(c) let Si+1 be one of S0
i+1 and S1

i+1, as follows:

if |S0
i+1| > Me−M/2|Si|, then Si+1 ← S0

i+1;
otherwise (it must hold that |S1

i+1| > e−M |Si|) let Si ← S1
i+1.

(Note that z0 ≺ z1 ≺ . . . ≺ z2l−1.)
8. For r = 0, 1,

(a) let Qr be the set of iterations i in which Si+1 ← Sri+1 is taken in (7c);
(b) let Ur ← {(z2i, z2i+1) : i ∈ Qr}.

9. If |Q0| ≥ Ω(log |I|/ log log |I|),
return the following partial complete |Q0|-coloring. For each pair of vertices
(z2i, z2i+1) ∈ U0 color with a fresh color its distinguisher dz2i,z2i+1

and one of
the pair z2i, z2i+1 which is not adjacent to the distinguisher dz2i,z2i+1

.

10. Otherwise (it must hold that |Q1| ≥ Ω(log3 |I|)).
Find the f value that is most frequent among the pairs z2i, z2i+1 ∈ U1, and
let U ′1 consist of the pairs with this f value. (Since f accepts at most log n
values, |U ′1| ≥ |U1|/ log n = Ω(log2 n).)

11. Select from each pair of vertices (z2i, z2i+1) ∈ U ′1 the one which is adjacent to
its distinguisher dz2i,z2i+1 . These selected vertices form a matching to their

corresponding distinguishers dz2i,z2i+1 . This matching of size Ω(log2 n) can
be shown to be semi-independent. We can thus use Lemma 1.4 to return a
partial complete Ω(log n)-coloring of G.

Acknowledgment. The second author thanks Michael Langberg for helpful
discussions.

REFERENCES

[1] H. L. Bodlaender, Achromatic number is NP-complete for cographs and interval graphs,
Inform. Process. Lett., 31 (1989), pp. 135–138.

[2] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.
[3] N. Cairnie and K. Edwards, Some results on the achromatic number, J. Graph Theory, 26

(1997), pp. 129–136.
[4] A. Chaudhary and S. Vishwanathan, Approximation algorithms for the achromatic number,

in Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, New
Orleans, LA, 1997, pp. 558–563.

[5] K. Edwards, The harmonious chromatic number and the achromatic number, in Surveys in
Combinatorics, Cambridge University Press, Cambridge, UK, 1997, pp. 13–47.

[6] M. Farber, G. Hahn, P. Hell, and D. Miller, Concerning the achromatic number of graphs,
J. Combin. Theory Ser. B, 40 (1986), pp. 21–39.

[7] U. Feige and J. Kilian, Zero knowledge and the chromatic number, J. Comput. System Sci.,
57 (1998), pp. 187–199.

[8] M. M. Halldórsson, Approximating the minimum maximal independence number, Inform.
Process. Lett., 46 (1993), pp. 169–172.

[9] M. M. Halldórsson, A still better performance guarantee for approximate graph coloring,
Inform. Process. Lett., 45 (1993), pp. 19–23.

[10] M. M. Halldórsson and J. Radhakrishnan, Greed is good: Approximating independent sets
in sparse and bounded-degree graphs, Algorithmica, 18 (1997), pp. 145–163.

[11] P. Hell and D. J. Miller, On forbidden quotients and the achromatic number, Congr. Numer.,
15 (1976), pp. 283–292.

[12] P. Hell and D. J. Miller, Achromatic numbers and graph operations, Discrete Math., 108
(1992), pp. 297–305.

[13] F. Hughes and G. MacGillivray, The achromatic number of graphs: A survey and some
new results, Bull. Inst. Combin. Appl., 19 (1997), pp. 27–56.

[14] P. Krysta and K. Loryś, Efficient approximation algorithms for the achromatic number, in
Proceedings of the Seventh Annual European Symposium on Algorithms, Lecture Notes in
Comput. Sci. 1643, Springer-Verlag, Berlin, 1999, pp. 402–413.

422 GUY KORTSARZ AND ROBERT KRAUTHGAMER

[15] C. Lund and M. Yannakakis, On the hardness of approximating minimization problems, J.
Assoc. Comput. Mach., 41 (1994), pp. 960–981.

[16] A. Máté, A lower estimate for the achromatic number of irreducible graphs, Discrete Math.,
33 (1981), pp. 171–183.

[17] M. Yannakakis and F. Gavril, Edge dominating sets in graphs, SIAM J. Appl. Math., 38
(1980), pp. 364–372.

A HYPERGRAPH APPROACH TO THE IDENTIFYING PARENT
PROPERTY: THE CASE OF MULTIPLE PARENTS∗

ALEXANDER BARG† , GÉRARD COHEN‡ , SYLVIA ENCHEVA§ ,
GREGORY KABATIANSKY¶, AND GILLES ZÉMOR‖

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 3, pp. 423–431

Abstract. Let C be a code of length n over an alphabet of q letters. An n-word y is called a
descendant of a set of t codewords x1, . . . , xt if yi ∈ {x1i , . . . , xti} for all i = 1, . . . , n. A code is said
to have the t-identifying parent property if for any n-word that is a descendant of at most t parents
it is possible to identify at least one of them. We prove that for any t ≤ q − 1 there exist sequences
of such codes with asymptotically nonvanishing rate.

Key words. Helly property, error-correcting codes, identifying parent property

AMS subject classifications. 94A60, 05C65

PII. S0895480100376848

1. Introduction. Let Q be an alphabet of size q, and let us call any subset C
of Qn an (n,M)-code when |C| = M . Elements x = (x1, . . . , xn) of C will be called
codewords.

Let C be an (n,M)-code. Suppose X ⊆ C. For any coordinate i define the
projection

Pi(X) =
⋃
x∈X

xi.

Define the envelope e(X) of X by

e(X) = {x ∈ Qn : ∀i, xi ∈ Pi(X)}.

Elements of the envelope e(X) will be called descendants of X. Observe that X ⊆
e(X) for all X, and e(X) = X if |X| = 1.

Given a word s ∈ Qn (a son) which is a descendant of X, we would like to identify
without ambiguity at least one member of X (a parent). When this is always possible
for any descendant s of an X of size two, the code C is said to have the identifiable
parent property [9]. More generally, we have the following definition.

Definition 1.1. For any s ∈ Qn let Ht(s) be the set of subsets X ⊂ C of size at
most t such that s ∈ e(X). We shall say that C has the identifiable parent property

∗Received by the editors August 11, 2000; accepted for publication June 4, 2001; published
electronically August 29, 2001. These results were presented at the International Workshop on
Coding and Cryptography, Paris, France, 2001.

http://www.siam.org/journals/sidma/14-3/37684.html
†Bell Labs, Lucent Technologies, 600 Mountain Ave., Rm. 2C-375, Murray Hill, NJ 07974 and

IPPI RAN, Moscow, Russia (abarg@research.bell-labs.com). The research of this author was sup-
ported in part by Binational Science Foundation (USA-Israel) under grant 1999099.

‡ENST, 46 rue Barrault, 75013 Paris, France (cohen@infres.enst.fr).
§HSH, Bjørnsonsg. 45, 5528 Haugesund, Norway (sbe@hsh.no).
¶IPPI RAN, Bol’shoj Karetnyj 19, Moscow 101447, Russia (kaba@iitp.ru). This research was

done while the author was visiting DIMACS Center, Rutgers University, Piscataway, NJ, in March,
2000. The research of this author was supported in part by the Russian Foundation for Fundamental
Research grant 99-01-00828.

‖ENST, 46 rue Barrault, 75013 Paris, France (zemor@infres.enst.fr).

423

424 BARG, COHEN, ENCHEVA, KABATIANSKY, AND ZÉMOR

of order t (or is a t-identifying code, or is t i.p.p. for short) if for any s ∈ Qn, either
Ht(s) = ∅ or ⋂

X∈Ht(s)

X
= ∅.

It will be convenient to view Ht(s) as the set of edges of a hypergraph. Its vertices
are codewords of C.

Example. Let C ⊂ {0, 1, 2, 3}4 be the code defined by C = {u, v, w, x, y, z} where

u =
[
0 1 2 3

]
,

v =
[
1 2 3 0

]
,

w =
[
2 3 0 1

]
,

x =
[
3 0 1 2

]
,

y =
[
0 0 0 0

]
,

z =
[
1 1 1 1

]
.

The triple {w, y, z} can produce the son s = (2010). The hypergraph H3(s) contains
three edges, namely, X = {v, w, x}, X ′ = {w, x, y}, and X ′′ = {w, y, z}. Their
intersection is X ∩X ′ ∩X ′′ = {w}, and w is therefore identified as a parent of s. The
code C, however, is not 3-identifying; it is not even 2-identifying since H2(0101) =
{u,w} ∪ {y, z} and {u,w} ∩ {y, z} = ∅.

The concept of t-identification originates with the work of Chor, Fiat, and Naor [5]
on broadcast encryption. It is also related to the problem of fingerprinting numerical
data [4].

It is not difficult to prove that if the minimum Hamming distance of C is big
enough, then C must be t-identifying. We have [5] the following proposition.

Proposition 1.2. If C has minimum Hamming distance d satisfying

d > (1− 1/t2)n,

then C is a t-identifying code.
Actually, this condition implies a stronger property, namely, t-traceability; see [15].
As usual, let R = R(C) = logqM/n denote the rate of the (n,M)-code C.

Let Rq(t) = lim infn→∞maxR(Cn), where the maximum is computed over all t-
identifying codes Cn of length n.

Note that for alphabet sizes q ≤ t2, Proposition 1.2 does not prove that Rq(t) > 0
(because, for example, (n,M)-codes that satisfy the distance condition must have
M ≤ qd; see Plotkin’s bound, e.g., in [12]).

In fact, nontrivial t-identifying codes do not always exist if the alphabet size q
is not big enough. Hollman et al. [9] give constructions of 2-identifying codes and
existence bounds on Rq(2) for any alphabet size q ≥ 3. They prove

Rq(2) ≥ logq(q/(4q2 − 6q + 3)1/3).(1.1)

The case of arbitrary t was discussed in a recent paper [15], where it is shown that
nontrivial t-identifying codes do not exist when t > q − 1 and do exist when q ≥
�(t+ 2)2/4�. Consequently, it was asked in [15] whether Rq(t) > 0 for any t ≤ q − 1.
In this paper we shall answer this question and prove the following theorem.

CODES WITH IDENTIFYING PARENT PROPERTY 425

Theorem 1.3. Rq(t) > 0 if and only if t ≤ q − 1.
We shall also give a lower bound on Rq(t). We shall give particular attention to

the case t = 3 and in the case t = 2, q = 3 strengthen (1.1) by showing that it can be
achieved by a sequence of linear ternary i.p.p. codes.

2. Decomposing the t-identifying property with the Berge–Duchet the-
orem. Let us call a subset of edges of a hypergraph a star if it has a nonempty in-
tersection. A code C is t-identifying if all the nonempty hypergraphs Ht(s) are stars.
In this section we give necessary and sufficient conditions for Ht(s) to be a star.

Let us say that a family of sets, any t (or less) of which have nonempty intersection,
is t-wise intersecting.

Recall that a family of sets has the t-Helly property if every t-wise intersecting
finite subfamily is a star.

Let us quote a Helly-type result due to Berge and Duchet [3]; see also [6, p. 393].
Theorem 2.1. A hypergraph has the t-Helly property if and only if, for every set

A of t+ 1 vertices, all the edges E such that |E ∩A| ≥ t share a common vertex.
Let us reword this result for our purposes. Recall that a hypergraph on t + 1

vertices whose edges are all the t-subsets is called a t-simplex, denoted Kt(t+ 1).
Corollary 2.2. The hypergraph Ht(s) has the t-Helly property if and only if it

does not contain Kt(t+ 1) as a subhypergraph.
Proof. Consider any set A of size t+ 1 vertices of Ht(s). Let E1, E2, . . . , Em be

all the edges of Ht(s) that have at least t vertices in A. Since the edges of Ht(s) have
at most t vertices we have |Ei| = t for all i and

|E1 ∩ E2 ∩ · · · ∩Em| = t+ 1−m.

Therefore this intersection is nonempty if and only if m < t+ 1; i.e., E1, E2, . . . , Em
do not make up the t-simplex with vertex set A.

Reworded again, we get the following corollary.
Corollary 2.3. Suppose the hypergraph Ht(s) has at least t+ 1 vertices. Then

it is a star if and only if
1. any t (or less) of its edges have a nonempty intersection;
2. it does not contain Kt(t+ 1).

3. Ensuring t-identification for any t ≤ q + 1.

3.1. Hashing families. A subset C of Qn is said to be t-hashing (or t-separa-
ting; see, e.g., [10]) if any t of its members have t distinct entries in some common
coordinate i ∈ {1, . . . , n}.

Lemma 3.1. C ⊂ Qn is (t + 1)-hashing if and only if Ht(s) has the t-Helly
property for every s ∈ Qn.

Proof. Suppose C is (t + 1)-hashing. Let A be any set of t + 1 codewords, and
let s ∈ Qn. Since there is a coordinate where the codewords of A are all different,
there exists at least one subset X ⊂ A, |X| = t, such that s
∈ e(X). Therefore Ht(s)
cannot contain a t-simplex.

Conversely, suppose C is not (t + 1)-hashing, so that there exists a subset A of
t + 1 codewords such that for every coordinate i, there exist at least two distinct
codewords a, b of A such that ai = bi. Then define s ∈ Qn by choosing, for every
coordinate i ∈ {1, . . . , n}, a value that occurs at least twice among the ai, a ∈ A.
Then we have s ∈ e(X) for every subset X of size t of A, which means that Ht(s)
contains the t-simplex with vertex set A.

426 BARG, COHEN, ENCHEVA, KABATIANSKY, AND ZÉMOR

Remark. A consequence of Lemma 3.1 is that when q ≤ t, there are no q-ary
t-identifying codes C of size |C| ≥ t+ 1 (see Lemma 1.6 of [15]).

We now have a condition on C that ensures that all the hypergraphs Ht(s) do
not contain t-simplexes. To apply Corollary 2.3 we now need a condition to ensure
that any t edges of any Ht(s) have a nonempty intersection.
3.2. Partially hashing families.
Definition 3.2. Let us say that a subset C ⊂ Qn is (t, u) partially hashing if

for any two subsets T,U of C such that T ⊂ U ⊂ C, |T | = t, |U | = u, there is some
coordinate i ∈ {1, . . . , n} such that for any x ∈ T and any y ∈ U, y
= x, we have
xi
= yi.

Remark. If u = t+ 1, then (t, u) partial hashing is the same as (t+ 1)-hashing.
The motivation for this last definition is the following lemma.
Lemma 3.3. Let X be a subset of edges of Ht(s), and let u be an upper bound

on the number of vertices spanned by the edges of X . If C is (t, u) partially hashing,
then X is a star, i.e., ∩X∈XX
= ∅.

Proof. Let U = ∪X∈XX, so that |U | ≤ u by the hypothesis. Let T be some
edge of X . Because C is (t, u) partially hashing, there is some coordinate i satisfying
the condition of Definition 3.2 for T and U . Then si = xi for some x ∈ T because
s ∈ e(T). However, then the definition implies that for all y
= x, y ∈ U , we have
yi
= si. Since all edges X of X are in Ht(s) we conclude that they must all contain
x.

Lemma 3.1 means that to enforce t-identification it is sufficient to have (t + 1)-
hashing and any property which forces any t edges of Ht(s) to intersect. Since any t
edges of Ht(s) span at most t2 vertices, Lemma 3.3, together with the remark after
Definition 3.2, now implies the following corollary.

Corollary 3.4. If C is (t, t2) partially hashing, then C is a t-identifying code.
The (t, u) hashing property is easier to handle than t-identification; in particular,

it will give us a lower bound on Rq(t) through the probabilistic method.

3.3. A lower bound on the size of (t, u) partially hashing codes. Fix
t ≤ q − 1 and let u ≥ t + 1. We apply the probabilistic method with expurgation
(see, e.g., [2]) to (t, u) partially hashing codes. This means that we take a random
(n,M)-code C and compute the expectation E of the number of pairs of subsets T,U ,
T ⊂ U ⊂ C, |T | = t, |U | = u, that contradict the (t, u) partially hashing property.
Whenever E ≤ M/2, then (n,M/2)-codes with the (t, u) partially hashing property
exist.

The probability that a given T and U violate the partially hashing property is

Pt,u,n =

(
1− q(q − 1) · · · (q − t+ 1)(q − t)u−t

qu

)n
=

(
1− q!(q − t)u−t

(q − t)!qu
)n

.

The expectation of the number of pairs T,U that violate the partially hashing property
is

E =

(
M

u

)(
u

t

)
Pt,u,n.

Writing M = qRn and letting n go to infinity we get that infinite sequences of (t, u)
partially hashing codes exist for all rates R such that logq E < Rn, i.e., such that

uR+
1

n
logq Pt,u,n < R.

CODES WITH IDENTIFYING PARENT PROPERTY 427

Hence we get the following lemma.
Lemma 3.5. Let u ≥ t + 1: infinite sequences of (t, u) partially hashing codes

exist for all rates R such that

R <
1

u− 1 logq
(q − t)!qu

(q − t)!qu − q!(q − t)u−t .

As a consequence, applying Corollary 3.4, we obtain Rq(t) > 0 for any q ≥ t+ 1
which proves Theorem 1.3.

3.4. Improvements: Forbidding minimal configurations. We shall now
show that the quantity t2 in Corollary 3.4 can be lowered; namely, we shall obtain
the following lemma.

Lemma 3.6. Let u = �(t/2 + 1)2)�. If C is (t, u) partially hashing, then C is a
t-identifying code.

Before proving Lemma 3.6 it will be convenient to decompose all subsets of edges
with empty intersection into “minimal forbidden configurations.”

Let X = (X1, . . . , Xm) be a collection of subsets of codewords with |Xi| ≤ t, i =
1, . . . ,m. We shall call X a configuration if it has an empty intersection, ∩mi=1Xi = ∅,
and we shall say that X is a minimal configuration if it is minimal under inclusion,
i.e., if ∩i
=jXi
= ∅ for any j = 1, . . . ,m.

Let X be a minimal configuration of size m. A set B(X) = (b1, . . . , bm) will be
called a frame of X if

bj ∈
⋂
i
=j

Xi.

By minimality, frames of minimal configurations always exist. One useful property of
frames gives rise to the following lemma, which follows somewhat along the lines of
[15].

Lemma 3.7. Let X be a minimal configuration. Then∣∣∣∣∣
m⋃
i=1

Xi

∣∣∣∣∣ ≤
∑
|Xi| −m(m− 2).

Proof. All the points bj of a frame B(X) are different since otherwise ∩iXi
= ∅.
Furthermore, by definition of B(X) we have (B(X) \ bj) ⊂ Xj for any j = 1, . . . ,m,
and hence m− 1 ≤ t. Then∣∣∣∣∣

m⋃
i=1

Xi

∣∣∣∣∣ ≤
∑
(|Xi \ (B(X) \ bi)|) + |B(X)|

=

m∑
i=1

(|Xi| − (m− 1)) +m.

Since |Xi| ≤ t, we obtain |∪Xi| ≤ m(t−m+2). The maximum onm of this expression
for m = 1, . . . , t is u = �(t/2+ 1)2)�, which is also an upper bound on the cardinality
of a minimal configuration (see [15]).

Note that the maximum value of m which gives a positive upper bound is t+ 1.
Also note that the only minimal configurations with m = t + 1 are t-simplexes. In
particular this gives an alternative proof of Corollary 2.3.

428 BARG, COHEN, ENCHEVA, KABATIANSKY, AND ZÉMOR

We observe that any configuration must contain some minimal configuration.
Now apply Lemma 3.3 as before to obtain Lemma 3.6. Lemmas 3.5 and 3.6 imply the
following improved lower bound on Rq(t).

Theorem 3.8. Let u = �(t/2 + 1)2)�. We have

Rq(t) ≥ 1

u− 1 logq
(q − t)!qu

(q − t)!qu − q!(q − t)u−t .

4. Small t. The (t, u) partially hashing property is only a sufficient condition
for a code to be t-identifying. In the case of small t we can obtain precise necessary
and sufficient conditions. A code C is t-identifying if and only if, for every s such
that Ht(s)
= ∅, the hypergraph Ht(s) has the t-Helly property and any m edges of
Ht(s) have a nonempty intersection for any m, 2 ≤ m ≤ t. Lemma 3.1, together with
Corollary 2.3, tells us therefore that C is t-identifying if and only if it is (t+1)-hashing
and any m edges of Ht(s) have a nonempty intersection for any m, 2 ≤ m ≤ t, and for
any s ∈ Qn. For t = 2, the latter property means that H2(s) does not contain disjoint
edges. Equivalently, for any X = {a, b}, Y = {c, d}, with a, b, c, d distinct codewords,
e(X)∩ e(Y) = ∅. Equivalently again, this means that there exists a coordinate i such
that

{ai, bi} ∩ {ci, di} = ∅.(4.1)

This property of C was named IPP2 by Hollman et al. in [9]. In other contexts
it has often been called (2, 2)-separation and has been investigated by a number of
authors [7, 8, 11, 13, 14]. The 3-hashing property was called IPP1 in [9].

Let us now characterize the 3 i.p.p. property.

4.1. The case t = 3. This time Lemma 3.1 and Corollary 2.3 tell us that C is
3-identifying if and only if

(i) it is 4-hashing;
(ii) for any s ∈ Qn, any two edges of H3(s) have a nonempty intersection and

any three edges of H3(s) have a nonempty intersection.
Condition (ii) is equivalent to saying that H3(s) does not contain minimal con-

figurations of size m = 2 and of size m = 3.
That H3(s) does not contain minimal configurations of size two is equivalent

to saying that for any X = {a, b, c}, {d, e, f}, with a, b, c, d, e, f distinct codewords,
e(X) ∩ e(Y) = ∅, which means that there exists a coordinate i such that

{ai, bi, ci} ∩ {di, ei, fi} = ∅.(4.2)

Property (4.2) is usually called (3, 3)-separation [7, 8, 11, 14].
Remark. As proved in [15] and follows from Corollary 2.3, the (t+1)-hashing and

(t, t) separation properties are necessary for a code to have the t i.p.p. property. For
t = 2, they are also sufficient [9]. For t = 3, we show how to complement them to
form a set of sufficient conditions.

There remains to characterize the condition thatH3(s) does not contain a minimal
configuration of three edges, i.e., X = (X,Y, Z) such that X ∩ Y ∩ Z = ∅, but any
two edges of X intersect. Clearly, the only cases that we need to consider are when
|X| = |Y | = |Z| = 3. We have two situations to forbid:

(a) for any X,Y, Z ⊂ (C3) such that X ∩ Y ∩ Z = ∅ and |X ∩ Y | = |Y ∩ Z| =
|Z ∩X| = 1;

CODES WITH IDENTIFYING PARENT PROPERTY 429

(b) for any X,Y, Z ⊂ (
C
3

)
such that X ∩ Y ∩ Z = ∅ and |X ∩ Y | = 2 and

|Y ∩ Z| = |Z ∩X| = 1.
Forbidding these configurations means that we must have, in each case,

e(X) ∩ e(Y) ∩ e(Z) = ∅.

Those two cases involve, respectively, six and five codewords. After a straightforward
examination we finally obtain the following proposition.

Proposition 4.1. C is 3-identifying if and only if the four following conditions
hold:

1. C is 4-hashing.
2. C is (3, 3)-separating.
3. For any six distinct codewords a, b, c, d, e, f there exists a coordinate i such
that
• ai, bi, ci are all different,
• di
= ai, ei
= bi, fi
= ci, and
• di, ei, fi are not all equal.

4. For any five distinct codewords a, b, c, d, e there exists a coordinate i such that
• ci
= ei and {ai, bi} ∩ {ci, ei} = ∅, and
• di
= ai and di
= bi.

Example. q=4. By repeatedly applying the probabilistic expurgation method, we
get lower bounds on the rate of codes satisfying the previous four conditions. Namely,

R1 ≥ 1
3
log4(32/29),

R2 ≥ 1
5
log4(2

10/919),

R3 ≥ 1
5
log4(256/217),

R4 ≥ 1
4
log4(256/226).

Taking the smallest of the Ri’s gives a 3-identifying quaternary code with rate R2,
showing that

R4(3) ≥ 1
5
log4(1024/919) ≈ 0.0156.

The lower bound of Theorem 3.8 gives only

R4(3) ≥ 1
5
log4(1024/1018) ≈ 0.000848.

4.2. Linear i.p.p. codes. Bound (1.1) for q = 3 implies that

R3(2) ≥ (1/3) log3(9/7).

We strengthen this result by proving that the same bound holds for linear codes as
well. The result in [9] implies only the existence of unrestricted codes with the same
rate.

Theorem 4.2. There exists a sequence of linear ternary 2-identifying codes Cn
with R(Cn) ≥ (1/3) log3(9/7).

430 BARG, COHEN, ENCHEVA, KABATIANSKY, AND ZÉMOR

Proof. We again apply the probabilistic method and prove Theorem 4.2 by aver-
aging this time over the ensemble of linear ternary codes. Let C be a linear subspace
of Fn3 . The code C is i.p.p. if any triple of vectors in it is 3-hashing and any quadruple
satisfies the separation condition (4.1).

Linear (2, 2)-separating codes were first studied in [13], where most of the calcu-
lations below were essentially carried out. We include them here for completeness,
showing that there exist such codes of rate R ≥ (1/3) log3(9/7).

Consider condition (4.1). Suppose that dimC = k and let G be a generator
matrix of C, i.e., a k × n matrix whose rows form a basis of C as an F3-linear space.
Let g1, g2, . . . , gn be the columns of G. Any vector c ∈ C has the form aG for some
a ∈ F k3 . Let c1, . . . , c4 be some vectors in C. Since the i.p.p. property is translation
invariant, suppose that c4 = 0. Suppose that ci = aiG for i = 1, 2, 3.

Case (a). a1, a2, a3 are linearly independent. Choose a basis f1, . . . , fk in F
k
3 such

that ai ·fj = δij for i = 1, 2, 3; j = 1, . . . , k. (Complement a1, a2, a3 to a basis and
take the dual basis.) Observe {c1m, c2m}∩{c3m, c4m} = ∅ (for any given m = 1, 2, . . . , n)
if and only if the first three coordinates of the column gm in the basis (f) have one
of the following forms:

±1 ±1 0
−1 −1 1
1 1 −1

.

Hence the total number of favorable choices is 6 out of 27. This implies that the prob-
ability for a matrix G to be bad for a given linearly independent triple is (21/27)n =
(7/9)n. The number of triples is less than 33k, so the probability that a given ma-
trix spans a quadruple of vectors that violate condition (4.1) is bounded above by
33k(7/9)n. Hence if R = (1/3) log3(9/7) − ε, for any ε > 0, there exists a favorable
choice.

Case (b). Some of the vectors a1, a2, a3 are linearly dependent. For instance,
suppose that a3 is spanned by a1, a2, and these two are not collinear. Let a3 = a1+a2.
Take the basis dual to a basis that includes a1, a2. As above, we count the number
of unfavorable choices for the column gm. Good choices for (gm1 , g

m
2) are (±1,±1).

Hence the fraction of bad choices of G is at most 32k(5/9)n, and this is less than
33k(7/9)n. Other cases of dependence are dealt with analogously; none accounts for a
fraction of bad matrices larger than in Case (a).

Now let us give a lower bound on the rate of linear 3-hashing codes. (This is a
special case of a result announced in [1, Thm. 2].) Again let c1, c2, c3 be some vectors
in C. Since the 3-hash property is translation invariant we can assume that c3 = 0.
Suppose that ci = aiG for i = 1, 2. There are two cases.

Case (a). a1 and a2 are linearly independent. Choose a basis f1, . . . , fk in F
k
3

such that ai · fj = δij for i = 1, 2; j = 1, . . . , k. Observe that c1m
= c2m
= 0 if
and only if the first two coordinates of the column gm in the basis (f) equal either
(1,−1) or (−1, 1). Hence the total number of favorable choices is 2 out of 9. This
implies that the probability for a matrix G to be bad for a given linearly independent
pair is (7/9)n. The number of pairs is less than 32k, so the probability that a given
matrix spans a triple of vectors such that a1 and a2 are linearly independent, and
such that they violate the 3-hash condition, is bounded above by 32k(7/9)n. Hence if
R = (1/2) log3(9/7)− ε, for any ε > 0, there exists a favorable choice.

Case (b). a1 and a2 are collinear, i.e., a1 = λa2. As above, take the basis dual
to a basis that includes a1. Good choices for gm1 are ±1. Hence the number of bad
choices of G is at most 32k(1/3)n, and this is less than 32k(7/9)n.

CODES WITH IDENTIFYING PARENT PROPERTY 431

It remains to find the minimum of the achievable rates for (2, 2)-separating linear
codes and for linear 3-hashing codes. This minimum is (1/3) log3(9/7) as was to be
proved.

The argument in this section is generalized directly to prove existence of linear 2
i.p.p. codes that reach bound (1.1) over any finite field alphabet.

REFERENCES

[1] L. A. Bassalygo, M. Burmester, A. Dyachkov, and G. Kabatianski, Hash codes, in Pro-
ceedings of the IEEE International Symposium on Information Theory, Ulm, Germany,
1997, p. 174.

[2] L. A. Bassalygo, S. I. Gelfand, and M. S. Pinsker, Simple methods for obtaining lower
bounds in coding theory, Problems Inform. Transmission, 27 (1991), pp. 277–281.

[3] C. Berge and P. Duchet, A generalisation of Gilmore’s theorem, in Recent Advances in
Graph Theory, M. Fiedler, ed., Academia, Prague, 1975, pp. 49-55.

[4] D. Boneh and J. Shaw, Collusion-secure fingerprinting for digital data, IEEE Trans. Inform.
Theory, 44 (1998), pp. 480–491.

[5] B. Chor, A. Fiat, and M. Naor, Tracing traitors, in Advances in Cryptology–CRYPTO’94,
Lecture Notes in Comput. Sci. 839, Springer-Verlag, Berlin, 1994, pp. 257–270.

[6] P. Duchet, Hypergraphs, in Handbook of Combinatorics, Vol. 1, R. L. Graham, M. Grötschel
and L. Lovász, eds., North-Holland, Amsterdam, 1995, pp. 381–432.

[7] M. L. Fredman and J. Komlós, On the size of separating systems and families of perfect hash
functions, SIAM J. Algebraic Discrete Methods, 5 (1984), pp. 61–68.

[8] A. D. Friedman, R. L. Graham, and J. D. Ullman, Universal single transition time asyn-
chronous state assignments, IEEE Trans. Comput., 18 (1969), pp. 541–547.

[9] H. D. L. Hollmann, J. H. van Lint, J.-P. Linnartz, and L. M. G. M. Tolhuizen, On codes
with the identifiable parent property, J. Combin. Theory Ser. A, 82 (1998), pp. 121–133.

[10] J. Körner and A. Orlitski, Zero-error information theory, IEEE Trans. Inform. Theory, 44
(1998), pp. 2207–2229.

[11] J. Körner and G. Simonyi, Separating partition systems and locally different sequences, SIAM
J. Discrete Math., 1 (1988), pp. 355–359.

[12] J. H. van Lint, Introduction to Coding Theory, Springer-Verlag, Berlin, 1982.
[13] M. S. Pinsker and Yu. L. Sagalovich, Lower bound for the power of an automaton state

code, Problems Inform. Transmission, 8 (1972), pp. 224–230.
[14] Yu. L. Sagalovich, Separating systems, Problems Inform. Transmission, 30 (1994), pp. 105–

123.
[15] J. N. Staddon, D. R. Stinson, and R. Wei, Combinatorial properties of frameproof and

traceability codes, IEEE Trans. Inform. Theory, 47 (2001), pp. 1042–1049.

FORCING STRUCTURES AND CLIQUES IN UNIQUELY VERTEX
COLORABLE GRAPHS∗

AMIR DANESHGAR†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 4, pp. 433–445

Abstract. Let G be a simple undirected uniquely vertex k-colorable graph, or a k-UCG for
short. M. Truszczyński [Some results on uniquely colorable graphs, in Finite and Infinite Sets,

North-Holland, Amsterdam, 1984, pp. 733–748] introduced e
∗
(G) = |V (G)|(k − 1) −

(
k
2

)
as the

minimum number of edges for a k-UCG and S. J. Xu [J. Combin. Theory Ser. B, 50 (1990), pp.
319–320] conjectured that any minimal k-UCG contains a Kk as a subgraph. In this paper, first we
introduce a technique called forcing. Then by applying this technique in conjunction with a feedback
structure we construct a k-UCG with clique number k− t, for each t ≥ 1 and each k, when k is large
enough. This also improves some known results for the case t = 1.

Second, we analyze the parameter Λ(G) = |E(G)| − e∗ (G) for our constructions, and we obtain
some bounds for the functions

λt (k) = min{Λ(G) : G is a k-UCG and cl(G) = k − t},

νt (k) = min{|V (G)| : G is a k-UCG and cl(G) = k − t}.

Also, we introduce some possible applications of the technique in cryptography and data com-
pression.

Key words. uniquely vertex colorable graphs

AMS subject classification. 05C15

PII. S0895480196304994

1. Introduction and preliminaries. In this paper, we consider finite, simple,
and undirected graphs. For such a graph G, V (G) and E(G) are vertex set and edge
set of G, while |V (G)| and |E(G)| are order and size of G, respectively. A k-vertex-
coloring of G is a partition of V (G) into k color classes such that vertices in the same
class are not adjacent. Moreover, G is called uniquely vertex k-colorable (or a k-UCG
for short) if every k-coloring of it induces the same partition on V (G). Also, for a
k-UCG, G, cl(G) is the maximum clique number of G, and ccl(G) = k − cl(G) is
defined to be the coclique of G.

k-UCG’s have been studied by Aksionov [1], Bollobás [2, 3], Borwiecki and Bur-
chardt [5], Chartrand and Geller [7], Harary [18], Harary, Hedetniemi, and Robin-
son [19], Xu [26], and Truszczyński [25]. In [25] Truszczyński introduced e

∗
(G) =

|V (G)|(k − 1)− (k2) as the minimum number of edges for a k-UCG and S. J. Xu [26]
proposed the following conjecture.

conjecture 1.1 ([26]). If G is a k-UCG and |E(G)| = e
∗
(G), then G contains

a K
k
as its subgraph.

This conjecture will be our major motivation throughout this paper, where we
try to study the clique structure of k-UCG’s. Of course, it should be noted that the
existence of k-UCG’s with large girth has already been established by Bollobás and

∗Received by the editors June 7, 1996; accepted for publication (in revised form) June 11, 2001;
published electronically October 4, 2001. This research was partially supported by the Institute
for Studies in Theoretical Physics and Mathematics (IPM) and the Research Council of the Sharif
University of Technology.

http://www.siam.org/journals/sidma/14-4/30499.html
†Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11365–9415,

Tehran, Iran (daneshgar@sharif.edu).

433

434 AMIR DANESHGAR

Sauer [4] using probabilistic methods based on the work of Erdös and Spencer [17]
and by Müller [22] based on a construction of Lovász [20] for k-chromatic graphs with
large girth. However, it seems that it is quite difficult to determine exact values of
the function

ν
t
(k) = min{|V (G)| : G is a k-UCG and cl(G) = k − t}.

The only known result about this function is the following fact about ν
1(k) [25]:

ν
1(k) =

12 k = 3
10 k = 4
k + 5 k ≥ 5.

Our basic goals are twofold. First, we introduce a technique which will be called
forcing. By using this technique in conjunction with a feedback structure, we construct
families of k-UCG’s with maximum clique number k−t for each t ≥ 1. It will be shown
that the technique is very suitable to reduce the parameter Λ(G) = |E(G)| − e∗(G),
and in this regard, we also enhance some known results for the case t = 1.

Second, we address ourselves to Xu’s conjecture, and we analyze Λ(G) for our
graphs. Although we will not prove or disprove Xu’s conjecture in this paper, this
analysis reveals a relationship among Λ, the number of vertices, and the maximum
clique number in k-UCG’s. In this direction, we introduce the following counterpart
to ν

t(k):

λ
t(k) = min{Λ(G) : G is a k-UCG and cl(G) = k − t},

and we prove theorems which show that

λ
1(k) ≤ 1, λ2(k) ≤ 6 (k ≥ 7),

λ
t
(k) ≤ (t+ 1)!

2

t−1∑
j=1

1 + δj+1

j!
+ 1

 (

t > 1, k ≥
(
t+ 2

2

)
+ 1

)
, and

ν
t(k) ≤ k− kmin + (t+1)!

t−1∑
j=1

j2 + j + 6

(j + 2)!
+ 5

 (

t > 1, k ≥ k
min =

t2 + t+ 6

2

)
.

(For the definition of δ
j
see Theorem 4.2.) Also, we introduce some possible applica-

tions of our results in data security and data compression, and we propose some basic
questions.

Throughout this paper, colors are denoted by numbers 0, 1, 2, . . . , and Z
d
is the

additive cyclic group of order d. If x ∈ V (G), then [x] is the color class which contains
x, and the following notation is used for the sake of simplicity:

∀ m,n ∈ Z [m,n] =

{
φ, n < m,
{m,m+ 1, . . . , n}, m ≤ n.

Moreover, we introduce a simple lemma which will be used frequently throughout
this paper. (For more on this type of invariant and related topics see [11, 15, 16].)

CLIQUES IN UNIQUELY VERTEX COLORABLE GRAPHS 435

� �

��

� �

��

� �

��

Fig. 1. A 3-UCG without any triangle and Λ = 2.

✬

✫

✩

✪

�

� �

H

�

a

✬

✫

✩

✪

G

Fig. 2. Forcing on vertex a.

Lemma 1.2. Let G be a k-UCG. Build a (k+1)-UCG, H, by adding a new vertex
v which is connected to all vertices of G. Then, Λ(G) = Λ(H) and ccl(G) = ccl(H).

Proof.

Λ(H) = |E(H)| − k|V (H)|+
(
k + 1

2

)
= |E(G)| − |V (G)|(k− 1)+

(
k

2

)
= Λ(G).

2. A k-UCG which contains no Kk (t = 1). Before we proceed, it should
be noted that the existence of a 3-UCG without any triangle on 12 vertices has already
been verified [6, 23, 25] (Figure 1). This, in conjunction with Lemma 1.2 gives rise
to a family of k-UCG’s with k + 9 vertices, maximal clique number k − 1, and Λ = 2
for each k ≥ 3. However, in this section we are going to reduce this bound on the
number of vertices to k+6 (with Λ = 1) by means of a technique which will be called
forcing [10, 11].

This will be our major construction method throughout this paper. We illustrate
the basic idea in a clique reduction to k − 1 in this section.

Consider Figure 2 and the graph G with χ(G) = k such that the vertex a is
connected to all color classes of the (k − 1)-UCG, H. Also, assume that vertices of
H cannot take the color k − 1. Then since H admits all colors from 0 to k − 2, a is
forced to take the color k− 1, regardless of the exact coloring of H. Now one can use
a feedback structure of such subgraphs to indirectly fix the colors of some vertices in
G. After that, direct connections can be used to fix the rest of the colors without
increasing the clique number.

436 AMIR DANESHGAR

�

�

� � �

�

�

�

�

�

� �

�� �

�

�

�

K
k−1

1 k−2

a0

0

b0,1

a
1

b
1,2

a2

b
d−1,d

b2,3

a
d

b
d,0

Fig. 3. The graph H1 (d).

To illustrate our technique, for each k > 3, we construct a k-UCG which contains
no K

k
as a subgraph.

Let’s consider the graph H1
(d) as it is depicted in Figure 3 in which we have

1 < d < k − 1. In this graph, we assume that the central clique has taken colors 0 to
k − 2, and a

i is connected to all vertices in the central clique except the vertex with
color i. Also, b

i−1,i is connected to all vertices of the central clique except vertices
with colors i − 1 and i. We claim that in every k-coloring of this graph, a

i
should

take the color k − 1 for all i ∈ Z
d+1
.

To see this, let a0 take the color 0. Then b0,1 and a1 form a 2-clique whose vertices
can take only colors 1 and k− 1. Hence, b

1,2
is forced to take the color 2. This forces

b
2,3
to take the color 3, and so forth. Therefore, b

d,0
is forced to take the color 0 by

the feedback structure, which is a contradiction, since it is connected to a
0 . The rest

of the proof follows by symmetry.
This shows that ai should take the color k − 1 in any k-coloring of H1(d). Now,

it is quite easy to build a k-UCG from H1(d), since we have a number of vertices with
fixed colors. Introduce a new vertex u

d
and join it to b

d,0
, a1 and all vertices in the

central clique except the vertex with color d. This forces b
d,0
to take the color 0 which

again forces bi−1,i to take the color i for all i ∈ Zd+1
.

We refer to this new graph by U
k,1
(d), and we summarize our results in the

following proposition.
Proposition 2.1. For the graph U

k,1
(d) (1 < d < k− 1) we have the following:

(1) cl(U
k,1
(d)) = k − 1.

(2) |V (U
k,1
(d))| = k + 2(d+ 1).

(3) Λ(U
k,1
(d)) = 1.

Note that in our construction of graph U
k,1
(d) any vertex in the central (k − 1)-

clique whose color is in {d + 1, . . . , k − 2} is connected to any other vertex as in
Lemma 1.2. Hence, this shows that the most important case of the construction is
when d is equal to k−2. In this regard we define U

k,1
as U

k,1
(k−2). (This is actually

the core of our construction [15], and it is also interesting to note that the graphs U
k,1

CLIQUES IN UNIQUELY VERTEX COLORABLE GRAPHS 437

Kα

✎

✍

	

✌

✎

✍

	

✌

ab
1

b
β

✎

✍

	

✌

G0

G
i

a

b
β

b
1

a

G
d

b
1

b
β

✎

✍

	

✌

a

b
1

b
β

G
1

�

�

��

0

i

1 α−1

Fig. 4. The graph Ht (d).

for k ≥ 6 are the only known graphs for which the fractional Hall number is strictly
greater than the fractional Hall condition number [12, 14].) Therefore, we have the
following proposition.

Proposition 2.2. For each k ≥ 4, there exists a family of k-UCG’s, U
k,1
, such

that |V (U
k,1
)| = 3k − 2, ccl(U

k,1
) = Λ(U

k,1
) = 1, δ(U

k,1
) > k − 1, and U

k,1
does not

have any color-class of size one.

For the importance of the above proposition we refer the interested reader to [15].
Also, Proposition 2.1, for the case d = 2, can be used to reduce the bound on the
number of vertices as follows.

Theorem 2.3. For each k ≥ 4, there exists a family of k-UCG’s, U
k,1
(2), such

that |V (U
k,1
(2))| = k + 6 and ccl(U

k,1
(2)) = Λ(U

k,1
(2)) = 1.

The graph U
4,1 is different from the graph H4 which is introduced in [25], since

Λ(H
4) = 2 but Λ(U4,1) = 1. On the other hand, the graph U4,1 has a close relationship

to ∆–color-critical graphs [13].

Also, Theorem 2.3 shows that the bound in Xu’s conjecture is the best possible.
Moreover, it shows that it is quite difficult to prove the correctness of this conjecture
(if it is true), since one cannot use any kind of approximation technique on the number
of edges.

This simple example shows a relationship among maximal clique number, number
of vertices and Λ. We pursue this point of view in the last section.

3. The generalized construction (t > 1). In this section we are going to
generalize our cyclic construction of the previous section for cocliques t > 1. To do
this, for a fixed t > 1, let G

i (i ∈ Z
d+1
) be a (β + 1)-UCG with cl(Gi) = q > 2

such that β = t + q − 2. Then assuming α def
= k − t ≥ 3, 1 < d < k − β, and using

G
i ’s, we construct a k-colorable graph Ht(d) with coclique t whose general pattern is
depicted in Figure 4 as a cyclic structure round a central clique Kα . In what follows,
we address ourselves to the description of details of connections and colorings in this
graph as well as some necessary conditions on graphs Gi ’s. In the next section we
show how these conditions can be satisfied.

Without loss of generality we may assume that the central clique K
α has taken

438 AMIR DANESHGAR

colors 0 to α − 1, and we refer to the vertices by the corresponding colors. Also,
we assume that there exists B

i ⊂ V (Gi) such that for each i ∈ Z
d+1
, we have the

following:

(B
1) There exist two adjacent vertices ai and b

β

i−1,i
such that

a
i ∈ V (Gi), ai �∈ Bi , b

β

i−1,i
∈ B

i
.

(Note that this implies [a
i
] �= [bβ

i−1,i
] in the unique coloring of Gi .)

(B
2
) The induced subgraph on B

i
∪ {a

i} contains no q-clique.
(B3) The induced subgraph on V (Gi)−Bi contains no q-clique.

Choose B
i
minimal with respect to these conditions. Then choose b

j

i−1,i
for 1 ≤

j < β from V (G
i) as representatives of the color classes in Gi − [b

β

i−1,i
]− [ai]. These

vertices should be chosen from Bi or if it is not possible they should be chosen such
that
(B4

) ({bj
i−1,i

| 1 ≤ j < β} −B
i
) ∪ {a

i
} contains no q-clique.

Hereafter, we assume that Gi
’s are identical copies of a (β+1)-UCG, G, whose maximal

clique number is q > 2. In the next section we show that such a graph, G, exists and
the above conditions can be satisfied.

In what follows we describe the interconnections among the G
i ’s and the central

clique. Note that henceforth, i ∈ Z
d+1

and

Γ
def
= [d+ 1, d+ q − 2] ∪ [α, k − 1].

• ai
is connected to all of the vertices in the central clique except the vertex

with color i.
• Each vertex in B

i is connected to all vertices in the central clique except those
with colors in Γ ∪ {i − 1, i}, and each vertex in Gi − Bi − {ai} is connected
to all vertices in the central clique except those with colors in Γ ∪ {i}.
• For each i, both vertices a

i and b
β

i−1,i
are connected to all of the vertices in

B
i+1
.

• For each i, the vertex bβ
i,i+1

is connected to b
j

i−1,i
for all 1 ≤ j ≤ β.

Lemma 3.1. ccl(Ht
(d)) = t.

Proof. First, note that all vertices in the central clique with colors in {d + q−
1, . . . , α− 1} are connected to any other vertex in Ht(d) as in Lemma 1.2. Therefore,
it is sufficient to consider the case α = d + q − 1. Moreover, as the worst cases, by
considering (B

1
)–(B

4
), for each i ∈ Z

d+1
we have the following.

• The maximum clique number of the graph induced on V (Gi)−Bi along with
all vertices in the central clique whose colors are in {0, . . . , d}− {i} forms, at
most, a clique of size (q − 1) + d = α.

• The maximum clique number of the graph induced on B
i+1
∪{a

i
, b

β

i−1,i
} is, at

most, q+1, which along with all vertices in the central clique whose colors are
in {0, . . . , d}−{i−1, i, i+1} forms, at most, a clique of size (d−2)+(q+1) = α.

• The maximum clique number of the graph induced on

({bj
i−1,i

| 1 ≤ j < β} −B
i
) ∪ {a

i
, b

β

i,i+1
}

is, at most, q, which along with all vertices in the central clique whose colors
are in {0, . . . , d} − {i, i+ 1} forms, at most, a clique of size (d− 1) + q = α.

CLIQUES IN UNIQUELY VERTEX COLORABLE GRAPHS 439

• The maximum clique number of the graph induced on

{bj
i−1,i

| 1 ≤ j ≤ β} ∪ {ai , b
β

i,i+1
}

is, at most, q, which along with all vertices in the central clique whose colors
are in {0, . . . , d}−{i−1, i, i+1} forms, at most, a clique of size (d−2)+ q =
α− 1.

Hence, ccl(H
t
(d)) = k − α = t.

Lemma 3.2. In any k-coloring of Ht(d), for each i, the vertex ai cannot take the
color i.

Proof. By symmetry it suffices to prove the lemma for i = 0. Let a
0
take the

color 0. Then since a
0
is connected to all vertices in B

1
, each vertex of G

1
can take

only colors from the set {1} ∪ Γ which has t+ q − 1 = β + 1 elements. Therefore, G
1

is uniquely colored by these colors. Now, b
β

1,2
in G2 is connected to all classes of G1

and consequently takes the color 2. This eliminates color 2 from G
3
, and so on. This

cyclic forcing implies either that b
β

d−1,d
takes the color d or the graph G

d
is uniquely

colored by colors {d} ∪ Γ. In the first case (d even), bβ
d−1,d

eliminates color d from

G
0 , and it is uniquely colored by colors {0} ∪ Γ. This forces b

β

0,1
to take the color 1,

and again by a cyclic forcing we may deduce that for any d, G
d
is uniquely colored

by colors {d} ∪ Γ, which implies that bβ
d,0
is connected to all colors in {d} ∪ Γ and it

is also connected to a
0 (by B1). However, this is a contradiction since this vertex can

take only one of these colors.

In the second case (d odd), b
β

d,0
is connected to all colors in {d} ∪ Γ and it is also

connected to a
0 . However, this is also a contradiction since it can take only one of

these colors.
Note that in Ht(d) we now have d + 1 vertices which can take only their colors

from the set [α, k− 1] (namely a
i ’s). These may be used in a fixing procedure to turn

this graph into a k–UCG as described in what follows.
Consider H

t(t) (i.e., set d = t) and form a (t− 1)-clique from ai ’s for i �= t, 1, and
connect a

t
and a

1 to all vertices of this clique. Therefore, without loss of generality,
we may assume that a

t
takes the color α+1 and a

i takes the color α+ i for 0 ≤ i < t.
Now for the process of fixing we consider two cases.

• t even.
Connect b

β

t,0
to ai for 1 < i < t. Then b

β

t,0
should take one of the colors in

{0} ∪ [t, β]. Introduce a new vertex u
t and connect it to ai for 0 ≤ i < t and

to all vertices in the central clique except the vertex with color t. This forces
ut to take the color t. Also, introduce new vertices um

for m ∈ [t+ 1, β] and
connect each um to ai for 0 ≤ i < t and to all vertices in the central clique
except the vertex with color m. This forces each um to take the color m.

Connect b
β

t,0
to u

m for m ∈ [t, β]. Note that this forces this vertex to take the
color 0 and by the feedback forcing each b

β

i−1,i
is forced to take the color i for

i ∈ Zt+1 .
In order to fix the rest of the colors again, introduce new vertices um for
m ∈ [α, k − 1] such that each new um is connected to uj for j ∈ [t, β] and
to a

i for i �= m, t and to all vertices in the central clique except those with
colors in [t, β]. Note that with this construction each u

m is forced to take the
color m for m ∈ [t, β] ∪ [α, k − 1].
Now, note that in each G

i there are β − 1 color classes whose colors are not
fixed. In order to fix the color of these classes it is sufficient to fix the color

440 AMIR DANESHGAR

of one representative in each class, which needs
(
β−1

2

)
edges for each G

i
using

forcing by u
m ’s.

• t odd.
We use the same technique in this case too; however, since t is odd, b

β

i−1,i
is

forced to take the color i when i is even. Hence, since b
β

t−1,t
is connected to

a
t and Gt is uniquely colored by colors in Γ∪ {t}, we have to use β − 1 extra
edges, using u

m
’s, to fix the color of b

β

t−1,t
to color t. This guarantees that

b
β

i−1,i
takes the color i when i is odd. The rest of the fixing procedure is the

same as the previous case.
This construction gives rise to a k-UCG which will be called U

k,t
(G), and as a

consequence of the above constructions we have the following theorem.
Theorem 3.3. Let t, k, and q be natural numbers such that t > 1, k − t ≥ 3,

k ≥ 2t+ q− 1, and let Gi (i ∈ Z
d+1
) be identical copies of a (t+ q− 1)-UCG, G, with

cl(G) = q > 2 and a subset B ⊂ V (G) of size b which satisfies conditions (B1
)–(B

4
).

Then if |V (G)| = ν, for the graph U
k,t
(G) we have the following:

(1) ccl(U
k,t
(G)) = t.

(2) |V (U
k,t
(G))| = ν(t+ 1) + k + q − 1.

(3) Λ(U
k,t
(G)) = (t+ 1)(Λ(G) + b) +Rt , where

R
t =

{
q − 4, t even,
2q + t− 7, t odd.

Proof. For (1) again note that all the vertices in the central clique with colors in
{t+ q − 1, . . . , α− 1} are connected to any other vertex as in Lemma 1.2. Therefore,
it is sufficient to consider the case k − t = t + q − 1, and we may focus only on the
fixing process by Lemma 3.1. Therefore, we note that, as worst cases, connecting a

i ’s
for i ∈ [0, t − 1] along with the vertex in the central clique whose color is t form a
(t + 1)-clique, while {a

i
, a

i+1} ∪ Bi+1 along with vertices in the central clique whose
colors are in [0, t] − {i, i + 1} produce, at most, a clique of size q + (t − 1) = α.
However, since k − t = t+ q − 1 and q > 2 we have k − t > t+ 1 which implies that
ccl(U

k,t
(G)) = t.

(2) and (3) follow by direct computation.

4. Clique reduction. In this section we use our previous constructions recur-
sively to reduce the clique number in k-UCG’s. In order to reduce the clique number
to k− 2 (i.e., t = 2), it is necessary to have a (q+1)-UCG with clique number q to be
used as the graph G in our general construction (Theorem 3.3), and the first case is
the case of a 4-UCG with maximum clique number q = 3. For this, we consider the
graph U

4,1
(2) constructed in section 2 (Figure 5), and in what follows we show that

this graph can be used as the graph G in Figure 4 for the case t = 2 where β = 3.
Let b

2,0 serve as the vertex b
3

in G. Consider a2 as a, b0,1 as b
2

and the vertex

with color 2 in the central clique as b
1

. Also, consider B as the set of four vertices
which are circled in Figure 5 and note that this set satisfies all conditions mentioned
in the previous section (conditions (B

1
)–(B

4
)).

Now, using this graph as the graph G in U
k,2
(G) gives rise to a k-UCG with clique

number k − 2. Therefore, for this graph we have
t = 2, q = β = 3, k ≥ 2t+ q − 1 = 6, b = 4, ν = 10, |V | = k + 32, Λ = 14.

However, we can still reduce Λ by using some more vertices. Consider U
5,1(2) as the

graph G. Let the vertex with color 3 in the central clique serve as b
β

= b
4

and note

CLIQUES IN UNIQUELY VERTEX COLORABLE GRAPHS 441

� � �

� �

�� �

�

�

❤ ❤

❤

❤

a

b3 b2

b1

Fig. 5. The graph U4,1 and the subset B ∪ {a}. (Vertices of B are circled.)

that this vertex is in all maximal cliques of this graph. Therefore, we may define

B = {bβ} and we define the rest of representatives as in the previous case for U
4,1
(2).

Hence, for U
k,2
(U

5,1
(2)) we have

t = 2, q = β = 4, k ≥ 2t+ q − 1 = 7, b = 1, ν = 11, |V | = k + 36, Λ = 6.

Now applying Lemma 1.2 we have the following proposition.
Proposition 4.1. For k ≥ 7, there exists a family of k-UCG’s, U

k,2
, such that

|V (U
k,2
)| = k + 36, ccl(U

k,2
) = 2, and Λ(U

k,2
) = 6.

Consider such a graph for k = 8. In this way we can again set b = 1, and we may
construct U

k,3
(k ≥ 11) with |V (U

k,3
)| = k + 181, ccl(U

k,3
) = 3, and Λ(U

k,3
) = 36.

This shows that we can always set b = 1 by sacrificing the minimality of the
number of vertices in our construction. Therefore, by a recursive construction we get
the following generalization of Theorem 2.3.

Theorem 4.2. If t > 1 is fixed, then for each k ≥ k
t

min
=
(
t+2
2

)
+ 1 there exists

a k-UCG, U
k,t
, such that

(1) ccl(U
k,t
) = t;

(2) |V (U
k,t
)| = k+(V

t

min
− kt

min
), where V

t

min
= (t+1)!

t−1∑
j=1

j2 + 4j + 8

(j + 2)!
+ 5

;

(3) Λ(U
k,t
) = (t+1)!

2

t−1∑
j=1

1 + δj+1

j!
+ 1

 , where δj =

{
0, j even,
1, j odd.

Proof. Assume that superscript t denotes our level of recursion (for the clique

number k − t). Let k
t

min
be the minimum coloring number for which the above

construction is valid, where we consider the vertex with color q
t−1

+t−2 in U
k,t−1

as b
β

which is connected to all the rest of vertices. This implies that b = 1, k
t

min
= q

t

+2t−1,
and consequently k

t−1

min
= q

t−1

+ 2t− 3. On the other hand, we have

q
t

= (k
t−1

min
+ 1)− (t− 1) = k

t−1

min
− t+ 2

442 AMIR DANESHGAR

which gives rise to the following difference equations:

q
t

= q
t−1

+ t− 1, q
2

= 4,

k
t

min
− t = k

t−1

min
+ 1, k

2

min
= 7,

with solutions q
t

=
(
t
2

)
+ 3, k

t

min
=
(
t+2
2

)
+ 1. Also, by Theorem 3.3 we have

Λ
t

= (t+ 1)Λ
t−1

+ (1 + δt)(q
t

+ t− 3) = (t+ 1)Λt−1

+ (1 + δt)

(
t+ 1

2

)
, Λ

2

= 6,

and

V
t

min
= (V

t−1

min
+ 1)(t+ 1) + k

t

min
+ q

t − 1 = V
t−1

min
(t+ 1) + t2 + 2t+ 5, V

2

min
= 43,

whose solutions are

V
t

min
= (t+ 1)!

t−1∑
j=1

j2 + 4j + 8

(j + 2)!
+ 5

and

Λ(U
k,t
) =

(t+ 1)!

2

t−1∑
j=1

1 + δj+1

j!
+ 1

,

where δ
j
=

{
0, j even,
1, j odd.

Corollary 4.3. If t is large enough, then
(a) V

t

min
� 8.3(t+ 1)!;

(b) Λ
t � 1.6(t+ 1)!.

Moreover, as a special asymptotic result we have the following theorem.
Theorem 4.4. If k =

(
t+2
2

)
+ 1 and t > 1 is large enough, then there exists a

family of k-UCG’s, U
t , such that ccl(Ut) = t and V (Ut) � 5Λ(Ut).

Theorem 4.2 gives an upper bound for λ
t(k). Also, note that using the same kind

of computations, we may obtain a bound for νt(k) (without the extra vertex). Hence,
we summarize these results as follows.

Theorem 4.5.

(a) λ
t(k) ≤ (t+1)!

2

t−1∑
j=1

1 + δj+1

j!
+ 1

 (t > 1, k ≥ (t+2

2

)
+ 1).

(b) ν
t(k) ≤ k−kmin+(t+1)!

t−1∑
j=1

j2 + j + 6

(j + 2)!
+ 5

 (t > 1, k ≥ k

min =
t2+t+6

2).

5. Applications. Critical sets of Latin squares have been studied by Cooper,
Donovan, Seberry, and others (see, e.g., [8]). Also, the concept has been generalized
as defining sets for other combinatorial structures such as designs [24] and vertex
colorings [21]. In [9] it has been shown that the concept of a critical set for latin
squares can be used in the construction of secret sharing schemes, where it is quite
important to investigate the class of critical sets (or defining sets) of minimal size.

CLIQUES IN UNIQUELY VERTEX COLORABLE GRAPHS 443

However, in this case, it is not quite easy to introduce an effective method of design
for secret sharing schemes which are based on Latin squares, since the class of easily
constructible Latin squares is not as large as needed. This approach can be generalized
as follows.

Let C be the class of all combinatorial structures of a specified type (such as
Latin squares, designs, etc.), and let C ∈ C be of size n with a minimal defining set
of size s, which means that a subset of size s in C uniquely specifies C in C. Now,
if elements of size n form a relatively large subset of C and n − s is large enough,
then we may construct a secret sharing scheme by distributing the defining set among
shareholders and making n public. Note that in order to have a good secret sharing
scheme we must also assume that each subset with less than s elements extends to a
relatively large number of elements of C.

It is clear that forcing structures can be used to construct graphs with restricted
types of colorings, which may be used to design different types of secret sharing
schemes. To illustrate the technique we propose a method to construct such graphs.

Let G be a k-UCG with a forcing structure. Then it is clear that the smallest
defining set for its vertex coloring is of size k− 1. Choose a vertex v from the forcing
structure and delete it along with all of its edges. The new graph has a relatively
large number of k-colorings because of the nature of k-UCG’s, even if the vertex has
the smallest degree. Now note that if one knows the colors of all vertices adjacent
to v in the unique coloring of G, then these colors extend to a unique coloring for
G−v. Therefore, all vertices adjacent to v, N(v), along with their specific colors form
a defining set for this special coloring. Also, note that it is hard to find this special
k-coloring if one does not know about the forcing structure. Moreover, in order to
enhance the scheme, one can build a large k-UCG and delete more than one vertex.
This will give rise to a larger number of colorings for the new graph, which leads to
a more secure secret sharing scheme.

This procedure can be generalized by applying forcing structures to construct
graphs with special types of colorings. Then if the graph is large enough, our knowl-
edge about the forcing structure helps to find the coloring quite easily; however, for
someone who does not know about this structure it is quite hard to find that special
coloring. This may be used in different cryptographic applications by keeping the
coloring secret while making the graph public. Then, since the number of colored
graphs on n vertices grows exponentially with n, this procedure introduces a one-way
bottleneck which has many cryptographic applications.

On the other hand, if one looks for some algorithmic approach to design UCG’s
by means of forcing structures, the subject is probably applicable in data compression
if one is able to code the data in terms of the coloring. This, of course, is still far from
real applications since we do not know enough about different algorithms which may
classify different UCG’s, but in [11] some primary steps toward this idea are taken.

6. Concluding remarks. In this paper cliques in k-UCG’s are investigated.
Considering the parameter Λ(G) = |E(G)| − e∗(G), we introduced the function

λt
(k) = min{Λ(G) : G is a k-UCG and cl(G) = k − t},

and we obtained some upper bounds for this function using a technique called forcing.
In this regard, for each t ≥ 1 and for k large enough, we constructed a family of k-
UCG’s with maximum clique number k − t.

The first interesting aspect of this study is the case of small k’s. As it is clear
from our construction, q is not a constant, and consequently there is a big difference

444 AMIR DANESHGAR

between k and 2t when t gets large. It seems that it is quite difficult to build a k-UCG
with cl(G) ≤ �k+1

2 � and small Λ, and to construct such graphs seems to require a
large jump in the number of vertices. For the small cases we explicitly ask for the
following.

• Does there exist a 5-UCG, G, with |V (G)| = 10, cl(G) = 4 and
Λ(G) = 1? (Note that the graph introduced in [25] has Λ = 4.)
• Find a 3-UCG without any triangle that can be used in a generalized version
of our construction.
• Construct a 4-UCG with maximum clique number 2 and small Λ.
• Construct a 5-UCG with maximum clique number 3 and small Λ.

Also, we would like to note that the case of 3-UCG’s is quite different from the case
of k-UCG’s for k > 3, which is mainly due to the fact that a 2-clique is nothing but an
edge. Therefore, one is restricted to use only pure symmetric structures to reduce the
clique. This method of construction is quite interesting, since one is actually using all
the power of each vertex.

Again, by considering our construction in section 3 it is clear that the construction
is more or less local, which means that we tried to build k-UCG’s by using such graphs
for smaller k’s and a cyclic symmetry. This suggests that it might be possible to build
k-UCG’s by applying pure symmetric structures with a relatively small clique number
and small Λ. Of course, if this is possible, then the graph will have a large number
of vertices. Also, note that the structure of such graphs is very much related to the
parameters k and t (e.g., note the parity of t in our construction). For instance, in
this regard one may ask the following:

• Is it true that both λ
t
(k) and ν

t
(k) grow exponentially with t?

Therefore, as far as Xu’s conjecture is concerned, counterexamples may exist for large
values of these parameters. In other words, it seems that there is a tradeoff between
the number of vertices on one hand and Λ and the clique number on the other.

We note that in [15] it is proved that verification of Xu’s conjecture may be
reduced to the verification of the conjecture for minimal cores or to the verification
of the conjecture for minimal k-UCG’s on 2k vertices. Also, it is proved that for any
minimal k-UCG on 2k-vertices either the conjecture is true or there exists a vertex
which is connected to all other vertices of the graph. On the other hand, it is proved
that the conjecture is true for any k-UCG whose core is 4-chromatic and has 9 vertices.

All the same, the author believes it is quite probable that Xu’s conjecture is
false as it is stated; however, it seems that there exists a bound for the number of
vertices, such as V (k) > 2k, depending on the chromatic number k > 2, such that the
conjecture is true for all minimal k-cores with less than V (k) vertices. (For definitions
see [15].)

To sum up, it is clear that the study of k-UCG’s is tightly related to the study
of symmetric constructions on vertices and their colorings, which seems to need a
combination of combinatorial and algebraic methods.

Acknowledgments. It is a pleasure for the author to thank the anonymous
referees for their invaluable comments and to thank professor E. S. Mahmoodian
who introduced to him the subject of defining sets for combinatorial structures and
uniquely colorable graphs. Also, he is much obliged for the financial support of the
Institute for Studies in Theoretical Physics and Mathematics (IPM) and the Research
Council of the Sharif University of Technology.

CLIQUES IN UNIQUELY VERTEX COLORABLE GRAPHS 445

REFERENCES

[1] V. A. Aksionov, On uniquely 3-colorable planar graphs, Discrete Math., 20 (1977), pp. 209–
216.

[2] B. Bollobás, Extremal Graph Theory, Academic Press, New York, 1978.
[3] B. Bollobás, Uniquely colorable graphs, J. Combin. Theory Ser. B, 25 (1978), pp. 54–61.
[4] B. Bollobás and N. Sauer, Uniquely colorable graphs with large girth, Canad. J. Math., 28

(1976), pp. 1340–1344.
[5] M. Borowiecki and E. D. Burchardt, Classes of chromatically unique graphs, Discrete

Math., 111 (1993), pp. 71–75.
[6] C. Y. Chao and Z. Chen, On uniquely 3-colorable graphs, Discrete Math., 112 (1993), pp. 21–

27.
[7] G. Chartrand and D. P. Geller, On uniquely colorable planar graphs, J. Combinatorial

Theory, 6 (1969), pp. 271–278.
[8] J. Cooper, D. Donovan, and J. Seberry, Latin squares and critical sets of minimal size,

Australas. J. Combin., 4 (1991), pp. 113–120.
[9] J. Cooper, D. Donovan, and J. Seberry, Secret sharing schemes arising from Latin squares,

Bull. Inst. Combin. Appl., 12 (1994), pp. 33–43.
[10] A. Daneshgar, Forcing Structures and Cliques in Uniquely Vertex Colorable Graphs, Tech.

Rep. 97–209, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran,
Iran, 1997.

[11] A. Daneshgar, Forcing and Graph Colorings, Tech. Rep. 98–292, Institute for Studies in
Theoretical Physics and Mathematics (IPM), Tehran, Iran, 1998.

[12] A. Daneshgar, Private communication, 1998.
[13] A. Daneshgar, On r–type constructions and ∆–color–critical graphs, J. Combin. Math. Com-

bin. Comput., 29 (1999), pp. 183–206.
[14] A. Daneshgar, A. J. W. Hilton, and P. D. Johnson, Relations among the fractional chro-

matic, choice, Hall, and Hall–condition numbers of simple graphs, Discrete Math., to
appear.

[15] A. Daneshgar and R. Naserasr, On small uniquely–vertex–colorable graphs and Xu’s con-
jecture, Discrete Math., 223 (2000), pp. 93–108.

[16] A. Daneshgar and R. Naserasr, On some parameters related to uniquely vertex–colorable
graphs and defining sets, submitted.

[17] P. Erdös and J. Spencer, Probabilistic Methods in Combinatorics, Probab. Math. Statist.
17, Academic Press, New York, Akadémiai Kiadó, London, 1974.

[18] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[19] F. Harary, S. T. Hedetniemi, and R. W. Robinson, Uniquely colorable graphs, J. Combina-

torial Theory, 6 (1969), pp. 264–270.
[20] L. Lovász, On chromatic number of finite set-systems, Acta Math. Acad. Scient. Hungar., 19

(1968), pp. 59–67.
[21] E. S. Mahmoodian, R. Naserasr, and M. Zaker, Defining sets in vertex colorings of graphs

and latin rectangles, Discrete Math., 167/168 (1997), pp. 451–460.
[22] V. Müller, On colorings of graphs without short cycles, Discrete Math., 26 (1979), pp. 165–

176.
[23] L. J. Osterweil, Some classes of uniquely 3-colorable graphs, Discrete Math., 8 (1974), pp. 59–

69.
[24] A. P. Street, Defining sets for block designs: An update, in Combinatorics Advances, C. J.

Colbourn and E. S. Mahmoodian, eds., Math. Appl. 329, Kluwer Academic Publishers,
Dordrecht, 1995, pp. 307–320.

[25] M. Truszczyński, Some results on uniquely colorable graphs, in Finite and Infinite Sets, Colloq.
Math. Soc. Janos Bolyai 37, North-Holland, Amsterdam, 1984, pp. 733–748.

[26] S. J. Xu, The size of uniquely colorable graphs, J. Combin. Theory Ser. B, 50 (1990), pp. 319–
320.

BLOCKING SEMIOVALS OF TYPE (1,M+ 1,N+ 1)∗

LYNN M. BATTEN† AND JEREMY M. DOVER‡

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 4, pp. 446–457

Abstract. We consider the existence of blocking semiovals in finite projective planes which
have intersection sizes 1,m+ 1 or n+ 1 with the lines of the plane for 1 ≤ m < n. For those prime
powers q ≤ 1024, in almost all cases, we are able to show that, apart from a trivial example, no such
blocking semioval exists in a projective plane of order q. We are also able to prove, for general q,
that if q2 + q + 1 is a prime or three times a prime, then only the same trivial example can exist in
a projective plane of order q.

Key words. projective planes, blocking sets, semiovals

AMS subject classifications. 51E20, 51E21

PII. S0895480100338002

1. Motivation. Blocking sets in projective planes have been much studied; the
“classical” results due to Bruen [7], [8] state that in a projective plane of order q, a
blocking set has between q+

√
q+1 and q2−√q points. Many additional references,

as well as descriptions of applications in game theory and cryptography, can be found
in Chapter 8 of Batten [2].

A semioval in a projective plane is a set of points S such that for each point P of
S, there exists a unique line which meets S in exactly the point P . In [15], Hubaut
proved that in a projective plane of order q, a semioval S has between q + 1 and
q
√
q + 1 points. These two extremes occur in the case when S is an oval (see [2]) or

a unital (see [11]), respectively. In the case of regular semiovals, that is, when S has
constant line size a, considered as a design in its own right, Blokhuis and Szönyi [5]
prove that either S is an oval or a|q − 1.

Blocking sets and semiovals coincide in the case when each is a unital. In fact, for
minimal blocking sets (where each point is on at least one tangent), it is known that
the upper bound on the number of points is q

√
q + 1, which is precisely the unital

case (see [9]).
This leads to the more general question: in what other cases is a blocking set also

a semioval? There is a trivial example on 3(q − 1) points in every finite projective
plane of order q > 2. Take three nonconcurrent lines (a “triangle”) and delete the
three points where these lines intersect (the “vertices”). It is not difficult to check
that this set is a blocking semioval.

As well as being interesting objects in their own right, our main motivation for
their study comes from Batten [3], where blocking semiovals are studied in relation
to a cryptographic protocol designed by the author.

We say that a set X of points in a plane Π is of type (m1,m2, . . . ,mk) if each line
of Π meets X in mi points for some i, 1 ≤ i ≤ k, and if for each mi, 1 ≤ i ≤ k, some
line of Π meets X in mi points. A unital thus has type (1,

√
q + 1) and the triangle

∗Received by the editors July 24, 2000; accepted for publication (in revised form) June 4, 2001;
published electronically October 4, 2001.

http://www.siam.org/journals/sidma/14-4/33800.html
†School of Computing and Mathematics, Deakin University, Clayton, Vic 3168, Australia

(lmbatten@deakin.edu.au). The research of this author was partially supported by NSERC grant
OGP0045831.

‡Department of Mathematics, North Dakota State University, Fargo, ND 58105-5075
(ajdover@aol.com). The research of this author was partially supported by NSF grant OSR-9452892.

446

BLOCKING SEMIOVALS 447

with deleted vertices has type (1, 3, q − 1). In case q − 1 = 3, it is easy to see that
these two coincide.

It is not difficult, using the methods of Proposition 2.1 of the next section, to
show that a blocking semioval of type (1, n), n ≥ 2, must be a unital. This result also
follows from the deeper work of Tallini-Scafati [20] on the classification of sets of type
(1, n). The purpose of this paper is to explore the situation of type (1,m+ 1, n+ 1)
blocking semiovals. (We use m+ 1 and n+ 1 to facilitate simpler computations.)

In section 2, a number of arithmetic conditions on blocking semiovals of type
(1,m+1, n+1) are given and families of possible parameters exhibited. The principal
result in this direction is the following theorem.

Theorem 2.3. Let q > 4 be a square prime power, and let Π be a projective
plane of order q. Then a blocking semioval of type (1,

√
q − (1 + λ),√q + 1) and size

(q +
√
q + 1)(

√
q − (1 + λ)) is arithmetically feasible in Π if and only if λ

λ+2 (q +
√
q)

is an integer with 0 ≤ λ ≤ √q − 3.
Using MAGMA [10], we were able to show that for q a prime power less than

or equal to 1024, there is only a small number of possible blocking semiovals of our
type whose existence remains undecided; this is the content of section 3. Other than
the triangles with deleted vertices, we know of only one type of blocking semioval
with just three intersection numbers. For any Singer cycle σ of PG(2, 7), the three
point orbits under σ3 are each a blocking semioval of type (1, 3, 4), each containing
19 points. (This set was originally considered by Brouwer [6] in another context.)

The main results of nonexistence are presented in section 4 with the following two
theorems.

Theorem 4.1. Let Π be a projective plane of order q ≥ 2 such that q2 + q + 1 is
prime. Then the only blocking semioval of type (1,m+ 1, n+ 1), 1 ≤ m < n, in Π is
a triangle with vertices deleted.

Theorem 4.2. Let Π be a projective plane of order q ≥ 2, q �= 7, such that
q2 + q + 1 = 3p, p prime. Then the only blocking semioval of type (1,m + 1, n + 1),
1 ≤ m < n, in Π is a triangle with vertices deleted.

The “unique tangent” condition ascribed to semiovals has been generalized to the
concept of a “strong representative system.” Blokhuis and Metsch [4], for instance,
use this setting to show that any semioval or minimal blocking set on q

√
q points for

q square and q ≥ 49 must be part of a unital. Hence no minimal blocking set of this
size exists. We discuss this, as well as some of their other results, further in section 4.

In section 5, we summarize our results and pose several conjectures.

2. Arithmetic conditions. In this section, we begin with a lemma which de-
scribes the various arithmetic conditions which constrain the parameters of our semio-
vals for which we need some notation. Let Π be a projective plane of order q, and
let S be a blocking semioval with three intersection numbers in Π. Let v denote the
number of points in S, and let m+1 and n+1 denote the nontangent line intersection
sizes of S, where we may assume without loss of generality that m < n. As every
point of S lies on exactly one tangent, it is a simple computation to show that there
exist constants a and b such that every point of S lies on exactly b (m + 1)-secants
and a (n+1)-secants. The numbers (v,m+1, n+1, a, b) are called the parameters of
the blocking semioval S.

We can now prove the following proposition.

Proposition 2.1. Let Π be a projective plane of order q > 2, and let S be
a blocking semioval in Π with parameters (v,m + 1, n + 1, a, b). Then the following

448 LYNN M. BATTEN AND JEREMY M. DOVER

conditions hold:

v = 1 + an+ bm,(1)

q2 + q + 1 = v

(
1 +

b

m+ 1
+

a

n+ 1

)
,(2)

a+ b = q,(3)

m <
√
q,(4)

v ≥ (m+ 1)(n+ 1),(5)

m+ n ≤ q.(6)

Further, equality holds in inequalities (5) and (6) if and only if S is a triangle with
vertices removed.

Proof. Equation (1) can be obtained by counting the number of points in S in
two different ways, and (3) arises from counting the number of lines through a point
of S.

To obtain (2), notice that every line must be either a tangent, (m+ 1)-secant, or
(n + 1)-secant to S. One can easily count that there are v tangents, vb

m+1 (m + 1)-
secants, and va

n+1 (n + 1)-secants to S. The sum of these three numbers must equal

the number of lines in the plane q2 + q + 1, which establishes the equality.
Inequality (4) can be proven by contradiction. Suppose m ≥ √q. As n > m,

we know n >
√
q as well. Using our second condition, we have v = 1 + an + bm >

1 + a
√
q + b

√
q. This latter expression equals q

√
q + 1 using our first condition.

However, no semioval may contain more than q
√
q+1 points (see Hubaut [15]), which

is our contradiction.
To establish inequality (5), we proceed by assuming v ≤ (m + 1)(n + 1). We

compute

v ≤ (m+ 1)(n+ 1),
an+ (q − a)m ≤ mn+m+ n (using (1) and (3))

(a− 1)(n−m) + (q − 2)m ≤ mn.

As a ≥ 1 and n > m, we know the term (a− 1)(n−m) is nonnegative, which implies
(q − 2)m ≤ mn, with equality if and only if a = 1. This forces n ≥ q − 2, again with
equality if and only if a = 1.

If a > 1, then n > q−2, which forces some line to meet S in at least q points. From
Dover [12], this only can happen in PG(2, 3), and in that one case, v = (m+1)(n+1).
However, if a = 1, this quickly forces b = q − 1 and n = q − 2. Using (1) and (2), one
can solve for m to find m = 3, which forces v = 3q − 3. Again from Dover [12], any
semioval with 3q − 3 points such that some line meets it in q − 1 points must be a
triangle with deleted vertices.

To prove inequality (6), begin with (2), clear denominators, and subtract v(m+
1)(n+ 1) from both sides to get

(q2 + q + 1− v)(m+ 1)(n+ 1) = v(bn+ am+ a+ b).(7)

Using (3) directly and in conjunction with (1) in

bn+ am = (a+ b)n+ (a+ b)m− (an+ bm)
= q(n+m)− (v − 1),

BLOCKING SEMIOVALS 449

we can substitute into (7) to obtain

(q2 + q + 1− v)(m+ 1)(n+ 1) = (q(n+m+ 1) + 1− v)v.(8)

By inequality (5), we have v ≥ (m + 1)(n + 1) with equality if and only if S is a
triangle. Using this fact on the right-hand side of (8) and cancelling we find

q2 + q + 1− v ≤ q(n+m+ 1) + 1− v,
which implies m+n ≥ q, with equality if and only if S is a triangle, as claimed.

We call any set of parameters (v,m + 1, n + 1, a, b) which satisfy the conditions
of Proposition 2.1 arithmetically feasible. We now wish to give some examples of
arithmetically feasible parameter sets.

Proposition 2.2. For any prime power q ≥ 5, the parameter set of the triangle
with deleted vertices, (3q−3, 3, q−1, 1, q−1), is always arithmetically feasible. Further,
for all planes of order q ≥ 5 such a blocking semioval exists, and any blocking semioval
with these parameters must be a triangle with deleted vertices.

Proof. The proof follows directly from the existence of vertexless triangles and
Proposition 2.1.

We note here that the triangle forms a blocking semioval in all planes of order
q > 2, yet we did not include the cases q = 3, 4 in Proposition 2.2. The reason is
that if q = 3, this would force m to be greater than n, contrary to our assumption
that m < n. In the case q = 4, m = n and our blocking semioval has only one
nontangent intersection number, not two. As mentioned in the introduction, this
forces the vertexless triangle to be a unital when q = 4.

We now give a result which describes a family of feasible parameters for every
q > 2 of square prime power order. Unlike Proposition 2.2, we know of no semioval
with these parameters which exists.

Theorem 2.3. Let q > 4 be a square prime power, and let Π be a projective
plane of order q. The parameter set

v = (q +
√
q + 1)(

√
q − (1 + λ)),

m+ 1 = (
√
q − (1 + λ)),

n+ 1 =
√
q + 1,

a = q − (1 + µ),
b = 1 + µ

is arithmetically feasible if and only if µ = λ
λ+2 (q +

√
q) is an integer with 0 ≤ λ ≤√

q − 3.
Proof. Checking the arithmetic conditions of Proposition 2.1 for these parameters

is tedious but straightforward, and thus it is left to the reader.
Corollary 2.4. The parameter sets (q

√
q − 1,√q − 1,√q + 1, q − 1, 1) and(

(q +
√
q + 1)(

√
q − 3),√q − 3,√q + 1, q − (1 + 1

2 (q +
√
q)
)
, 1 + 1

2 (q +
√
q)
)
are arith-

metically feasible for all square prime powers q ≥ 25 with the first parameter set being
arithmetically feasible for all q ≥ 9.

Proof. The first set corresponds to the trivial case λ = 0, while the second set
corresponds to λ = 2, which requires

√
q ≥ 5, as λ ≤ √q − 3.

As mentioned previously, it is unknown if blocking semiovals with the second
parameter set exist. Blokhuis and Metsch [4] have shown that no blocking semioval
with the parameter set in Theorem 2.3 with λ = 0 can exist in PG(2, q) when q is
odd, and Ball [1] has proven a similar result for even q.

450 LYNN M. BATTEN AND JEREMY M. DOVER

Table 1
Sporadic arithmetically feasible parameter sets.

Order of plane v m+ 1 n+ 1 a b Exists?
q = 7 19 3 4 4 3 Yes by [6]
q = 16 49 3 7 4 12 ?
q = 25 56 2 8 5 20 ?
q = 64 209 3 11 10 54 No by Prop. 3.2
q = 121 1134 10 54 1 120 No by Prop. 3.1

518 2 6 99 22 ?
342 2 6 55 66 ?

q = 191 1612 7 12 93 98 ?
q = 263 4251 17 18 42 221 ?
q = 343 3774 10 17 98 245 No by Prop. 3.2
q = 373 7154 20 22 33 340 ?
q = 947 19390 18 25 470 477 ?
q = 1024 5889 5 13 224 800 ?

11585 5 13 936 88 ?
11585 11 35 56 968 No by Prop. 3.2

Table 1 details all arithmetically feasible parameters of all prime powers up to and
including 1024, excepting those parameters shown to be feasible in Proposition 2.2
and Theorem 2.3. For omitted orders, the parameters given by the applicable results
above are the only possibilities.

An exhaustive computer search using the package MAGMA [10] was used to
obtain these possibilities for those values of q which could not be eliminated using
the results of the next section. We note that inequality (4) was used strongly in this
search to limit the possibilities for m.

3. Eliminating possible parameter sets. In this section we prove several
results which will allow us to rule out a number of the possibilities in Table 1. The
first deals with the case where a = 1.

Proposition 3.1. Let Π be a projective plane of order q, and let S be a blocking
semioval in Π with parameters (v,m + 1, n + 1, 1, q − 1). Then m must divide q − n
and v − (q + 1).

Proof. First suppose that every point P off S lies on an (n + 1)-secant. Since
there are precisely v

n+1 (n + 1)-secants to S, there are at most
v

n+1 (q − n) points

outside of S. Therefore q2+ q+1−v ≤ v
n+1 (q−n), which we can rearrange to obtain

q2 + q + 1 ≤ v(q+1)
n+1 .

Solving this inequality for v, we find that v ≥ (n+1)(q2+q+1)
q+1 , which we can divide

through to get v > q(n+ 1). However, again from (1) we have v = n+ 1 + (q − 1)m,
which implies (q − 1)m > (q − 1)(n+ 1), contradicting the fact that m < n.

Hence there must exist a point P which lies on no (n+1)-secants. Suppose P lies
on x tangents and y (m+ 1)-secants. Then simple counting yields that x+ y = q + 1
and x + (m + 1)y = v. Subtracting these yields my = v − (q + 1). Using (1) to
substitute in for v yields my = 1 + n + (q − 1)m − q − 1. Rearranging gives us
m(y− q+1) = n− q, which implies that m divides q− n. That m divides v− (q+1)
now quickly follows from (1).

In particular, this proposition rules out the possibility that a blocking semioval
in a plane of order 121 with parameters (1134, 10, 54, 1, 120) could exist (see Table 1),
as 9 does not divide 121− 53 = 68.

Up to this point, we have focused on the “internal” structure of a blocking semi-

BLOCKING SEMIOVALS 451

oval. We would now like to prove a result concerning points outside the semioval; this
will give us a strong divisibility condition amongst our parameters.

Proposition 3.2. Let Π be a projective plane of order q, and let S be a blocking
semioval in Π with parameters (v,m+ 1, n+ 1, a, b). For every point P outside of S,
let d(P) denote the number of tangents to S passing through P , e(P) the number of
(m+ 1)-secants, and f(P) the number of (n+ 1)-secants. Then we have

nd(P) ≡ q + n (mod n−m),
me(P) ≡ v − (q + 1) (mod n),

nf(P) ≡ v − (q + 1) (mod m).

Proof. Counting lines through P , we have the relation d(P)+e(P)+f(P) = q+1.
By counting pairs of points (P,Q), where Q ∈ S, we obtain d(P) + (m + 1)e(P) +
(n+ 1)f(P) = v.

Multiply the first relation through by n to obtain nd(P) + ne(P) + nf(P) =
n(q+1), which we can rewrite as nd(P) + (n−m)e(P) +me(P) +nf(P) = n(q+1).
Notice from our second relation that me(P) + nf(P) = v − (d(P) + e(P) + f(P)) =
v − (q + 1). Hence we have nd(P) + (n−m)e(P) = (n+ 1)(q + 1)− v. From (1) we
know v = 1 + an+ bm, from which we can get v = 1 + (a+ b)n+ b(m− n). Putting
this all together we obtain nd(P)+(n−m)e(P) = (n+1)(q+1)− (1+qn−b(n−m)).
Finally reducing modulo n−m we obtain nd(P) ≡ q + n (mod n−m), as claimed.

To obtain the latter two relations in the proposition, we need recall only that
me(P) + nf(P) = v − (q + 1), which we can successively reduce modulo m and
n.

To use this result effectively, we need the following two counts. Let S be a blocking
semioval with parameters (v,m + 1, n + 1, a, b) in a plane of order q. We first count
all of the pairs (P, �), where P is a point off of S and � is a line through P which is
tangent to S. On the one hand, there are v tangents to S, each of which contains
q points off S, yielding qv pairs. On the other hand, for each point P off S, there
are d(P) (using the notation of Proposition 3.2) lines which can pair with it. Hence
we have the equation

∑
P d(P) = qv, where the sum is taken over all points P off

S. A similar count of triples (P, �1, �2), where �1 and �2 are distinct tangents to S
meeting in P , yields the equation

∑
P d(P)(d(P)−1) = v(v−1). From this we obtain∑

P d(P)
2 = v(q + v − 1).

Let us look at the possible parameter set (209, 3, 11, 10, 54) in a plane of order
64. By Proposition 3.2, we know that for any point P off S, we have 10d(P) ≡ 74
(mod 8), or d(P) ≡ 1 (mod 4). In particular d(P) cannot take on the values 2, 3, or
4.

Consider
∑
P (d(P) − 1)(d(P) − 5). By the above paragraph, no term of this

sum can be negative. Further, this sum must be divisible by 42. For this particular
case, we have

∑
P d(P) = 13376 and

∑
P d(P)

2 = 56848. Thus we can evaluate∑
P (d(P) − 1)(d(P) − 5) = 56848 − 6(13376) + 5(642 + 64 + 1 − 209) = −19456.

This contradicts the fact that all of our summands are nonnegative, implying that no
blocking semioval with these parameters can exist. A similar argument rules out the
possible parameter set in a plane of order 343 and the third possibility for a plane of
order 1024.

We performed a similar analysis for e(P) and f(P) but were unable to rule out
any additional parameter sets. We are left with the unresolved sporadic cases in Table
2.

452 LYNN M. BATTEN AND JEREMY M. DOVER

Table 2
Unresolved sporadic parameter sets.

Order of plane v m+ 1 n+ 1 a b
q = 16 49 3 7 4 12
q = 25 56 2 8 5 20
q = 121 518 2 6 99 22

342 2 6 55 66
q = 191 1612 7 12 93 98
q = 263 4251 17 18 42 221
q = 373 7154 20 22 33 340
q = 947 19390 18 25 470 477
q = 1024 5889 5 13 224 800

11585 5 13 936 88

4. The p and 3p cases. The prime factorization of q2 + q + 1 can be used
in conjunction with (2) of Proposition 2.1 to yield some information about blocking
semiovals in the plane. Thus, in this section, we consider several special cases of this
factorization. Note that representations of q2+q+1 have been much studied in number
theory (see, for example, Mordell [18]). In particular, the cases where q2 + q + 1 is a
prime power or divisible by 3 have been given much attention [14], [17], [19].

The simplest case to tackle is q2 + q + 1 prime, which occurs quite frequently for
q ≤ 1024.

Theorem 4.1. Let Π be a projective plane of order q ≥ 2 such that q2 + q + 1 is
prime. Then the only blocking semioval of type (1,m+ 1, n+ 1), 1 ≤ m < n, in Π is
a triangle with vertices deleted.

Proof. Let p = q2 + q + 1 and S be a blocking semioval of type (1,m+ 1, n+ 1),
1 ≤ m < n, on v points in Π. By (2) of Proposition 2.1, p(m + 1)(n + 1) = v[(m +
1)(n+ 1) + a(m+ 1) + b(n+ 1)]. Since v must be less than p, v | (m+ 1)(n+ 1). By
inequality (5) of Proposition 2.1, S is a triangle with vertices deleted.

Since approximately half of all values of q2+q+1, q a prime power, are congruent
to 0 modulo 3, it is worthwhile to examine the case when 3 divides the number of
points in the plane. In case q = 7, q2 + q + 1 = 57 = 3 · 19, and as we saw in the
previous section, there is a semioval decomposition of the plane of the type wanted.
We next show that for q2 + q + 1 equal to 3 times a prime, the case q = 7 is the only
one in which a nontrivial semioval of our type can occur.

Theorem 4.2. Let Π be a projective plane of order q ≥ 2, q �= 7, such that
q2 + q + 1 = 3p, p prime. Then the only blocking semioval of type (1,m + 1, n + 1),
1 ≤ m < n, in Π is a triangle with vertices deleted.

Proof. For q < 7, the only value of q2 + q + 1 of the desired form is 21 with
q = 4. By inequality (6) of Proposition 2.1, v ≤ 9 in this case. Applying (2) and (3)
of Proposition 2.1 and noting that the only possible values for m and n are 1 and 2,
respectively, we find that there are no semiovals of type (1, 2, 3) in this plane.

From now on, we assume q ≥ 8. Proposition 2.1 yields

3p(m+ 1)(n+ 1) = v[(m+ 1)(n+ 1) + a(m+ 1) + b(n+ 1)].(9)

Now 3p > v ≥ (m + 1)(n + 1) by inequality (5) of Proposition 2.1 implies (3p, (m +
1)(n+ 1)) = 1, 3 or p. We consider several cases.

1. Suppose this is p. Then p | (m + 1)(n + 1) and p ≤ (m + 1)(n + 1) < 3p
implies (m+ 1)(n+ 1) = p or 2p.

BLOCKING SEMIOVALS 453

(a) If (m + 1)(n + 1) = p, (9) implies v | 3p2, and the only factors of v are
3 and p. Together with v < 3p2, either v = 3, which is too small, or
v = p = (m+ 1)(n+ 1), which yields the triangle by Proposition 2.1.

(b) If (m+1)(n+1) = 2p, (9) implies v | 6p2. Together with (m+1)(n+1) =
2p ≤ v < 3p, we obtain v = 2p = (m + 1)(n + 1) and thus we have the
triangle.

2. Now suppose (3p, (m + 1)(n + 1)) = 1 or 3. Then from (9) we have v |
3(m+ 1)(n+ 1) or p | v.
(a) Suppose p | v. Then v = p or 2p. In either situation, we get p ≤ q√q+1,

the maximum size of any semioval, while 3p = q2 + q + 1 > 3q
√
q + 3

yields a contradiction if q ≥ 8.
(b) Suppose v | 3(m+ 1)(n+ 1). Then v = x(m+ 1)(n+ 1) where x = 1, 3

2 ,
or 3. The first case yields the triangle, so we consider separately the
cases v = 3

2 (m+ 1)(n+ 1) and v = 3(m+ 1)(n+ 1).
First assume v = 3

2 (m + 1)(n + 1). Applying Proposition 2.1 to (9), we obtain
2p = 2

3 (q
2 + q + 1) = q(m+ n+ 1) + 1− 1

2 (m+ 1)(n+ 1). This yields

(2q − 1)2 − (2q − 1)(3m+ 3n− 1) + 3mn+ 1 = 0,
which has roots

2q − 1 = 3m+ 3n− 1±√(3m+ 3n− 1)2 − 4(3mn+ 1)
2

.(10)

Now (3m+ 3n− 1)2 − 4(3mn+ 1) > (3n−m+ 3)2 if m ≥ 2, which gives either
4q − 2 > 3m+ 3n− 1 + (3n−m+ 3) or 4q − 2 < 3m+ 3n− 1− (3n−m+ 3). The
second of these yields, using inequality (4) of Proposition 2.1, 4q < 4m−2 < 4√q−2,
which is false for q ≥ 2. From the first of these, we obtain 4q > 6n + 2m + 4.
On the other hand, using (1) and (3) of Proposition 2.1, and assuming b ≤ q − 2,
we obtain q ≤ 3(n + 1)/2 − (n − 3)/2m + 2. Putting inequalities together, we get
6n+ 2m+ 6 ≤ 4q ≤ 6n+ 6− 2(n− 3)/m+ 8; hence 2(n− 3)/m+ 2m ≤ 8, which is
false for n ≥ 3 and m > 4. It remains, for this value of v, to consider the separate
cases b = q − 1, n = 2, m = 1, and n ≥ 3 while m = 2, 3, or 4.

If m = 1, substituting in (10) yields 4q − 2 = 2 or 6n + 2. Only q = (3n + 2)/2
is possible; so n = 2(q − 1)/3, and v = 2q + 1. No blocking semioval of this size can
exist for q ≥ 7 by Dover [13]. n being an integer forces q ≡ 1 (mod 3), so the only
remaining q for which n is an integer is 4, and this yields the vertexless triangle.

If n = 2, (10) yields 4q − 2 = 3m + 5 ±√(3m+ 1)2 + 20. The discriminant is
a square only if m = 1 (implying q = 4), and in this case, we obtain the triangle
with deleted vertices. The cases m = 2, 3, and 4 can be eliminated in the same way.
For instance, m = 4 yields (3n + 3)2 + 108 a square, implying that 108 factors as
(x+ y)(x− y), where y = 3n+ 3. This is not possible for n an integer larger than 1.
Finally, suppose a = 1, b = q − 1. By Proposition 3.1, m | v − (q + 1), which implies
2m | 3n−2q+1. So 2m | 2q(3n−2q+1). However, from (9), using 3p = q2+q+1, we
get 2(q2+ q+1) = 3(m+1)(n+2)+3(q−1)(n+1), from which m | 2q2− q−3qn−1.
It follows that 2m | 4q2 − 2q − 6qn− 2 + 2q(3n− 2q + 1) = −2. The situation m = 1
was dealt with above.

In order to eliminate the possibility that v = 3(m+ 1)(n+ 1), we first show that
it implies b = q − 2, or n = (q − 1)/3 or (q − 1)/4, or m ≤ 2.

First suppose that a = 1. By Proposition 3.1, we must have m | v − (q + 1).
As v = 3(m + 1)(n + 1), this implies m | 3n − q + 2. However, from (9), we obtain

454 LYNN M. BATTEN AND JEREMY M. DOVER

3p = q2+q+1 = 3[(m+1)(n+1)+(m+1)+(q−1)(n+1)] = 3m(n+2)+3+3qn+3q
and so (q−1)2 = 3m(n+2)+3+3qn. It follows that m | (q−1)2−3qn−3. However,
from above, m | q − 1 − (3n + 1) and therefore m | (q − 1)2 − (q − 1)(3n + 1). Thus
m | 3n− q + 4, finally yielding m | 2, which forces m ≤ 2.

Now assuming that a ≥ 2, we have b ≤ q−2. If b = q−2, we are done. So suppose
b ≤ q − 3. Using (1) of Proposition 2.1 yields qn = b(n−m) + 3(m+ 1)(n+ 1)− 1 ≤
(q−3)(n−m)+3(mn+n+m)+2, implyingmq ≤ 3mn+6m+2, and so q ≤ 3n+6+ 2

m .
As we may assume m > 2, then q ≤ 3n+6, or n ≥ (q−6)/3. We proceed to determine
precisely the possible values for n.

Using (2) of Proposition 2.1, substituting for v, and applying (3) of the propo-
sition, we obtain 3(m + 1)(n + 1) + 3(bn + am) = (q − 1)2. Using (1) and (3) then
yields

(q − 1)2 − 3(q − 1)(n+m) + 3(2mn+ n+m+ 1) = 0,(11)

a quadratic in q − 1. Therefore

q − 1 = 3(n+m)±√9n2 + 9m2 − 6mn− 12n− 12m− 12
2

.

(Note that (11) is independent of assumptions on m or n.) Since n > m > 2,
and using inequality (4) of Proposition 2.1, it follows that q − 1 > [3(n + m) +√
9n2 + 9m2 − 18mn− 12n+ 12m+ 4]/2 = (3(n+m) + (3n− 3m− 2))/2 = 3n− 1,

or q − 1 < 3m + 1 < 3
√
q + 1. In this latter case, q ≤ 12. However, 3 | q2 + q + 1

implies q �= 8, 9, 11, 12, and no projective plane of order 10 exists (see Lam, Thiel,
and Swiercz [16]). Thus this case is eliminated. Consequently, n < q/3. Again,
q ≡ 1(mod3), since 3 | q2+ q+1, and thus (q− 6)/3 ≤ n < q/3 implies 3n = q− 1 or
q − 4.

We proceed to eliminate each of the above cases.
Supposem = 1. Substituting in (11) gives (q−1)2−3(q−1)(n+1)+3(3n+2) = 0,

so (q − 1)2 − 3(q − 1)(n+ 1) + 9(n+ 1) = 3. The fact that 3 | q2 + q + 1 again gives
3 | q − 1, and so 9 divides the left-hand side but not the right, a contradiction.

Suppose m = 2. Using (11) again yields 3n = [(q − 6)(q − 2) + 4]/(q − 6) =
q−2+ 4

q−6 . Since this must be an integer, q ≥ 8 and the fact that no projective plane
of order 10 exists give a contradiction.

Suppose 3n = q − 1. Substituting in (11) gives 9n2 − 9n(n +m) + 6mn + 3n +
3m+ 3 = 0. This forces n = 1 + 2/(m− 1), which is not possible.

Suppose 3n = q − 4. So q − 1 = 3(n + 1), and (11) yields the impossibility
n(m− 4) = 2(2−m).

We finally consider the case b = q − 2. Using (1) and (3) of Proposition 2.1,
we get a = 2 and v = 3(m + 1)(n + 1) = 1 + 2n + (q − 2)m, and it follows that
q = 3n+ 5 + n+2

m , whence m | n+ 2.
Fix a line of size n+1 in S. Each of its points is on a second line of this size since

a = 2. Thus the number of lines of this size in S is at least n+ 2. However, counting
the precise number in two ways produces v·2

n+1 lines of size n + 1 or 6(m + 1). Thus
n+2 ≤ 6(m+1). If m ≥ 6, then n+2 ≤ 7m, and we may set n+2 = xm, 2 ≤ x ≤ 7.

From above, q = 3xm+x− 1. Substituting for q in (2) in Proposition 2.1 implies
(3xm+ x− 1)2+3xm+ x = 3(m+1)(xm− 1)+ 3(3xm+ x− 3)(xm− 1)+ 6(m+1).
This reduces to 3m(2mx−x2− 4x+1)+12 = (x+1)2 ≤ 64, which implies m(2mx−
x2 − 4x+ 1) ≤ 17. If m ≥ 6, 2mx− x2 − 4x+ 1 ≤ 2, or x(2m− x− 4) ≤ 1. It follows
that 2m− x− 4 < 0, which contradicts m ≥ 6.

BLOCKING SEMIOVALS 455

It remains only to dispose of the cases m = 3, 4, 5. We return to the equation
3m(2mx − x2 − 4x + 1) + 12 = (x + 1)2. For m = 3, this becomes 5x2 − 8x − 10 =
0, which implies 2 | x and then 4 | 10, a contradiction. For m = 4, it becomes
13x2− 46x− 23 = 0, implying 23 | x and then (23)2 | 23, a contradiction. Finally, for
m = 5, 8x2 + 44x− 13 = 0 implies the contradiction 2 | 3.

In attempting to generalize Theorem 4.2 to q2+q+1, a product of distinct primes,
we have had only partial success. We summarize this in the next result.

Proposition 4.3. Let Π be a projective plane of order q ≥ 2 such that q2+q+1 =
p′p, p′, and p both prime, with p′ < p. Let S be a blocking semioval in Π of type
(1,m + 1, n + 1). Then p � |(m + 1)(n + 1); and if p′|(m + 1)(n + 1), then p′ divides
both m+ 1 and n+ 1, or p′|a or p′|b.

Proof. If p|(m+1)(n+1), then p|m+1 or p|n+1 while both of m+1 and n+1
are less than q, and p must be bigger than q.

Suppose p′|(m+1)(n+1). Again, p′|m+1 or p′|n+1. If p′|m+1, setm+1 = (p′)αx,
p′ � | x, α ≥ 1. So by (2) of Proposition 2.1, (p′)α+1px(n + 1) = v[(p′)αx(n + 1) +
a(p′)αx+b(n+1)], which implies p′|vb(n+1). We may assume p′ � |b and p′ � |n+1. Then
p′|v. Set v = (p′)βy, p′ � | y, β ≥ 1, and y < p. So α+1 ≥ β and (p′)α−β+1px(n+1) =
y[(p′)αx(n+1)+a(p′)αx+b(n+1)]. If α−β+1 > 0, then p′|yb(n+1), a contradiction.
So α − β + 1 = 0. Then px(n + 1) = y[(m + 1)(n + 1) + a(m + 1) + b(n + 1)] and
y < p gives x(n+ 1) > (n+ 1)(m+ 1 + b) + a(m+ 1), so that x > m+ 1 + b, which
contradicts x < m+ 1.

If we now suppose that p′|n+1, the argument is completely analogous and intro-
duces only the last possibility that p′|a.

Before leaving this section, we make two observations: first, we look at the case
where m = 1. Second, noting that no blocking semioval of our type can have size
q
√
q + 1, we address the next possibility in a square order plane, i.e., v = q

√
q.

Proposition 4.4. Let Π be a projective plane of order q ≥ 7 containing a blocking
semioval S of type (1, 2, n+1) with n > 1. Then the (n+1)-secants to S form a dual
blocking set, and consequently there are between q +

√
q + 1 and q2 −√q of them.

Proof. No point of Π exterior to S is only on tangents to S, as this would force
S to have exactly q + 1 points, which is too small to be a blocking set by Bruen [8].
Nor is any such point only on 2-secants, as this would imply v = 2q+2, giving by (2)
of Proposition 2.1, 2(n + 1)(q2 + q + 1) = 2(q + 1)[2(n + 1) + 2a + b(n + 1)]. Since
(q2+q+1, q+1) = 1, we obtain q+1|n+1 while n+1 ≤ q−1. Similarly, if an exterior
point is only on (n+1)-secants, then v = (n+1)(q+1), and this same equation results
in 2(q2 + q + 1) = (q + 1)[2(n+ 1) + 2a+ b(n+ 1)], a contradiction.

Let an exterior point be on x 2-secants and y tangents and assume it is on no
(n + 1)-secants. Then 2x + y = v and x + y = q + 1. So x = v − (q + 1) and
y = 2(q+1)−v ≥ 0. Dover [13] shows that any blocking semioval satisfies v ≥ 2(q+1)
for q ≥ 7. This forces us to have v = 2q + 2, which was eliminated in the previous
paragraph.

Hence every point lies on at least one (n + 1)-secant, and the first paragraph
shows no point is only on (n+ 1)-secants. Therefore the (n+ 1)-secants form a dual
blocking set and the result follows from Bruen [8].

Blokhuis and Metsch [4, Theorem 1.2] show that for q ≥ 49 and square, a semioval
on q
√
q points must be part of a unital and hence cannot be a blocking set. Specializing

to the case of semiovals of type (1,m+ 1, n+ 1), we can generalize this result to the
following proposition.

Proposition 4.5. Let Π be a projective plane of square order q ≥ 2. Then Π

456 LYNN M. BATTEN AND JEREMY M. DOVER

contains no blocking semioval of type (1,m+ 1, n+ 1), 1 ≤ m < n, on q
√
q points.

Proof. Applying (2) of Proposition 2.1, (m + 1)(n + 1)(q2 + q + 1) = q
√
q[(m +

1)(n+1)+ b(n+1)+ a(m+1)] and (q
√
q, q2+ q+1) = 1 implies q

√
q|(m+1)(n+1).

However, v = q
√
q ≥ (m+1)(n+1) by inequality (5) of Proposition 2.1, and equality

results in the triangle m = 2, n = q− 2, and so 3(q− 1) = q
√
q that yields q|3, which

is impossible.

Blokhuis and Metsch [4, Theorems 1.3 and 1.4] also consider v = q
√
q−1, proving

that if the point/tangent incidences of S are the point/tangent incidences of a unital,
and if q ≥ 25, then S is indeed part of a unital or a minimal blocking set. If the plane
is Desarguesian, only the former of these can hold.

5. Conclusion. We have given a number of conditions which constrain the pos-
sible parameters of a blocking semioval with three intersection numbers; while these
conditions have eliminated many possibilities, the remaining cases seem very difficult
to work with. Indeed, we conjecture that there are no blocking semiovals with three
intersection numbers other than the triangle and the sporadic example when q = 7.

On a more optimistic note, we suspect that some of the remaining sporadic cases
may be attackable. For instance, the parameters (56, 2, 8, 5, 20) for a blocking semioval
of our type in a plane of order 25 could be analyzed. Indeed, a cursory analysis shows
that if such a semioval were to exist, it would imply the existence of a blocking set of
size 35 and type (1, 2, 5) in that plane. It is not known if such a set can exist.

One pattern which our data indicates is that in a projective plane of order q, where
q2+q+1 is the product of two distinct primes, the parameter set of the triangle is the
only arithmetically feasible parameter set for that order. Proposition 4.3, summarizing
our results in this direction, inclines us to believe this conjecture is true.

As a final comment, we note that if q = 22k+1 for 1 ≤ k ≤ 5, the only arithmeti-
cally feasible parameter sets for a semioval of our type are those of the triangle. We
conjecture that this is true for all k ≥ 1.
Acknowledgment. The authors would like to thank the referee for many useful

suggestions and particularly for suggesting the method of proof used in Proposi-
tion 3.2.

REFERENCES

[1] S. Ball, Partial unitals and related structures in Desarguesian planes, Des. Codes Cryptogr.,
15 (1998), pp. 231–236.

[2] L. M. Batten, Combinatorics of Finite Geometries, 2nd ed., Cambridge University Press,
Cambridge, New York, Melbourne, 1997.

[3] L. M. Batten, Determining sets, Australas. J. Combin., 22 (2000), pp. 167–176.
[4] A. Blokhuis and K. Metsch, Large minimal blocking sets, strong representative systems,

and partial unitals, in Finite Geometry and Combinatorics, Cambridge University Press,
Cambridge, New York, Melbourne, 1993, pp. 37–52.

[5] A. Blokhuis and T. Szönyi, Note on the structure of semiovals in finite projective planes,
Discrete Math., 106/107 (1992), pp. 61–65.

[6] A. E. Brouwer, A series of separable designs with application to pairwise orthogonal Latin
squares, European J. Combin., 1 (1980), pp. 39–41.

[7] A. A. Bruen, Baer subplanes and blocking sets, Bull. Amer. Math. Soc., 76 (1970), pp. 342–344.
[8] A. Bruen, Blocking sets in finite projective planes, SIAM J. Appl. Math., 21 (1971), pp. 380–

392.
[9] A. A. Bruen and J. A. Thas, Blocking sets, Geom. Dedicata., 6 (1977), pp. 193–203.
[10] J. Cannon and C. Playoust, An Introduction to MAGMA, University of Sydney, Sydney,

Australia, 1993.
[11] P. Dembowski, Finite Geometries, Springer-Verlag, New York, 1968.

BLOCKING SEMIOVALS 457

[12] J. Dover, Semiovals containing large collinear subsets, J. Geom., 69 (2000), pp. 58–67.
[13] J. Dover, A lower bound on blocking semiovals, European J. Combin., 21 (2000), pp. 571–577.
[14] W. Feit, Finite projective planes and a question about primes, Proc. Amer. Math. Soc., 108

(1990), pp. 561–564.
[15] X. Hubaut, Limitation du nombre de points d’un (k, n)-arc régulier d’un plan projectif fini,

Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 48, (1970), pp. 490–493.
[16] C. W. H. Lam, L. Thiel, and S. Swiercz, The non-existence of finite projective planes of

order 10, Canad. J. Math., 41 (1991), pp. 1117–1123.
[17] W. Ljunggren, Einige Bemerkungen über die Darstellung ganzer Zahlen durch binare kubische

Formen mit positiver Diskriminante, Acta Math., 75 (1942), pp. 1–21.
[18] L.J. Mordell, Diophantine Equations, Academic Press, London, New York, 1969.
[19] T. Nagell, Des equations indetermineés x2 + x + 1 = yn et x2 + x + 1 = 3yn, Norsk. Mat.

Forenings Skr. Ser. I, 2 (1921), pp. 12–14.
[20] M. Tallini-Scafati, {k,n}-archi in un piano grafico finito, con particolare riguardo a quelli

con due caratteri, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 40 (1966),
pp. 1020–1025.

AN OPTIMAL ONLINE ALGORITHM FOR BOUNDED SPACE
VARIABLE-SIZED BIN PACKING∗

STEVEN S. SEIDEN†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 4, pp. 458–470

Abstract. An online algorithm for variable-sized bin packing, based on the Harmonic algorithm
of Lee and Lee [J. ACM, 32 (1985), pp. 562–572], is investigated. This algorithm was proposed by
Csirik [Acta Inform., 26 (1989), pp. 697–709], who proved that for all sets of bin sizes, 1.69103 upper
bounds its performance ratio. The upper bound is improved in the sense that we give a method
of calculating the performance ratio to any accuracy for any set of bin sizes. Further, it is shown
that the algorithm is optimal among those which use bounded space. An interesting feature of the
analysis is that, although it is shown that our algorithm achieves a performance ratio arbitrarily
close to the optimum value, it is not known precisely what that value is. The case where bins of
capacity 1 and α ∈ (0, 1) are used is studied in greater detail. It is shown that among algorithms
which are allowed to choose α, the optimal performance ratio lies in [1.37530, 1.37532].

Key words. bin packing, online algorithms, lower bounds

AMS subject classification. 68W40

PII. S0895480100369948

1. Introduction. Bin packing is one of the oldest and most well studied prob-
lems in computer science [5, 3]. Ideas which originated in the study of the bin packing
problem have helped shape computer science as we know it today. The idea of finding
the best approximation algorithm for a problem has its origins in bin packing. The
study of online algorithms also has its roots in the study of bin packing. In this paper,
we investigate a natural generalization of the classical bin packing problem known as
variable-sized bin packing.

In the bin packing problem, we receive a sequence σ of pieces p1, p2, . . . , pN . Each
piece has a fixed size in (0, 1]. In a slight abuse of notation, we use p� to indicate both
the �th piece and its size. We have an infinite number of bins, each with capacity 1.
Each piece must be assigned to a bin. Further, the sum of the sizes of the pieces
assigned to any bin may not exceed its capacity. A bin is empty if no piece is assigned
to it; otherwise it is used. The goal is to minimize the number of bins used.

The variable-sized bin packing problem differs from the classical problem in that
bins do not all have the same capacity. We are given real numbers α1 < α2 < · · · <
αm = 1, which are the allowed bin sizes. At the time a bin is opened, the algorithm
may choose the bin’s capacity. Now the goal is to minimize the sum of the capacities
of the bins used.

In the online versions of these problems, each piece must be assigned in turn
without knowledge of the next pieces. Since it is impossible, in general, to produce
the best possible solution when computation occurs online, we consider approximation
algorithms.

A bin packing algorithm uses bounded space if it has only a constant number of
bins available to accept items at any point during processing. These bins are called
open bins. Bins which have already accepted some items, but which the algorithm

∗Received by the editors March 28, 2000; accepted for publication June 4, 2001; published electron-
ically October 4, 2001. A preliminary version of this paper was presented at the 27th International
Colloquium on Automata, Languages, and Programming, Geneva, Switzerland, 2000.

http://www.siam.org/journals/sidma/14-4/36994.html
†Department of Computer Science, 298 Coates Hall, Louisiana State University, Baton Rouge,

LA 70803 (sseiden@acm.org).

458

OPTIMAL ONLINE VARIABLE-SIZED PACKING 459

no longer considers for packing, are closed bins. The bounded space assumption is a
quite natural one, especially so in online bin packing. Essentially the bounded space
restriction guarantees that output of packed bins is steady and that the packer does
not accumulate an enormous backlog of bins which are output only at the end of
processing.

The standard measure of algorithm quality for bin packing is the asymptotic
performance ratio, which we now define. For a given input sequence σ, let costA(σ)
be the sum of the capacities of the bins used by algorithm A on σ. Let cost(σ) be the
minimum possible cost to pack pieces in σ. The asymptotic performance ratio for an
algorithm A is defined to be

R∞A = lim sup
n→∞

sup
σ

{
costA(σ)
cost(σ)

∣∣∣∣∣cost(σ) = n

}
.

The optimal asymptotic performance ratio is defined to be

R∞OPT = infA
R∞A .

Our goal is to find an algorithm with an asymptotic performance ratio close to R∞OPT.
We now briefly review what is known about classical and variable-sized online bin

packing.
The classical online bin packing problem was first investigated by Johnson [8, 9].

He showed that the Next Fit algorithm has a performance ratio of 2. Subsequently,
it was shown by Johnson et al. that the First Fit algorithm has a performance ratio
of 17

10 [10]. Yao showed that Revised First Fit has a performance ratio of 5
3 and

further showed that no online algorithm has a performance ratio less than 3
2 [19].

Brown and Liang independently improved this lower bound to 1.53635 [1, 13]. Define

ui+1 = ui(ui − 1) + 1, u1 = 2,

and

h∞ =

∞∑
i=1

1

ui − 1 ≈ 1.69103.

Lee and Lee showed that the Harmonic algorithm, which uses bounded space,
achieves a performance ratio arbitrarily close to h∞ [12]. They further showed that
all bounded space online algorithms achieve a performance ratio of at least h∞ [12].
In addition, they developed the Refined Harmonic algorithm, which they showed
to have a performance ratio of 373

228 < 1.63597. The next improvement was Mod-
ified Harmonic, which Ramanan et al. showed to have a performance ratio of
538
333 < 1.61562 [14]. Richey [15] presents an algorithm called Harmonic+1 and claims
that it has a performance ratio of 1.58872. Seiden [16] shows that Richey’s claim is in-
correct and presents an algorithm Harmonic++ with a performance ratio of 1.58889.
The lower bound for online bin packing was improved to 1.5401 by van Vliet [17].

The variable-sized bin packing problem was first investigated by Friesen and
Langston [6, 7]. Kinnerly and Langston gave an online algorithm with a performance
ratio of 7

4 [11]. Csirik proposed the Variable Harmonic (VH) algorithm and showed
that it has a performance ratio of at most h∞ [4]. This algorithm is based on the
Harmonic algorithm of Lee and Lee [12]. Like Harmonic, it uses bounded space.
Csirik also showed that if the algorithm has two bin sizes, 1 and α < 1, and if it is

460 STEVEN S. SEIDEN

allowed to pick α, then a performance ratio of 7
5 is possible [4]. Subsequent authors

have investigated this problem [2, 20], but Csirik’s result yields the best performance
ratio to date. No lower bounds are known.

In this work, we investigate the VH algorithm. We give a precise analysis of
its performance ratio, and show that it is an optimal bounded space algorithm, by
providing the first lower bound for variable-sized bin packing. An interesting feature
of the analysis is that although it is shown that our algorithm achieves a performance
ratio arbitrarily close to the optimum value, it is not known precisely what that value
is. The case where bins of capacity 1 and α ∈ (0, 1) are used is studied in greater
detail. It is shown that among algorithms which are allowed to choose α, the optimal
performance ratio (and that of VH) lies in [1.37530, 1.37532].

2. The VH Algorithm. Before we describe the algorithm we require a few
definitions.

VH uses the Next Fit algorithm [8, 9] as a subroutine. This online algorithm
maintains a single open bin. If the current item fits into the open bin, it is placed
there. Otherwise, the open bin is closed and a new open bin is allocated. Obviously,
this algorithm is online, runs in linear time, and uses constant space.

VH operates by classifying pieces according to a set of predefined intervals. The
algorithm has a parameter ε ∈ (0, 1]. N = {0, 1, 2, . . .} is the set of natural numbers
and N

+ = N− {0}. We define

Ti =

{
αi
j

∣∣∣∣∣j ∈ N
+, αi/j > ε

}
, T =

m⋃
i=1

Ti.

Let the members of T be t1 > t2 > · · · > tn. We define tn+1 = ε and tn+2 = 0. The
interval Ik is defined to be (tk+1, tk] for k = 1, . . . , n + 1. Note that these intervals
are disjoint and that they cover (0, 1].

A piece of size s has type k if s ∈ Ik. A piece is big if it has type k ≤ n. For k ≤ n,
the class and order of interval Ik are i and j, respectively, if tk = αi/j (breaking ties
arbitrarily). We extend the definitions of class and order to include pieces in the
natural way.

We illustrate these definitions with the following example: We pickm = 2, α1 =
3
5 ,

α2 = 1, and ε = 1
10 . This results in n = 13 with the set of intervals displayed in

Table 1. Note that t7 =
1
5 = (3/5)/3. Therefore, I7 could be assigned class 1 and

order 3, or class 2 and order 5. We have arbitrarily chosen the latter.
The algorithm packs pieces of different types independently, i.e. pieces of differing

types never appear in the same bin. Pieces of type n+1 are packed using Next Fit
into bins of capacity 1. Pieces of class i and order j are packed j to a bin in bins of
capacity αi. The algorithm keeps one open bin for each type, into which pieces are
packed until the indicated number is reached, at which point it is closed and a new
open bin is allocated. Since the number of types (and thus the number of open bins)
is constant, the algorithm is online, runs in linear time, and uses constant space. Note
that when m = 1, the definition of VH corresponds exactly with that of Harmonic.

3. An upper bound for VH. The analysis is based on weighting functions as
in [12, 4]. A weighting function for algorithm A is a function wA : (0, 1] 	→ [0, 1] with
the property

costA(σ) ≤
N∑
�=1

wA(p�) +O(1)

OPTIMAL ONLINE VARIABLE-SIZED PACKING 461

Table 1
An example with m = 2, α1 =

3
5
, α2 = 1, and ε = 1

10
.

k (tk+1, tk] Class Order

1 (3
5
, 1] 2 1

2 (1
2
, 3
5
] 1 1

3 (1
3
, 1
2
] 2 2

4 (3
10
, 1
3
] 2 3

5 (1
4
, 3
10
] 1 2

6 (1
5
, 1
4
] 2 4

7 (1
6
, 1
5
] 2 5

8 (3
20
, 1
6
] 2 6

9 (1
7
, 3
20
] 1 4

10 (1
8
, 1
7
] 2 7

11 (3
25
, 1
8
] 2 8

12 (1
9
, 3
25
] 1 5

13 (1
10
, 1
9
] 2 9

14 (0, 1
10
] — —

for all input sequences σ = p1, . . . , pN . Intuitively, the weight of a piece indicates the
maximum fraction of a bin that it can occupy. We use the following function:

wVH(x) =

{
tk if x ∈ Ik with k ≤ n,
1

1− ε
x if x ∈ In+1.

Lemma 3.1. For all σ,

costVH(σ) ≤
N∑
�=1

wVH(p�) + n+ 1.

Proof. We first consider the cost of bins used to pack pieces of an arbitrary
individual type. Next Fit is used to pack type n+ 1 pieces into bins of capacity 1.
Each of these pieces is of size ε or less. Therefore, each of these bins is filled to within
ε of its capacity; i.e., at least 1 − ε of the bin’s capacity is used. Let X be the total
size of type n+ 1 pieces. The number of bins used is at most⌈

1

1− ε
X

⌉
≤ 1

1− ε
X + 1 =

1

1− ε

∑
p�∈In+1

p� + 1 =
∑

p�∈In+1

wVH(p�) + 1.

Now consider pieces of a fixed type k ≤ n. Let f be the number of such pieces. Let i
and j be the class and order of Ik, respectively. These pieces are packed j to a bin in
bins of capacity αi, and therefore the number of bins used is �f/j�. The cost to the
algorithm is

αi

⌈
f

j

⌉
≤ αif

j
+ 1 = tkf + 1 =

∑
p�∈Ik

wVH(p�) + 1.

Summing over all types gives the desired result.
To facilitate the analysis, we require a few definitions related to the optimal

packing. Define ni to be the number of bins of capacity αi in the optimal packing
and define Bi,b to be the set of pieces in the bth bin of size αi.

462 STEVEN S. SEIDEN

We claim that when upper bounding the performance ratio of an online algorithm,
we may assume that each bin in the optimal packing is full. To demonstrate the claim,
suppose bin b of size αi in the optimal packing is not full. Let x =

∑
p∈Bi,b

p. Then
add a piece of size αi − x to the end of the input sequence. The cost of the optimal
solution does not increase, whereas the cost to the online algorithm cannot decrease,
which implies the claim.

Suppose that for all σ, i, and b we have∑
p�∈Bi,b

wVH(p�) ≤ c αi.(1)

Then, for all σ, the cost incurred by VH is

costVH(σ) ≤
N∑
�=1

wVH(p�) + n+ 1

=

m∑
i=1

ni∑
b=1

∑
p�∈Bi,b

wVH(p�) + n+ 1

≤
m∑
i=1

ni∑
b=1

c αi + n+ 1

= c

m∑
i=1

niαi + n+ 1

= c cost(σ) + n+ 1,

where the first inequality follows from Lemma 3.1, the second inequality follows
from (1), and the last step follows from the definition of the optimal offline cost.
This would show the desired result, since n+ 1 is constant with respect to cost(σ).

To prove (1), we are led to consider the following optimization problem: Maximize∑
p∈X

wVH(p)/αi

subject to
∑
p∈X p = αi and i ∈ {1, . . . ,m}. We further rewrite this to get the

following definition.
Definition 3.2. P1(ε) is the following mathematical program: Maximize

1

αi

(
n∑
k=1

qk tk +
αi − y

1− ε

)
(2)

subject to

y =
n∑
k=1

qk tk+1,(3)

y < αi,(4)

qk ∈ N, 1 ≤ k ≤ n,(5)

i ∈ {1, . . . ,m}.(6)

Intuitively, P1(ε) upper bounds the amount of weight that fits into a single bin
relative to the bin’s size. The capacity of the bin is αi. The number of type k pieces

OPTIMAL ONLINE VARIABLE-SIZED PACKING 463

in the bin is qk. Since a type k piece is strictly larger than tk+1, the total size of big
pieces is strictly lower bounded by y. Therefore, strict inequality is required in (4)
to ensure that all pieces fit in the bin. The total size of small pieces is αi − y. The
objective function (2) calculates the weight in the bin divided by the bin size.

We have shown the following theorem.
Theorem 3.3. The performance ratio of VH is upper bounded by the value of

P1(ε).
In Appendix A, we develop a branch and bound algorithm which allows us to

evaluate P1(ε) to any fixed accuracy. We also show that several simple greedy methods
for solving P1(ε) do not always yield the optimal solution.

4. A lower bound for bounded space algorithms. We now consider lower
bounds for bounded space algorithms. For this purpose, we need the following defi-
nition.

Definition 4.1. P2(ε) is the following mathematical program: Maximize

1

αi

(
n∑
k=1

qk tk + αi − y

)
(7)

subject to (3)–(6).
Note that P1 and P2 differ only in their objective functions; their sets of con-

straints are the same. Therefore, any feasible solution to P1 is also feasible for P2.
Further note that the difference between (2) and (7) vanishes as ε → 0. This being
the case, the following result implies our main result, the optimality of VH.

Lemma 4.2. Any feasible solution to P2(ε) with objective value c yields a lower
bound of c for all bounded space variable-sized bin packing algorithms.

Proof. Let q1, . . . , qn, i be a feasible solution and let c be the corresponding value
of (7). Define Q =

∑n
k=1 qk + 1. We create an input with N Q pieces. Let δ > 0 be

a real number. The input consists of n + 1 groups of pieces. All pieces in a group
are the same size. The kth group contains qkN pieces of size tk+1 + δ for 1 ≤ k ≤ n.
The last group contains N pieces of size z = αi − y − (Q− 1)δ. We require that δ be
chosen such that z ≥ 0 and tk+1 + δ ∈ Ik for 1 ≤ k ≤ n.

The optimal solution uses N bins of size αi. Each of these bins contains qk items
from group k for 1 ≤ k ≤ n and one item from the last group.

Consider the number of bins used by an arbitrary bounded space online algorithm
A on this input. Since A is online and uses bounded space, at most a constant number
(with respect to N) of pieces in group k can be packed with pieces from other groups.
Therefore, the cost to pack items in the last group is at least Nz−O(1). Further, the
minimum cost to pack the items in group k ≤ n is

min
1≤�≤m

α� qkN

�α�/(tk+1 + δ)� −O(1) = qkN min
1≤�≤m

α�
�α�/(tk+1 + δ)� −O(1).

We assert that

min
1≤�≤m

α�
�α�/(tk+1 + δ)� ≥ tk.(8)

Suppose for a contradiction that (8) is false. Then there exists an � such that

α�
�α�/(tk+1 + δ)� < tk.

464 STEVEN S. SEIDEN

Let f be the integer �α�/(tk+1 + δ)�. Note that since
(tk+1 + δ)f

α�
=

tk+1 + δ

α�

⌊
α�

tk+1 + δ

⌋
≤ 1,

we have α�/f ≥ tk+1 + δ. Therefore, we have α�/f ∈ [tk+1 + δ, tk) ⊂ Ik. However,
by the definition of Ik, we have no number of the form α�/f , f an integer, within Ik.
Therefore, we have reached a contradiction.

Given (8), the asymptotic performance ratio of A is lower bounded by

lim
N→∞

N (
∑n
k=1 tk qk + αi − y − (Q− 1)δ)−O(n)

αiN
= c− (Q− 1)δ

αi
,

which can be made arbitrarily close to c by choosing sufficiently small δ.
As mentioned previously, along with Theorem 3.3, this directly implies our main

result.
Theorem 4.3. VH is an optimal bounded space online algorithm.

5. The two-capacity problem. We now focus our attention on the case where
m = 2, which we call the two-capacity problem. This problem is also studied by
Csirik [4], who shows that a performance ratio of 7

5 is possible if bins of size 1 and
7
10

are used.
In order to simplify notation, we denote the size of the smaller bin as α. The

size of the larger bin is 1, as before. We investigate how the optimal asymptotic
performance ratio R∞OPT varies as a function of α. We therefore consider the values
of P1 and P2 to be functions of α, as well as ε. As we have shown in the preceding
sections, P2(ε, α) ≤ R∞OPT(α) ≤ P1(ε, α).

Using the algorithm developed in Appendix A, we can compute a lower bound
for any fixed value of α. However, what we would like to do is prove a lower bound
which holds for all α ∈ (0, 1]. In Appendix C, we show how a lower bound for the
entire interval can be derived from lower bounds for a specific set of finite points.
This allows us to prove the following result.

Theorem 5.1.

1.37532 >
395101163

287280000
≥ inf
α∈(0,1]

R∞OPT(α) ≥
78392621

57000000
> 1.37530.

6. Conclusions. We have shown the optimality of VH among bounded space
algorithms for variable-sized bin packing. A number of open questions remain:

1. Can the amount of space used be reduced as in the work of Woeginger [18]
for classical bounded space bin packing?

2. What general lower bounds can be proved for variable-sized bin packing?
3. Can Modified Harmonic be adapted to the variable-sized problem [14]?

Appendix A. Evaluating P1 and P2. We present a branch and bound algo-
rithm to evaluate P1(ε) and P2(ε). We need to have an upper bound on the objective
function value. To begin, we derive this upper bound.

Define

ek =
tk

tk+1
for 1 ≤ k ≤ n,

en+1 =
1

1− ε
,

E� = max
�<k≤n+1

ek for 0 ≤ k ≤ n.

OPTIMAL ONLINE VARIABLE-SIZED PACKING 465

ek is called the expansion of type k. Intuitively, the expansion ek is the maximum
weight to size ratio for an item of type k.

Lemma A.1. Let q1, . . . , qn, i be a feasible solution to P1. For all 0 ≤ � ≤ n, the
objective value (2) is at most

1

αi

(
�∑

k=1

qk tk +

(
αi −

�∑
k=1

qk tk+1

)
E�

)
.(9)

Proof. To prove this, we note that
n∑

k=�+1

qk tk +
αi − y

1− ε
=

n∑
k=�+1

qk ektk+1 + (αi − y)en+1

≤ E�

(
n∑

k=�+1

qk tk+1 + αi − y

)

=

(
αi −

�∑
k=1

qk tk+1

)
E�.

The algorithm to compute P1(ε) is displayed in Figures A.1 and A.2. By simply
redefining the value of en+1 to be 1, we compute P2(ε) instead.

The main routine of the algorithm initializes variables and iterates over the pos-
sible values of i. The variable x stores the maximum objective value found at any
point in the computation.

The real work of the algorithm is done in the subroutine Tryall. This subroutine
traverses an implicit data structure which we call the feasible solution tree. This is a
rooted tree with n+1 levels. The edges of the tree are labeled with natural numbers.
All leaves are at level n+1. Along any path from the root to a leaf, the label of the �th
edge represents the value of q�. Each such path specifies a feasible solution. Tryall
recursively traverses the feasible solution tree, avoiding subtrees which cannot improve
on the best solution found so far.

During the execution of Tryall, � represents our current level in the tree. The
value of y assigned in the first step of Tryall corresponds exactly to the value y in
P1, since q�, . . . , qn are all zero. If � = n+1, then we have reached a leaf. In this case,
the value z assigned in the first step of the algorithm is exactly the objective value.
When � ≤ n, Lemma A.1 implies the value of z is an upper bound on any objective
value in the current subtree. If z does not exceed x, then we do not explore this
subtree. Otherwise, we recurse for each of the possible values of q� from the largest
down to zero. This heuristic drastically decreases the running time of the algorithm,
as the first solution found is the greedy solution. The greedy solution is often close
to the optimal one, as we see in the next section.

x← 1.
For i ∈ {1, . . . ,m} do:

Initialize qk ← 0 for 1 ≤ k ≤ n.
Tryall(1).

Return x.

Fig. A.1. The algorithm for computing P1(ε).

466 STEVEN S. SEIDEN

Tryall(�):

y ←∑�−1
k=1 qk tk+1.

z ← 1
αi

(∑�−1
k=1 qk tk + (αi − y)E�−1

)
.

If z > x then:
if � = n+ 1 then:

x← z.
Else:

q� ← �(αi − y) /t�+1�.
While q� > 0 do:

q� ← q� − 1.
Tryall(�+ 1).

Fig. A.2. The subroutine Tryall.

Appendix B. Remarks on the greedy lower bound. We should note that,
in order to get a lower bound, we do not have to find the optimum value of P2(ε).
Lemma 4.2 implies that any feasible solution works.

x← 1.
For i ∈ {1, . . . ,m} do:

k ← 1.
y ← αi.
While k ≤ n do:

qπ(k) ← �(αi − y)/tπ(k)+1� − 1.
y ← y − qπ(k) tπ(k)+1.
k ← k + 1.

x← max {x, (∑n
k=1 qk tk + αi − y)/αi}.

Return x.

Fig. B.1. The greedy algorithm.

We consider the greedy solutions to P2(ε). Let π be a permutation on {1, . . . , n}.
We shall consider several choices for π. Given π, the solution is constructed by the
procedure in Figure B.1. Intuitively, the greedy solution takes as many pieces of type
π(1) as possible, then as many pieces of type π(2) as possible, etc.

There are three obvious choices for π:

1. Let π be the identity permutation. This greedily picks items by size alone.
2. Let π be the permutation such that eπ(1) ≥ eπ(2) ≥ · · · ≥ eπ(n), and if

ek = e�, then π(k) < π(�) ⇔ k < �. This greedily picks items by expansion. If two
items have the same expansion, the larger item is given preference.

3. Let π be as in the previous case, except that if ek = e�, then π(k) < π(�)⇔
k > �. If two items have the same expansion, the smaller item is given preference.

Note that for classical bounded space bin packing, all three definitions coincide.
Lee and Lee [12] have demonstrated that for the classical problem, this greedy solution
is optimal. However, it is not the case that the greedy solution yields the best lower
bound for variable-sized bin packing: Consider m = 2, ε = 1

10 , α1 =
11
25 , and α2 = 1.

The value of P2(ε) is
122
75 > 1.62666. The first greedy solution yields a lower bound

of 39
25 = 1.56. The second and third greedy solutions both yield a lower bound of

97
60 < 1.61667.

OPTIMAL ONLINE VARIABLE-SIZED PACKING 467

Appendix C. The two-capacity problem. We return to the two-capacity
problem, as defined in section 5. We would like to prove a lower bound on R∞OPT(α)
which holds for all α ∈ (0, 1]. To further this goal, we study the structure of P2(ε, α)
in more detail.

Since we need only to lower bound P2(ε, α), for the discussion that follows we fix
i = 2. We consider only ε = 1/M for M ∈ N

+.

Note that as α varies, the values in T1 change, while the values in T2 are fixed.
For certain values of α, it may happen that a point in T1 is coincident with one in T2.
We call such a point an interesting point. At an interesting point, a combinatorial
change occurs in the structure of t1, . . . , tn, since two points exchange order. We also
include zero as an interesting point. It is not hard to see that the set of interesting
points is

{0} ∪
M⋃
g=1

M⋃
j=�

g

j
.

Rename the points in this set to be 0 = s1 < s2 < · · · < sL = 1. Define Sk =
(sk−1, sk]. We shall explain how to lower bound the value of P2(ε, α) for α ∈ Sk.

We further split each interval Sk into disjoint subintervals (u1, u2], (u2, u3], . . . ,
(u�−1, u�] with u1 = sk−1 and u� = sk. For some 2 ≤ f ≤ �, suppose that
q1, . . . , qn, i = 2 is a feasible solution to P2(ε, α) at α = uf . We assert that this
is a feasible solution for all α ∈ (uf−1, uf]. To see this, note that within (sk−1, uf],
y is a nondecreasing linear function of α for any fixed assignment to q1, . . . , qn, i.
Therefore, (4) remains valid throughout (sk−1, uf] ⊃ (uf−1, uf]. Furthermore, the
objective (7) is also a linear function of α for any fixed assignment to q1, . . . , qn, i.

To get a lower bound for (uf−1, uf], we evaluate P2(ε, uf) (fixing i = 2). We
record the assignment q1, . . . , qn which gives the highest lower bound. Substituting
these values into (7), we get a linear function. This is minimized at either α = uf−1

or α = uf . We evaluate the function at these two points to get the desired lower
bound on (uf−1, uf]. Iterating over all intervals and subintervals, we can compute a
lower bound for all α.

As an example, let ε = 1
10 . This yields 33 interesting points and 32 intervals.

For simplicity’s sake, we do not divide an interval into subintervals. We find that
P2(

1
10 , α) is lower bounded by the set of linear functions given in Figure C.1. We get

a lower bound of 273
200 = 1.365 at α =

7
10 . We have combined adjacent intervals where

possible. For example, we find that the lower bound function in both (34 ,
7
9] and (

7
9 ,

4
5]

is 53
60 +

2
3α, and so we have one entry for (

3
4 ,

4
5].

Proof of Theorem 5.1. P1(1/100, 57143/80000) is 395101163/287280000. From
the table in Figure C.1, we find that if P2(ε, α) < 78392621/57000000, then we must
have α ∈ (7/10, 3/4]. We determine the intervals Sk for ε = 1/100 and eliminate
those which do not overlap (7/10, 3/4]. This leaves 154 intervals to be checked. These
intervals were further divided into subintervals by including all points 7/10+j/100000
for 1 ≤ j < 2500. We have verified using Mathematica that the minimum lower bound
over this set of subintervals is 78392621/57000000.

To get a better picture of R∞OPT(α), we have computed values of P1(
1

100 , α) andP2(
1

100 , α) for α = j/10000, 1 ≤ j ≤ 10000, using Mathematica. The maximum
difference between the two values at any of these points was less than 0.00014. Since
the difference is so small, we display only P1 in Figure C.2.

468 STEVEN S. SEIDEN

Low α High α Function

0 1
7

71
42

1
7

1
6

32
21 + α

1
6

2
7

71
42

2
7

3
10

283
168

3
10

1
3

32
21 +

α
2

1
3

3
8

17
9 − 2α

3

3
8

2
5

49
30

2
5

3
7

25
21 + α

3
7

4
9

4
3 +

2α
3

4
9

1
2

43
42 +

4α
3

1
2

5
9

31
15 − 4α

5

5
9

5
8

13
6 − α

5
8

2
3

7
4 − α

2

2
3

7
10

25
12 − α

7
10

5
7

7
8 +

7α
10

5
7

3
4

8
9 +

2α
3

3
4

4
5

53
60 +

2α
3

4
5

5
6

1
42 +

17α
10

5
6

6
7

4
21 +

3α
2

6
7

9
10

1
3 +

4α
3

9
10 1 1

42 +
5α
3

0 0.2 0.4 0.6 0.8 1
α

1.4

1.45

1.5

1.55

1.6

1.65

Fig. C.1. The lower bound function for ε = 1
10
.

OPTIMAL ONLINE VARIABLE-SIZED PACKING 469

0 0.2 0.4 0.6 0.8 1
α

1.4

1.45

1.5

1.55

1.6

1.65

0.7 0.705 0.71 0.715 0.72 0.725
α

1.376

1.378

1.38

1.382

1.384

0.2 0.22 0.24 0.26 0.28 0.3 0.32
α

1.686

1.687

1.688

1.689

1.69

1.691

Fig. C.2. Values of P1(1
100

, α) with close-ups of the regions [.7,.725] and [.2,.33].

470 STEVEN S. SEIDEN

REFERENCES

[1] D. J. Brown, A Lower Bound for On-Line One-Dimensional Bin Packing Algorithms, Tech.
Rep. R-864, Coordinated Sci. Lab., University of Illinois at Urbana-Champaign, Urbana-
Champaign, IL, 1979.

[2] R. Burkard and G. Zhang, Bounded space on-line variable-sized bin packing, Acta Cybernet.,
13 (1997), pp. 63–76.

[3] E. G. Coffman, M. R. Garey, and D. S. Johnson, Approximation algorithms for bin packing:
A survey, in Approximation Algorithms for NP-hard Problems, D. Hochbuam, ed., PWS,
Boston, MA, 1997, pp. 46–93.

[4] J. Csirik, An on-line algorithm for variable-sized bin packing, Acta Inform., 26 (1989), pp. 697–
709.

[5] J. Csirik and G. Woeginger, On-line packing and covering problems, in On-Line
Algorithms—The State of the Art, A. Fiat and G. Woeginger, eds., Lecture Notes in
Comput. Sci. 1136, Springer-Verlag, Berlin, 1996, pp. 147–177.

[6] D. K. Friesen and M. A. Langston, A storage-size selection problem, Inform. Process. Lett.,
18 (1984), pp. 295–296.

[7] D. K. Friesen and M. A. Langston, Variable sized bin packing, SIAM J. Comput., 15 (1986),
pp. 222–230.

[8] D. S. Johnson, Near-Optimal Bin Packing Algorithms, Ph.D. thesis, Massachusetts Institute
of Technology, Cambridge, MA, 1973.

[9] D. S. Johnson, Fast algorithms for bin packing, J. Comput. Systems Sci., 8 (1974), pp. 272–314.
[10] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham, Worst-case

performance bounds for simple one-dimensional packing algorithms, SIAM J. Comput., 3
(1974), pp. 299–325.

[11] N. Kinnersley and M. Langston, Online variable-sized bin packing, Discrete Appl. Math.,
22 (1989), pp. 143–148.

[12] C. Lee and D. Lee, A simple on-line bin-packing algorithm, J. ACM, 32 (1985), pp. 562–572.
[13] F. M. Liang, A lower bound for online bin packing, Inform. Process. Lett., 10 (1980), pp. 76–79.
[14] P. Ramanan, D. Brown, C. Lee, and D. Lee, On-line bin packing in linear time, J. Algo-

rithms, 10 (1989), pp. 305–326.
[15] M. B. Richey, Improved bounds for harmonic-based bin packing algorithms, Discrete Appl.

Math., 34 (1991), pp. 203–227.
[16] S. Seiden, On the online bin packing problem, in Proceedings of the 28th International Collo-

quium on Automata, Languages, and Programming, Crete, Greece, 2001, pp. 237–249.
[17] A. van Vliet, An improved lower bound for online bin packing algorithms, Inform. Process.

Lett., 43 (1992), pp. 277–284.
[18] G. Woeginger, Improved space for bounded-space, on-line bin-packing, SIAM J. Discrete

Math., 6 (1993), pp. 575–581.
[19] A. C. C. Yao, New algorithms for bin packing, J. ACM, 27 (1980), pp. 207–227.
[20] G. Zhang, Worst-case analysis of the FFH algorithm for online variable-sized bin packing,

Computing, 56 (1996), pp. 165–172.

CLASSIFICATION OF HOMOMORPHISMS TO ORIENTED CYCLES
AND OF k-PARTITE SATISFIABILITY∗

TOMÁS FEDER†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 4, pp. 471–480

Abstract. We show that, for every choice of an oriented cycle H, the problem of whether an
input digraph G has a homomorphism to H is either polynomially solvable or NP-complete. Along
the way, we obtain simpler proofs for two known polynomial cases, namely, oriented paths and
unbalanced oriented cycles, and exhibit two new simple polynomial cases of balanced oriented cycles.
The more difficult cases of the classification are handled by means of a new problem, the bipartite
boolean satisfiability problem. In general, the k-partite boolean satisfiability problems are shown to
be either polynomially solvable or NP-complete, thus generalizing Schaefer’s classification of boolean
satisfiability problems.

Key words. digraph homomorphism, oriented cycles, constraint satisfaction

AMS subject classifications. 05C99, 05C20, 05C38

PII. S0895480199383353

1. Introduction. A large class of problems in artificial intelligence and other
areas of computer science can be viewed as constraint-satisfaction problems. This
includes problems in machine vision, belief maintenance, scheduling, temporal rea-
soning, graph theory, and satisfiability. An instance of constraint-satisfaction is given
by a pair I, T of finite relational structures over the same vocabulary. (The vocabu-
lary is the list of relation names and their arities.) The instance is satisfied if there is a
homomorphism from I to T ; that is, there exists a mapping h such that for every tuple
(x1, . . . , xk) ∈ Ri in I, we have (h(x1), . . . , h(xk)) ∈ Ri in T . Intuitively, the elements
of I should be thought of as variables, and the elements of T should be thought of
as possible values for the variables. The tuples in the relations of I and T should be
viewed as constraints on the set of allowed assignments of values to variables. The
set of allowed assignments is nonempty iff there exists a homomorphism from I to T .

It is well known that the constraint-satisfaction problem is NP-complete. In
practice, however, one often encounters the situation where the structure T (which
we call the template) is fixed, and it is only the structure I (which we call the instance)
that varies.

Feder and Vardi [1] considered constraint-satisfaction with respect to fixed tem-
plates and asked whether each template defines either a polynomially solvable problem
or an NP-complete problem. In other words, they asked whether there is a dichotomy ;
i.e., there is no constraint-satisfaction problem with respect to a fixed template that is
not polynomially solvable or NP-complete. Such dichotomies have been shown in sev-
eral special cases of constraint-satisfaction; see [1] for an overview. They showed that
the class of constraint-satisfaction problems with respect to fixed templates contains
as special cases the problems of k-satisfiability, k-colorability, systems of linear equa-
tions modulo q, and labeled graph isomorphism; they also showed that the general
case is equivalent to the case of digraphs, known as digraph homomorphism.

That is, let H be a fixed digraph. For an input digraph G, the problem is to decide
whether there is a homomorphism from G to H, i.e., a mapping from the vertices of G

∗Received by the editors February 1, 1999; accepted for publication (in revised form) August 6,
2001; published electronically October 4, 2001.

http://www.siam.org/journals/sidma/14-4/38335.html
†268 Waverley St., Palo Alto, CA 94301 (tomas@theory.stanford.edu).

471

472 TOMÁS FEDER

to vertices of H such that adjacent vertices in G map to adjacent vertices in H in the
same direction. As said above, classifying the digraphs H as defining polynomially
solvable or NP-complete problems would yield such a classification on templates for
constraint-satisfaction.

The digraph homomorphism problem has been extensively studied; see, e.g., [2,
3, 7, 8, 9]. One of the cases that they focused on is that of oriented cycles, i.e., the
case where H is a cycle with each of its edges oriented in one of the two possible
directions. Partial results indicating that some cycles define polynomial [9] and some
define NP-complete [2] problems were obtained. In particular, the cases of oriented
paths and of unbalanced oriented cycles were classified as polynomially solvable. In
this paper, we complete the classification by showing that each oriented cycle H gives
rise to either a polynomially solvable or an NP-complete digraph homomorphism
problem. The approach is based on ideas of Feder and Vardi [1], which suggest several
classes of polynomially solvable constraint-satisfaction problems, and uses explicitly
the classification for the boolean case of constraint-satisfaction by Schaefer [10].

What is needed is in fact a generalization of the boolean constraint-satisfaction
classification by Schaefer, namely, one where the template does not contain just two
elements, yet every element of the input structure is restricted in the instance to
map to one of two specific elements. That is, every element ranges over a set Si =
{0i, 1i} for k different sets Si (that is, what we call the k-partite boolean satisfiability
problem), and we classify such problems as polynomially solvable or NP-complete.

2. Some polynomial cases. Feder and Vardi [1] observed that all known poly-
nomially solvable cases of constraint satisfaction can be solved by means of Datalog
and group theory, defining the bounded width and subgroup classes of problems, re-
spectively. Within the bounded width class, they identified several subclasses for
which membership is decidable: in particular, the width 1 class (also known as the
tree duality class [5], with its extension the extended tree duality class [1]), and the
bounded strict width class. This last class, the bounded strict width class, will be of
special interest here.

The bounded width class uses a canonical algorithm, for problems of width (l, k),
that involves inferring all possible constraints on l variables at a time by considering k
variables at a time. We may in addition require that if this inference process does not
reach a contradiction (the empty set), then it should be possible to obtain a solution
by greedily assigning values to the variables one at a time while satisfying the inferred
1-constraints. We say that a constraint-satisfaction problem that can be solved in this
way has strict width (l, k) and say that it has strict width l if it has strict width (l, k)
for some k. It turns out that strict width l is equivalent to strict width (l, k), for all
k > 1, so we can assume k = l + 1.

This intuition behind strict width l can also be captured in two other ways. First,
we can require that if we have an instance and after assigning specific values to some
of the variables we obtain an instance with no solution, then some l out of the specific
value assignments chosen are sufficient to give an instance with no solution. We refer
to this property as the l-Helly property. Second, we could require that there exists a
function g that maps l + 1 elements from the domain of the structure T to another
element with the property that if all but at most one of the l+1 arguments are equal
to some value b, then the value of g is also b. Furthermore, for all relations R in the
template, if we have l + 1 tuples satisfying R, then the tuple obtained by applying g
componentwise also satisfies R. We call this property the l-mapping property. The
following is from Feder and Vardi [1].

HOMOMORPHISMS TO ORIENTED CYCLES 473

Theorem 1. Strict width l, the l-Helly property, and the l-mapping property are
equivalent.

We shall show here that several cases of digraph homomorphism have strict width
2, by using the 2-mapping property, and are therefore polynomially solvable. That is,
fix a digraph H. Then the digraph homomorphism problem for H has strict width 2
iff there is a mapping t = g(x, y, z) from triples of vertices in H to vertices in H such
that g(x, x, x) = g(x, x, y) = g(x, y, x) = g(y, x, x) = x, and if (x, x′), (y, y′), (z, z′)
are edges of H, then (t, t′) = (g(x, y, z), g(x′, y′, z′)) is also an edge of H.

Oriented paths were shown to be polynomially solvable in [2, 3, 8]. Here we
show this by establishing strict width 2. This stronger result will be of use later in
connection to the 2-Helly property.

Theorem 2. Oriented paths have strict width 2.
Proof. Oriented paths have vertices numbered 1, 2, . . . , r, with all edges from i to

i + 1, or from i + 1 to i, and exactly one of both for each i. Let g(x, y, z) = median
(x, y, z), i.e., the middle value out of x, y, z. Note that two edges (x, x′) and (y, y′)
with x < y give x′ ≤ y′, so for the definition of the 2-mapping property, the order
of vertices is preserved by the adjacency relation, and hence the same argument is
selected by g before and after traversing an edge; that is, the 2-mapping property
holds.

An oriented cycle is balanced if it has the same number of edges on the cycle in one
direction and in the other, unbalanced otherwise. It is known [2, 12] that unbalanced
cycles are polynomially solvable. Here we show this by establishing strict width 2.

Theorem 3. Unbalanced cycles have strict width 2.
Proof. Traverse the cycle in one direction, obtaining vertices 0, 1, . . . , k, where

vertices 0 and k designate the same vertex. Define level(i) in such a way that if
(i, i + 1) is an edge, then level(i + 1) = level(i) + 1; otherwise, if (i + 1, i) is an
edge, then level(i + 1) = level(i) − 1. Notice that level (k) �= level(0), since the
oriented cycle is unbalanced. Assume level(k) < level(0) (by an arbitrary choice of
direction) and also that the smallest level is 0. The levels thus look in order like
this: l + m, . . . , 0, . . . , 0, . . . , 0, . . . , l for some m > 0. Adding m to the levels starting
from the first 0, we obtain l + m, . . . , 0 ≡ m, . . . ,m, . . . ,m, . . . , l + m; i.e., by again
choosing the starting vertex of the ordering, we have m, . . . , 0 with a single 0.

Now that we have ensured that level(0) = m, level(k) = 0, and level(i) > 0 for
i �= k, define the lexicographic ordering on pairs (level(i), i). We refer to the sets of
vertices whose levels differ by a multiple of m as layers. To define the 2-mapping g, if
the three arguments are in three different layers, we always return the first argument;
if only two of the three arguments are in the same layer, we always return the first
of these two arguments; the only interesting case thus has all three arguments in the
same layer. For the layer containing the endpoint k ≡ 0, the two lexicographically
smallest pairs are precisely the two corresponding (0, k) and (m, 0). Also note that
if (x, x′) and (y, y′) are edges with x < y in the lexicographic ordering, and with x
and y in the same layer, then x′ and y′ are in the same layer, and x′ ≤ y′ in the
lexicographic ordering. We can therefore define g(x, y, z) = median(x, y, z) in the
lexicographic ordering, as for paths in the previous theorem, with x, y, z in the same
layer, thus obtaining the 2-mapping property.

We now turn to balanced cycles. For balanced cycles, the above procedure for
assigning levels from the previous theorem assigns the same level to vertices 0 and k,
i.e., m = 0. Denote the lowest and highest levels by l and h. Then, as we traverse the
cycle, we encounter a sequence of l’s and h’s, which is in general of the form (l+h+)i

474 TOMÁS FEDER

with i ≥ 1. Here l+h+ denotes one or more repetitions of l’s followed by one or more
repetitions of h’s, and i indicates the number of times this pattern is encountered.
We first consider the case i = 1 and show that it has strict width 2. We next consider
the case i = 2 and show that when there are no repetitions, i.e., when the pattern
is lhlh, it also has strict width 2. The general case of i = 2, i.e., l+h+l+h+, will be
considered in section 4 and shown to be always either polynomial or NP-complete.
The case of i = 3 will be shown to be NP-complete in section 3. This will complete
the classification.

For the two cases that we show have strict width 2 by means of an appropriate
2-mapping g, it is again sufficient to define g when all three arguments are in the same
level.

Theorem 4. Balanced cycles of the type l+h+ have strict width 2.
Proof. Let l1 and l2 be the first and last l’s in l+h+. Then the cycle consists of a

path p1, from l1 to l2, that encounters no other l’s, but encounters one or more h’s,
and a path p2 from l1 to l2 that may encounter more l’s (although possibly l1 = l2) but
does not encounter any h’s. Number the vertices 0, 1, . . . , k1 on p1 without assigning
a number to l2 if l1 = l2 and number the vertices 0, 1, . . . , k2 on p2 without assigning
a number to either l1 or l2. For the numbered vertices i on p1, assign them the pair
(i, 0). Let j be a specific numbered vertex on p1 of level h. To the numbered vertices
i on p2, assign the pair (j, i) and consider the lexicographic ordering on pairs. Once
again, it can be seen that edges don’t cross. Therefore the function g(x, y, z) = median
(x, y, z), where the median is taken in the lexicographic ordering, and x, y, z belong
here to the same level, proves the 2-mapping property.

Theorem 5. Balanced cycles of the type lhlh have strict width 2.
Proof. Assign subindices to the two occurrences of l and of h, so that the type

can be denoted by l1h1l2h2. Consider the four paths 1 = l1h1, 2 = l2h1, 3 = l2h2,
4 = l1h2 on the cycle; given three paths i − 1, i, i + 1 out of these four (modulo 4),
the middle path is i. The mapping g(x, y, z) with the three arguments at the same
level is defined as follows: (0) For levels l and h, it is just majority; (1) If x, y, z
belong to three different paths, return the one that belongs to the middle path; (2) If
x, y, z belong to the same path, return the one in the middle position (median) on
the path; (3) If exactly two out of x, y, z belong to the same path, return the one
among the two occurring earliest on the path. This definition satisfies the 2-mapping
property.

3. Some NP-complete cases. We saw in the last section that unbalanced cy-
cles are polynomial and that balanced cycles can be categorized by their type (l+h+)k

with k ≥ 1. We saw that the case k = 1 is polynomial; the case k = 2 is left for the
next section, although we saw that the special case lhlh is polynomial. Here we show
that the case k ≥ 3 is NP-complete. The reduction is from k-colorability.

Given an oriented path, we assign levels to the vertices of the path so that if (i, j)
is an edge on the path, then level(j) = level(i) + 1. We say that a path is of type r
if it starts on level 0, it ends on level r, and all intermediate vertices are on levels i
with 0 ≤ i ≤ r. The following lemma was also proved in [11].

Lemma 1. Let p1 and p2 be two paths of type r. Then there is a path p of type r
that maps homomorphically to p1 and to p2 in such a way that the starting vertex of
p maps to the starting vertices of p1 and p2, and the ending vertex of p maps to the
ending vertices of p1 and p2.

Proof. The proof is first by induction on r and then by induction on the number
of vertices of p1 and p2 for r fixed. Suppose that neither p1 nor p2 have vertices at

HOMOMORPHISMS TO ORIENTED CYCLES 475

level 0 other than their starting vertices. Then we can make p advance on both paths
to level 1 and reduce the problem to type r − 1.

So we may assume that at least one of p1 and p2, say p1, has a vertex at level 0
other than the starting vertex. Let v be the earliest occurring vertex on p1 at level 0
other than the starting vertex. Let wi be the earliest occurring vertex on pi at level
r, and let ui be the vertex preceding wi at level r − 1. By inductive hypothesis on r,
path p may be started by mapping all the way to the ui in each pi and then from ui
to wi by traversing a single edge.

Now we may extend p mapping from w1 to v and from w2 to the starting vertex
of p2. This is by induction on the number of vertices on the two paths with r fixed.
Finally, we may extend p mapping from v to the ending vertex of p1 and from the
starting vertex of p2 to the ending vertex of p2 again by induction on the number of
vertices on the two paths with r fixed.

We shall refer to a path p, constructed as in the preceding lemma so as to map
to any number of given paths, as a generic path. Given an oriented cycle of type
(l+h+)k, we can construct a path that can map precisely to the paths joining any two
consecutive l and h. This is done by beginning with an edge from l to l + 1, then a
generic path l+1 to h−1, then an edge from h−1 to h. We can also construct paths
that allow us to move between l’s in the same l+. This is done with a generic path
from l to h− 1 followed by a generic path from h− 1 to l. This allows us to think of
the oriented cycle as a cycle (0, 1, 2, 3, . . . , 2k − 1) with edges oriented from the even
number (corresponding to a single l+) to the adjacent odd numbers (corresponding
to single h+) modulo 2k.

A digraph H is a core unless there is a proper subdigraph H ′ and a homomorphism
from H to H ′; if H is not a core, then such an H ′ which is a core is called the core of H;
otherwise, H is its own core. Clearly, if H has core H ′, then digraph homomorphism
for H is equivalent to digraph homomorphism for H ′. In the case of an oriented cycle
H, if it is not a core, then its core is an oriented path and digraph homomorphism is
polynomially solvable, as we saw in the previous section.

Therefore we assume that H is a core. Now, if the instance G contains a copy of
H, then this copy must map to H by the identity mapping up to isomorphisms of H;
since we can disregard isomorphisms in the solution, we can assume that a specific
copy of H in G maps to H via the identity mapping and identify this copy with H
itself.

We say that a binary relation can be represented in an instance of the problem if
there is an instance G of the problem such that for two specific vertices x, y in G, the
possible images that these two vertices can simultaneously have in a homomorphism
to H are precisely those in the binary relation.

Lemma 2. The binary relation relating opposite numbers i and i + k modulo 2k
with i even on the cycle can be represented in an instance.

Proof. Join the fixed cycle (0, 1, . . . , 2k − 1) to a cycle (0′, 1′, . . . , (2k − 1)′) by
edges joining i to i′. Then either all i′ map to i−1 or all map to i+1. Repeating this
construction, we can ensure that either all i′′ map to i′− 1 or all map to i′+1; hence,
either they all map to i− 2, all to i, or all to i + 2. After repeating this construction
k − 1 times, we obtain a cycle that can be in any of the k possible positions of the
same parity, and we can then select two opposite vertices on this cycle.

Lemma 3. The binary relation relating any two different i, j between 0 and 2k−1
with both i, j can even be represented in an instance.

Proof. Find for i the opposite vertex on the cycle as in the preceding lemma and

476 TOMÁS FEDER

then attach to this opposite vertex a path of length k − 2 ending in j with its edges
oriented appropriately. Then j can go to vertices which are also even as i but not to
i itself.

The relation in the lemma relates two out of k colors precisely when they are
different; i.e., it is the k-colorability relation. This gives the following theorem.

Theorem 6. Balanced cycles of type (l+h+)≥3 are NP-complete for cores (and
polynomial for noncores).

4. The remaining cases. The remaining case consists of balanced cycles of
the form l+h+l+h+, which we denote, with the purpose of distinguishing groups of
l and h, by l+0 h+

0 l+1 h+
1 . We have seen that the case l0h0l1h1, with no repetitions, is

polynomially solvable. We might thus hope to complete the classification by a case
analysis on the number of repetitions. One can observe, however, that for each re-
maining choice of the number of repetitions, there are both polynomially solvable and
NP-complete cases. That is, the complexity of the problem depends on the internal
structure of the paths themselves joining l and h vertices to each other and among
themselves. It turns out that what really matters is whether there exist digraphs that
can map to some of these paths but not to certain others. The possible patterns of
which subsets of paths can thus be obtained give rise to a bipartite boolean satisfia-
bility instance, and we use here a classification result for such problems, given in the
next section, to complete the classification of oriented cycles.

To understand the characterization given below, consider an instance consisting
of a digraph G. We can assume that every oriented cycle in G is balanced, since the
oriented cycle H to which G must be mapped is balanced. This means that G has
a level structure; i.e., we can assign levels to the vertices of G so that if (u, v) is an
edge of G, then level(v) = level(u) + 1. Furthermore, the number of levels of G must
be no larger than the number of level of the balanced cycle H. Furthermore, if the
number of levels of G is smaller, then G does not map to both l and h vertices in H,
so G maps to paths in H, and we have seen that this case is polynomially solvable.

We therefore assume that G has the same number of levels as H and label these
levels the same as in H. Now consider all the l vertices and all the h vertices in G.
Let S be the set of those l vertices that are joined in G to h vertices by an oriented
path not going through any other l vertices and those h vertices that are joined in G
to l vertices by an oriented path not going through any other h vertices.

If we remove from G the set S, the digraph G becomes disconnected into connected
components. Let the boundary of a connected component be set of l and h vertices
in S incident on the component; i.e., they connect the component to the rest of G.
Notice that each vertex in S must be in the boundary of at least one component
containing both l’s and h’s by the way S was defined.

The next step is to ensure that the boundary of each component contains at most
two vertices. The easiest case is that of components that have both l and h boundary
vertices. Such components must map to one of the four paths in H joining consecutive
l and h vertices. These four paths contain only one l and one h vertex, so all l vertices
in the component must map to the same l, and similarly for the h vertices. We may
thus collapse together the l vertices in the component and similarly for the h vertices.
We thus have precisely two boundary vertices.

The more difficult case is that of components that have only h boundary vertices
or only l boundary vertices, say, only h boundary vertices. Such components must
map to one of the two maximal paths containing h vertices but no l vertex. We
know from section 2 that these paths have strict width 2, and that this property is

HOMOMORPHISMS TO ORIENTED CYCLES 477

equivalent to the 2-Helly property. That is, we can replace a component having some
number r > 2 of boundary vertices, with several copies of the component, one for each
choice of two out of the r boundary vertices, where only these two boundary vertices
are attached at their proper places in G. The condition on possible images for the
boundary vertices as imposed by the single component is the same as the condition
imposed by its copies on pairs of boundary vertices. We thus have copies with at most
two boundary vertices.

Now if a component contains an l and an h vertex, they must map to an lx and an
hy vertex, respectively, where x, y are boolean variables, and they range over {0, 1}.
We thus associate with the component the pair of variables (x, y). Note that a choice
of values x, y tells us to which path the component must map. The paths out of the
four possible choices where such a component can map gives us a boolean constraint
on x, y.

Now consider the case of a component whose at most two boundary vertices are
h vertices; the case of l vertices is similar. Say there are two boundary h vertices;
the case of a single boundary h vertex is a special case. This component must map
to one of two possible maximal paths without l vertices. The two boundary vertices
correspond to two pairs (x, y) and (x′, y′) of boolean variables as described above,
since they are also boundary vertices of components having both l and h vertices. We
must have y = y′. We thus get a boolean constraint on x, x′, y.

We have assumed that the x, y come in pairs. However, it is easy to state y = y′

for two pairs, (x, y) and (x′, y′), by requiring vertices to be h vertices from the same
h+. This is done as in Lemma 1 in the preceding section by connecting two h vertices
by a generic path that does not reach level l. We can similarly state x = x′. Thus we
can assume that variables x and y come separately, in two different sets of boolean
variables, and that we have a collection of boolean constraint types of one of the three
forms R(x, y), R(x, x′, y), and R(x, y, y′). Boolean constraint-satisfaction problems
were classified as polynomial or NP-complete by Schaefer [10]. This kind of bipartite
boolean constraint-satisfaction problem, with two different types of boolean variables,
will be classified later as polynomial or NP-complete, as an extension of Schaefer’s
result. This gives the following theorem.

Theorem 7. Balanced cycles of type l+h+l+h+ are either polynomially solvable
or NP-complete.

To decide the complexity of a problem, we must determine which are the boolean
constraints of a given type that can be stated by an instance, that is, which relations on
two vertices can be stated by an instance of the problem. This question is polynomially
decidable, for a chosen such relation, by deciding for each choice of one of r solutions
for the two vertices, where all the other vertices will map, in nr possible ways, where
n is the number of vertices in H. We can thus construct an instance G with nr

vertices and all the constraints (edges) consistent with where the vertices map in the
r solutions. Then check that these are the only possible solutions for the resulting
instance, as far as the two special vertices are concerned. Polynomiality follows from
the fact that r is here a constant, the components thus defined map to paths, as
described before, and the problem for paths is polynomial.

In Schaefer’s classification, there are three polynomially solvable cases, namely,
Horn clauses, 2SAT, and linear equations modulo 2. In terms of the approach of Feder
and Vardi [1], the first two are explained by Datalog, i.e., of bounded width, while
the third is explained by group theory; i.e., it is a subgroup problem. All the previous
cases of oriented cycles that were shown to be polynomial belong to the bounded

478 TOMÁS FEDER

width case. Is it possible that the polynomial cases in the last theorem include cases
that are not of bounded width, yet polynomial because of group theory? For this to be
the case, it would have to happen that some relation R(x, x′, y) is either x+x′+y = 0
or x + x′ + y = 1 modulo 2. In either case, for a fixed y, we would have a constraint
x + x′ = 1 modulo 2. That is, a component with two h boundary vertices maps the
two boundary vertices to two different boundary vertices of the h+ sector in the two
possible ways. However, then the two boundary vertices are separated by vertices that
map to the same vertex in both solutions. (Just consider how a path joining the two
boundary vertices can map in the two directions and infer that some vertex on the
path must map to the same vertex in both solutions.) Then the two solutions can be
combined to make the two boundary vertices map to the same vertex, a contradiction.
Therefore all polynomial problems are of bounded width.

Theorem 8. All oriented cycles define digraph homomorphism problems that are
either of bounded width, and hence polynomially solvable, or NP-complete.

5. The k-partite boolean satisfiability problem. Schaefer showed that all
satisfiability problems on a boolean domain are either polynomial or NP-complete
[10]. Here we consider a k-partite generalization of the problem. There are k types of
variables, each of which ranges over the boolean domain Si = {0i, 1i} for 1 ≤ i ≤ k.
There are also a number of constraint types R(x1, x2, . . . , xr) that can be imposed on
r variables at a time, where xj ranges over some corresponding Si.

We show that such k-partite satisfiability problems are also either polynomial
or NP-complete. As an application of the bipartite case of this classification, we
obtain the above classification of homomorphisms to oriented cycles as polynomial or
NP-complete for each choice of an oriented cycle.

We first consider the bipartite case. Suppose that variables x, x′, x′′, . . . range over
A = {0A, 1A} and variables y, y′, y′′, . . . range over B = {0B , 1B}. If the constraints
contain one of the two conditions x = y or x �= y, then we can identify each variable
in A with a variable in B, and vice versa, so we actually have a single domain A =
B = {0, 1} and we can apply Schaefer’s classification result to infer that the problem
is either in P or NP-complete. Therefore we assume that neither x = y nor x �= y can
be stated.

What then are the binary relations involving one element from A and one from
B? They can only be 2SAT clauses. Say the clause x ∨ y is present, while the other
cases are analogous. Then the clause ¬x ∨ ¬y is not present; otherwise, both com-
bined would give x �= y. Similarly, at most one of the two clauses x ∨ ¬y and ¬x ∨ y
can be present; otherwise, both combined would give x = y. Say only x ∨ ¬y out of
these two may be present. Then the at most two clauses present involve the variable
x positive (no negation).

We show that at least one 2SAT clause must be present; otherwise, the problems
defined by A and B are independent, so the problem is in P if both the A and B
parts are in P and NP-complete if at least one of them is NP-complete. For suppose
that the two parts are not independent. Then there is a relation R such that R(x, y′)
and R(x′, y) hold, but R(x, y) does not, where the x’s and y’s are vectors of variables.
Replace x and y by minimal subvectors such that R(x, y) still does not hold when
the suppressed variables are free. This means that complementing one value in x or
y makes R true. Now set all but one of the variables in x to their assigned value in
x, leaving the single value x1, and similarly set all but one of the variables in y to
its assigned value in y, leaving the single value y1. Then R′(x1, y1) is false, but both
R′(x1,¬y1) and R′(¬x1, y1) are true, giving, say, if x1 = y1 = 0, either x∨ y or x �= y.

HOMOMORPHISMS TO ORIENTED CYCLES 479

Therefore we assume that x ∨ y is present, that x ∨ ¬y may be present, and that
no other binary condition involving A and B is present. We claim that after suppress-
ing all the variables whose values are forced to 0 or 1, a solution exists iff a solution
exists after setting all variables x in A to 1. Therefore the satisfiability problem is
equivalent to the satisfiability problem for B, hence either in P or NP-complete, by
Schaefer’s result.

To prove the claim, suppose to the contrary that there is a solution to the problem
that is no longer a solution when all x variables from A are replaced by 1. Consider a
condition R(x1, . . . , xr, y1, . . . , ys) such that when we assign 1 to the xi and the values
vi from the solution to the yi, we end up having R(1, . . . , 1, v1, . . . , vs) false. Replace
a maximal number of the xi = 1 by free variables, so that the resulting relation
R(1, . . . , 1, xt+1, . . . , xr, v1, . . . , vs) is still false for all values of xi. Simplifying the
notation by suppressing the free variables xi, we have R(1, . . . , 1, v1, . . . , vs) false, yet
R becomes true when one of the first t 1’s is replaced by 0. If t = 0, then R(v1, . . . , vs)
false indicates that these are forbidden values in B, contrary to the assumption that
there is a solution with those values. If t = 1 and s = 0, then R(1) is false, so the
single argument of R was forced to 0 in the preprocessing stage. Suppose t = 1 and
s ≥ 1. We thus have R(1, v1, . . . , vs) false but R(0, v1, . . . , vs) true. Again replace a
maximal number of vi by free variables yi, so that R(1, v1, . . . , vu, yu+1, . . . , ys) is still
false for all values of yi. Simplifying the notation by suppressing the free variables
yi, we have that R(1, v1, . . . , vu) is false but becomes true when any of the u + 1
arguments is complemented. Fix the last u − 1 at their assigned vi. We then have
R(1, v1) false but R(1,¬v1), R(0, v1) true, so if, say, v1 = 0 we obtain either ¬x ∨ y
or x = y, two cases that were not allowed. The remaining case has t ≥ 2. Fix t− 2 of
the 1’s to 1, and fix all remaining variables to the given vi, so that we get R(1, 1) false
and R(0, 1), R(1, 0) true. This gives either ¬x ∨ ¬x′ or x �= x′, which combined with
the clause x′ ∨ y gives ¬x ∨ y, a type of clause that was not allowed. This completes
the proof.

Theorem 9. All cases of bipartite satisfiability are either in P or NP-complete.
To generalize the argument to the k-partite case, where there are k boolean sets

Si, introduce two literals xi and ¬xi for each Si; write each 2SAT clause involving
two sets Si and Sj as two implications, say, xi ∨ xj is written as ¬xi → xj and
¬xj → xi; and view the resulting implications as a digraph. If the digraph contains a
cycle, then equality (or complementarity) can be forced among variables in the cycle,
thus reducing the number of parts by collapsing together the Si in the cycle. If the
digraph is acyclic, then some literal, say ¬x1, is a source, in which case x1 is a sink.
Thus all clauses involving x1 are of the form x1 ∨ xi or x1 ∨ ¬xi. Again we can set
all variables in S1 to 1 and reduce the problem to a problem with k − 1 parts. If S1

involves no clauses, then it is an isolated part, and its constraints are separate from
the rest of the problem. Thus the problem reduces to the union of disjoint problems,
it is polynomial if all resulting parts are polynomial and NP-complete otherwise if
some part is NP-complete.

Theorem 10. All cases of k-partite satisfiability are either in P or NP-complete.

Acknowledgments. The author had valuable conversations with Yossi Azar and
Carlos Subi.

REFERENCES

[1] T. Feder and M. Y. Vardi, The computational structure of monotone monadic SNP and
constraint satisfaction: A study through Datalog and group theory, SIAM J. Comput., 28

480 TOMÁS FEDER

(1998), pp. 57–104.
[2] W. Gutjahr, Graph Colourings, Ph.D. Thesis, Free University, Berlin, 1991.
[3] W. Gutjahr, E. Welzl, and G. Woeginger, Polynomial graph colourings, Discrete Appl.

Math., 35 (1992), pp. 29–46.
[4] P. Hell and J. Nešetřil, On the complexity of H-coloring, J. Combin. Theory Ser. B, 48

(1990), pp. 92–110.
[5] P. Hell, J. Nešetřil, and X. Zhu, Duality and polynomial testing of tree homomorphisms,

Trans. Amer. Math. Soc., 348 (1996), pp. 1281–1297.
[6] P. Hell, J. Nešetřil, and X. Zhu, Complexity of tree homomorphisms, Discrete Appl. Math.,

70 (1996), pp. 23–36.
[7] P. Hell, J. Nešetřil, and X. Zhu, Duality of graph homomorphisms, in Combinatorics, Paul

Erdös is Eighty, Bolyai Soc. Math. Stud. 2, János Bolyai Math. Soc., Budapest, 1996, pp.
271–282.

[8] P. Hell and X. Zhu, Homomorphisms to oriented paths, Discrete Math., 132 (1994), pp.
107–114.

[9] P. Hell and X. Zhu, The existence of homomorphisms to oriented cycles, SIAM J. Discrete
Math., 8 (1995), pp. 208–222.

[10] T. J. Schaefer, The complexity of satisfiability problems, in Proceedings of the 10th ACM
Symposium on Theory of Computing, 1978, pp. 216–226.

[11] X. Zhu, A simple proof of the multiplicativity of directed cycles of prime power length, Discrete
Appl. Math., 36 (1992), pp. 313–315.

[12] X. Zhu, A polynomial algorithm for homomorphisms to oriented cycles, J. Algorithms, 19
(1995), pp. 333–345.

EQUIREPLICATE BALANCED BINARY CODES FOR OLIGO
ARRAYS∗

NOGA ALON† , CHARLES J. COLBOURN‡ , ALAN C. H. LING§ , AND MARTIN TOMPA¶

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 4, pp. 481–497

Abstract. In the manufacture of oligo arrays for DNA hybridization experiments, manufacturing
defects must be detected and their position determined. The design of manufacturing protocols
for such oligo arrays leads to a combinatorial problem, requiring certain binary codes which have
an additional balance property. Constructions using block designs and packings for these codes,
within a range of interest in a practical manufacturing application, are developed. The focus is on
equireplicate codes, constant weight codes in which every bit position is a one equally often.

Key words. binary code, oligo array, packing, block design, t-design

AMS subject classification. 05B05

PII. S0895480101383895

1. Introduction. Let X be a set of v elements or points. Let B be a collection
of b subsets of X, called blocks. Then (X,B) is a (v, b)-set system. The block sizes of
(X,B) are the cardinalities of the b blocks in B; when all blocks have cardinality k,
the set system is k-uniform. We often write (v, b, k)-set system to denote a k-uniform
(v, b)-set system.

In an application to quality control in the manufacture of oligo arrays described in
the next section, certain (v, b, k)-set systems are of particular interest. For each point
x ∈ X, we define the replication number of x to be the number of blocks containing
x. The set system is r-equireplicate if every point has replication number r. We call a
(v, b, k)-set system d-discriminated if, for every point x ∈ X, the replication number
rx satisfies d ≤ rx ≤ b− d; and, for every two distinct points x, y ∈ X, the number of
blocks containing exactly one of x and y is at least d. In other words, if λxy represents
the number of blocks containing both x and y, we require that rx + ry − 2λxy ≥ d. A
d-discriminated (v, b, k)-set system is henceforth denoted by (v, b, k, d)-balanced binary
code, or (v, b, k, d)-bbc for short.

Table 1 gives an example of a (28, 14, 10, 5)-bbc, which is 5-equireplicate. This
was constructed using the method described in [3].

The connection to codes arises as follows. If we form the b×v incidence matrix of
the set system, then each row has weight k and each column has weight at least d and
at most b−d. Hence each column differs from the all-zero vector and from the all-one
vector in at least d positions. Moreover, since two points satisfy rx+ry−2λxy ≥ d, we

∗Received by the editors January 22, 2001; accepted for publication June 8, 2001; published
electronically October 4, 2001.

http://www.siam.org/journals/sidma/14-4/38389.html
†Department of Mathematics, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv

University, Ramat Aviv, Tel Aviv, 69978 Israel (noga@math.tau.ac.il). The research of this author
was supported by a USA-Israel BSF grant.

‡Department of Computer Science and Engineering, Arizona State University, Tempe, AZ 85287
(Charles.Colbourn@asu.edu). The research of this author was supported by ARO grant DAAG55-
98-1-0272 and DOE grant DE-FG02-00ER45828.

§Department of Computer Science, University of Vermont, Burlington, VT 05405 (aling@emba.
uvm.edu).

¶Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195-
2350 (tompa@cs.washington.edu). The research of this author was supported by NSF grant DBI-
9974498.

481

482 N. ALON, C. J. COLBOURN, A. C. H. LING, AND M. TOMPA

Table 1
A 5-equireplicate (28, 14, 10, 5)-bbc set system.

0 4 7 9 13 14 18 20 23 27
2 3 4 9 15 16 18 23 25 26
4 6 8 13 15 19 20 21 24 25
0 3 4 5 12 16 19 21 22 27
1 2 6 9 10 13 16 17 21 27
1 5 10 11 13 14 16 19 23 25
3 7 8 9 10 11 12 20 21 25
0 1 2 7 11 15 21 22 23 24
0 2 3 5 8 11 13 17 18 24
0 1 8 9 12 14 15 17 19 26
1 5 6 7 12 18 24 25 26 27
6 11 12 14 15 16 17 18 20 22
3 10 17 19 20 22 23 24 26 27
2 4 5 6 7 8 10 14 22 26

Table 2
A 5-equireplicate (28, 14, 10, 5)-bbc incidence matrix.

1000100101000110001010010001
0011100001000001101000010110
0000101010000101000111001100
1001110000001000100101100001
0110001001100100110001000001
0100010000110110100100010100
0001000111111000000011000100
1110000100010001000001111000
1011010010010100011000001000
1100000011001011010100000010
0100011100001000001000001111
0000001000011011111010100000
0001000000100000010110111011
0010111110100010000000100010

have that every two columns have Hamming distance at least d. Hence the code whose
words are the columns together with the all-zero and all-one vectors has minimum
distance (at least) d. For the example in Table 1, the matrix is given in Table 2.

The fundamental existence question for balanced binary codes is to determine, for
a given v and k, a code with a “small” number b of rows having “large” discrimination
d. (See section 2 for the motivation.) To make this precise, given v, k, and d, we seek
the smallest value of b for which a (v, b, k, d)-bbc exists. We begin by establishing a
lower bound on b.

Proposition 1.1. If a (v, b, k, d)-bbc exists, then b ≥max
(⌈

vd
k

⌉
,
⌈
vd
v−k

⌉)
.

Proof. The incidence matrix of a (v, b, k, d)-bbc contains bk one entries, since each
of the b rows contains k ones. Since each of the v columns contains at least d and at
most b− d ones, we have

vd ≤ bk ≤ vb− vd.

The bounds follow.
We call a (v, b, k, d)-bbc optimal when b realizes the bound in Proposition 1.1.

When a (v, b, k, d)-bbc exists, an additional row can easily be appended to form a
(v, b+ 1, k, d)-bbc; in fact, simply duplicating any of the rows produces the extended
bbc. It is therefore natural to study the optimal balanced binary codes.

EQUIREPLICATE CODES FOR OLIGO ARRAYS 483

Let (V,B) be a set system. The complement of (V,B), denoted by (V,B), has the
same set V of elements, and the collection of blocks B = {V \D : D ∈ B}.

Lemma 1.2. The complement of a (v, b, k, d)-bbc is a (v, b, v − k, d)-bbc. The
complement of an equireplicate bbc is also equireplicate. The complement of an optimal
bbc is also optimal.

The following lemma gives a simple characterization of optimal equireplicate
bbc’s.

Lemma 1.3. Suppose B is an equireplicate (v, b, k, d)-bbc with replication number
r.

1. If v ≥ 2k, B is optimal if and only if r = d.
2. If v < 2k, B is optimal if and only if r = b− d.
Proof. By Lemma 1.2, assume without loss of generality that v ≥ 2k. Suppose

r = d. Since bk = vr, both being the number of ones in the incidence matrix of B,
we have b = vd

k = max(
 vdk �,
 vdv−k �), making B optimal. Conversely, suppose B is

optimal. Then b =
⌈
vd
k

⌉ ≤ vd+k−1
k . By the definition of discrimination, all replication

numbers of B are at least d, so d ≤ r = bk
v ≤ d + k−1

v < d + 1. Since r is integral,
r = d.

Sengupta and Tompa [9] observed that if B1 is a (v, b1, k, d1)-bbc and B2 is a

(v, b2, k, d2)-bbc, then
[
B1

B2

]
, the union of the blocks ofB1 and B2, is a (v, b1+b2, k, d1+

d2)-bbc; we call this operation addition. Unfortunately, the addition of two optimal
bbc’s need not be optimal. The reason is simple. Since the bound in Proposition 1.1
is the next larger integer, it is possible for the addition of B1 and B2 to contain one
more row than does an optimal bbc, despite the optimality of B1 and B2 individu-
ally. Nevertheless, the addition proves to be very useful in limiting the ranges of the
discrimination to be examined.

Proposition 1.4. If B1 is an optimal equireplicate (v, b1, k, d1)-bbc and B2 is

an optimal (v, b2, k, d2)-bbc, then
[
B1

B2

]
is an optimal (v, b1 + b2, k, d1 + d2)-bbc.

Proof. By Lemma 1.2, assume without loss of generality that v ≥ 2k. By Lemma
1.3, then, all replication numbers of B1 are d1, so b1k = vd1. It follows that b1 + b2 =
vd1
k +
 vd2k �. However, since vd1

k is an integer, we have b1 + b2 =
 v(d1+d2)k �, so that
the addition is optimal.

For this reason, the critical ingredients in producing optimal balanced binary
codes are those that are equireplicate. In this paper, we provide a number of com-
binatorial constructions for equireplicate optimal bbc’s, primarily within a range of
practical interest in the study of the manufacture of oligo arrays. In a companion
paper [3], we examine heuristic techniques which we have used for the production
of optimal bbc’s in the case when replication numbers are not all equal. Combining
these techniques yields a powerful existence result for balanced binary codes in the
intended application.

An understanding of the application is critical to motivating both the definitions
given and to describing the specific bbc’s sought. We provide a brief overview of the
biotechnology application before pursuing the construction of optimal bbc’s. For full
details on the application, see Sengupta and Tompa [9].

2. The quality control problem. For this discussion, a DNA molecule can
be abstracted as a string over the alphabet {A,C,G, T}. An oligo array is a small
chip containing approximately 100,000 spots, to each of which is attached its own
synthesized DNA molecule. Oligo arrays are used to measure how much of each gene

484 N. ALON, C. J. COLBOURN, A. C. H. LING, AND M. TOMPA

product is produced by a given cell type under given conditions. For more information
on oligo arrays, see, for example, Lipshutz et al. [5].

Our application is in the manufacture of oligo arrays rather than their
subsequent use. An array is manufactured in a series of steps “labeled”
A,C,G, T,A,C,G, T,A, Initially, every spot’s DNA molecule is empty. In prepa-
ration for any given step, an arbitrary subset of the spots can be masked. If the step
is labeled σ, only a spot that is unmasked will have σ appended to the end of its DNA
molecule. By appropriate construction of the masks, each spot can be designed to
contain an arbitrary DNA sequence.

The manufacturing process is subject to two different sorts of faults: (1) several
individual spots may fail, and (2) an entire manufacturing step may fail, affecting all
spots unmasked during that step. The goal of quality control is to identify any single
failed step, even if e individual spots fail, where e is a parameter of the manufacturing
process. A small number of spots on the chip can be used for this quality control
purpose.

Hubbell and Pevzner [4] first investigated this problem. The clever idea underlying
their approach is to manufacture identical DNA molecules at multiple spots, using
different schedules of steps. If no step fails, all such spots should behave identically.
If some step fails, the spots behaving incorrectly hopefully provide a “signature” that
identifies the failed step.

The problem Hubbell and Pevzner left open was how to design the quality con-
trol molecules and schedules to guarantee such signatures, even in the presence of e
faulty spots. Sengupta and Tompa [9] reduced this problem to the design of well-
discriminated balanced binary codes as described below and supplied an initial col-
lection of good balanced codes.

First they abstracted the quality control problem as that of designing a QC matrix
Q, which is a 0-1 matrix with a row for each quality control spot, a column for each
manufacturing step, and Qij = 1 if and only if spot i is unmasked during step j. Given
the spots that subsequently behave incorrectly as a column vector I, identifying the
failed step corresponds roughly to finding the column of Q that resembles I with up
to e exceptions. Although this resembles the familiar error-correcting code problem,
what makes it more complicated is that (1) one cannot compare the behaviors of spots
with different DNA sequences, and (2) even for the spots with identical sequences, it
may not be possible to distinguish between all such spots behaving correctly and all
such spots behaving incorrectly.

In terms that are beyond our scope, but are detailed by Sengupta and Tompa [9],
the properties of a good QC matrix Q are as follows:

1. The set of DNA molecules manufactured at the quality control spots “hy-
bridize poorly” to themselves and each other.

2. Q has high “separation” sep(Q), which ensures sufficient coverage of each step,
and sufficient difference between steps to identify the failed step. Sengupta
and Tompa proved that sep(Q) ≥ 2e + 1 is sufficient to identify any single
failed step, even in the presence of e arbitrarily faulty spots.

Sengupta and Tompa [9] designed QC matrices with these properties using a
product construction. First they handcrafted some QC blocks, which are small QC
matrices. An example of a pair of 4× 4 QC blocks from their paper is given in Figure
1. They then showed that a certain cross product of any well-discriminated balanced
binary code and any QC block yields a QC matrix with the desired properties above.
More specifically, if B is a (v, b, k, d)-bbc, then alternately replacing the ones in each

EQUIREPLICATE CODES FOR OLIGO ARRAYS 485

A C
G T

A T
C G

A T
C G

A C
G T

Fig. 1. A pair of 4× 4 QC blocks. For ease of visualization, the figure shows blanks instead of
zeros and the manufacturing step’s label instead of a one.

row of B by the two 4×4 QC blocks of Figure 1, and replacing the zeros in B by 4×4
matrices of zeros, produces a 4b× 4v QC matrix Q for which each DNA molecule has
length 2k, the set of DNA molecules hybridizes poorly, and sep(Q) = 2d. An example
of this product construction is shown in Figure 2.

This then explains the design problem of section 1. Since the array manufacturer
specifies the number of steps (4v) and the molecule lengths (2k), and the goal is
to minimize the number of quality control spots (4b) and maximize separation (2d),
the resulting balanced binary code design problem is to minimize b and maximize
discrimination d for a given v and k. For the current photolithographic process,
reasonable ranges for the parameters are 16 ≤ 2k ≤ 20, 60 ≤ 4v ≤ 136, and 4b up to
a few hundred.

Although Sengupta and Tompa [9] supplied an initial collection of balanced binary
codes, they left open the construction of optimal balanced binary codes for arbitrary
choices of v, k, and d. The current paper addresses exactly this problem for the
relevant parameter ranges given above. The resulting constructions are summarized
in Tables 7 and 8.

3. Primal constructions. In this section, we examine constructions for the
bbc set system; to distinguish from later constructions, we call this the primal set
system. Our constructions begin with a useful connection to balanced incomplete
block designs. A t-(v, b, r, k, λ) design is a pair (V,B) where V is a set of v elements,
and B is a collection of k-element subsets of V called blocks. Every t-subset of V
appears as a subset of exactly λ of the b blocks in B. It follows that every s-subset
for 0 ≤ s ≤ t appears in the same number λs of blocks (since the block sizes all
equal k). In this notation, b = λ0, r = λ1, and λ = λt. When t = 2, a t-design is a
balanced incomplete block design, or simply a block design. The connection to bbc’s is
immediate.

Theorem 3.1. When v > k > 2, every 2-(v, b, r, k, λ) design is an optimal
equireplicate (v, b, k,min(r, b− r))-bbc.

Proof. The design is a (v, b, k)-set system by construction. To verify that it is
min(r, b− r)-discriminated, we observe that the number of blocks containing exactly
one of (any) two distinct elements is 2(r−λ). By Lemma 1.2, we can assume without

loss of generality that v ≥ 2k. Then 2(r−λ) ≥ r since r = λ(v−1)
k−1 . Optimality follows

from Lemma 1.3 and the observation that d = min(r, b − r) = r, since r = bk/v ≤
b/2.

Corollary 3.2. There are equireplicate (16, 30, 8, 15)-, (18, 34, 9, 17)-, and
(20, 38, 10, 19)-bbc’s.

Proof. There exist 2-(16, 30, 15, 8, 7), 2-(18, 34, 17, 9, 8), and 2-(20, 38, 19, 10, 9) de-
signs. (See, e.g., [7].) The first and last are Hadamard designs arising from Hadamard
matrices; see [1].

Block designs have been very extensively studied, and much is known about their
existence; see [7] for a table giving known existence results for “small” values of r. For

486 N. ALON, C. J. COLBOURN, A. C. H. LING, AND M. TOMPA

Fig. 2. The product of a (19, 19, 9, 9, 4)2-design and the pair of 4 × 4 QC blocks of Figure 1,
resulting in a 76× 76 QC matrix Q with minimum separation sep(Q) = 18.

EQUIREPLICATE CODES FOR OLIGO ARRAYS 487

our application, the conditions on block designs are too stringent. Indeed, in a block
design, every two elements have the property that there are exactly 2(r − λ) blocks
containing precisely one of them, and the application does not require this type of
uniformity. Consequently, block designs provide only a small fraction of the bbc’s
needed, even among the optimal equireplicate cases. A more serious drawback arises
since b is constrained to be at least v by Fisher’s inequality. (See, for example, [1].)
Using addition, however, we are most interested in bbc’s with b very small.

We therefore relax the requirements by allowing, for each pair of elements, the
number of blocks containing exactly one of them to vary, provided that it remains at
least d. Translating to the design vernacular, when the bbc is equireplicate, we are
specifying that every pair of elements occur together in at most some number λ of
blocks.

A t-(v, k, λ) packing (V,B) is a (v, b, k)-set system in which every t-subset of
elements occurs together in at most λ of the blocks in B. A 2-(v, k, λ) packing in
which v ≥ 2k and every element has replication number at least r yields a bbc which
is min(r, 2(r − λ))-discriminated. See [8] for a survey of packings.

Our first construction produces 2-(v, k, λ) packings with b = v. We take, as the
set of elements, the integers modulo v, Zv. We choose a single block, B, containing
k elements and form B = {B + 0, . . . , B + (v − 1)}, where the translate B + i =
{x + i mod v : x ∈ B}. To determine the index λ of the packing (Zv,B), proceed as
follows. Each pair {i, j} of elements has an associated difference modulo v, namely,
min(i− j mod v, j− i mod v). If this difference appears as the difference between two
elements of B, then the pair occurs in exactly one translate of these two elements
unless the difference is precisely half of v, in which case the pair appears in two
translates. Hence, to determine the maximum number of times that a pair occurs in
the packing, we need only determine how many pairs of elements in B have a specified
difference. To handle the case when v is even and the difference examined is d/2, we
must double the number of occurrences of the difference.

In the construction of bbc’s, we may not require the minimum possible value of
λ. Indeed, if v ≥ 2k and we are to produce a (v, v, k, k)-bbc, we require only that
every difference appear at most �k/2 times. A single block of k elements from Zv in
which every difference is represented at most �k/2 times (except when v is even, we
require that v/2 be represented at most �v/4 times) is a near difference set. When
v is odd and every difference is represented the same number of times, the block is a
cyclic difference set, and these have been studied extensively [1].

In Table 3, we present near difference sets for a number of parameters of interest.
These solutions were found using a simple backtracking method.

Such bbc’s arising from near difference sets can exist only for some of the param-
eter sets of interest, namely, those when b = v. We therefore examine a more general
method. Again we take Zv as the set of elements. We form a number of base blocks
B1, B2, . . . , B. We can again develop each base block modulo v to form v blocks.
For certain base blocks, the v blocks in the development are not all distinct. In these
cases, we can choose to include only a subset of the blocks. Suppose, for example,
that v and k are both even, and that Bi = {b1, . . . , bk/2, b1 + (v/2), . . . , bk/2 + (v/2)},
with 0 ≤ bi < v/2 when 1 ≤ i ≤ k/2. Then Bi + (v/2) = Bi. In this case, we can
produce only v/2 blocks, a half orbit, by including Bi + j for j = 0, . . . , (v/2)− 1. In
Table 4, we present solutions containing one half orbit and one starter block gener-
ating v blocks. To prescribe the block for the half orbit, we give only the elements
b1, . . . , bk/2.

488 N. ALON, C. J. COLBOURN, A. C. H. LING, AND M. TOMPA

Table 3
Near difference sets.

v k d Block v k d Block
9 8 1 0 1 2 3 4 5 6 7 10 8 2 0 1 2 3 4 5 6 7

10 9 1 0 1 2 3 4 5 6 7 8 11 8 3 0 1 2 3 4 5 6 8
11 9 2 0 1 2 3 4 5 6 7 8 11 10 1 0 1 2 3 4 5 6 7 8 9
12 9 3 0 1 2 3 4 5 6 7 9 12 10 2 0 1 2 3 4 5 6 7 8 9
13 8 5 0 1 2 3 4 5 8 10 13 9 4 0 1 2 3 4 5 7 9 10
13 10 3 0 1 2 3 4 5 6 7 8 10 14 8 6 0 1 2 3 4 5 7 10
14 9 5 0 1 2 3 4 5 6 9 11 15 8 7 0 1 2 3 5 7 8 11
15 9 6 0 1 2 3 4 5 6 8 11 15 10 5 0 1 2 3 4 5 6 7 10 12
16 8 8 0 1 2 3 4 7 9 12 16 9 7 0 1 2 3 4 6 7 11 13
16 10 6 0 1 2 3 4 5 6 7 9 12 17 8 8 0 1 2 3 4 6 9 13
17 9 8 0 1 2 3 4 5 8 10 13 17 10 7 0 1 2 3 4 5 7 8 11 13
19 8 8 0 1 2 3 4 6 9 13 19 9 9 0 1 2 3 5 7 12 13 16
19 10 9 0 1 2 3 5 7 12 13 15 16 20 9 9 0 1 2 3 4 7 9 12 16
20 10 10 0 1 2 3 4 6 8 11 14 15 21 8 8 0 1 2 3 5 8 12 16
21 9 9 0 1 2 3 4 7 9 13 18 21 10 10 0 1 2 3 4 5 8 10 13 17
22 9 9 0 1 2 3 4 6 9 13 17 22 10 10 0 1 2 3 4 5 8 10 13 17
23 8 8 0 1 2 3 5 8 12 16 23 9 9 0 1 2 3 4 6 9 13 17
23 10 10 0 1 2 3 4 5 7 10 14 18 24 9 9 0 1 2 3 4 6 9 13 17
24 10 10 0 1 2 3 5 6 11 13 17 20 25 8 8 0 1 2 3 5 8 12 16
25 9 9 0 1 2 3 4 6 9 13 17 26 9 9 0 1 2 4 6 11 12 20 23
26 10 10 0 1 2 3 4 7 9 12 16 20 27 8 8 0 1 2 3 5 8 12 16
27 10 10 0 1 2 3 4 6 9 13 17 22 28 9 9 0 1 2 3 5 8 12 16 21
29 8 8 0 1 2 3 5 8 12 16 29 9 9 0 1 2 3 5 8 12 16 22
29 10 10 0 1 2 3 4 6 9 13 17 23 30 9 9 0 1 2 3 5 8 12 16 21
31 8 8 0 1 2 4 7 12 16 25 31 9 9 0 1 2 3 5 8 12 16 21
31 10 10 0 1 2 3 4 6 9 13 17 22 32 9 9 0 1 2 3 5 8 12 16 22
33 8 8 0 1 2 4 7 11 19 24 33 9 9 0 1 2 3 5 8 12 16 21
33 10 10 0 1 2 3 5 8 12 18 22 27 34 9 9 0 1 2 3 5 8 12 16 21

Table 4
One and a half orbits.

v k d Half orbit Full orbit
10 8 3 0 1 2 3 0 1 2 3 4 5 6 7
12 10 3 0 1 2 3 4 0 1 2 3 4 5 6 7 8 9
14 8 9 0 1 2 4 0 1 2 3 4 6 7 12
16 10 9 0 1 2 3 4 0 1 2 3 4 5 7 8 10 14
22 10 15 0 1 2 3 5 0 1 2 3 5 7 10 15 18 19
24 10 15 0 1 2 4 9 0 1 2 3 6 7 9 11 17 20
26 10 15 0 1 2 4 7 0 1 2 3 4 7 10 12 18 22

Other relaxations of the stringent block design conditions can be exploited. A
(g, k;λ)-difference matrix over Zg is a k × λg array A with entries from Zg with the
property that for any 1 ≤ i < j ≤ k, the collection of differences {Ai, −Aj, mod g :
1 ≤ � ≤ λg} contains the g numbers in Zg λ times each.

Proposition 3.3. There is an equireplicate (27, 21, 9, 7)-bbc and an equireplicate
(30, 21, 10, 7)-bbc.

Proof. There is a (3, 9; 3)-difference matrix; see for example, [2]. Choose any
seven of its columns and append the 14 further columns obtained by developing the
columns under addition modulo 3. Treat the resulting set of 21 columns as blocks of
a packing on the 27 points (i, σ), where i indicates the row and σ the symbol from
Z3. The resulting packing has λ = 3, and hence is a 2-(27, 9, 3) packing on 21 blocks
which is equireplicate. Hence, an equireplicate (27, 21, 9, 7)-bbc exists. Now this 2-
(27, 9, 3) packing can, by construction, be partitioned into seven sets of three blocks

EQUIREPLICATE CODES FOR OLIGO ARRAYS 489

each, so that each set contains three mutually disjoint blocks. Let P1, . . . , P7 be such
a partition of the blocks. Add three new elements a, b, c to the packing. Add a to
each block in P1 and P2 and to the first block in P7; add b to each block in P3 and
P4 and to the second block in P7; add c to the remaining seven blocks. The result is
a 2-(30, 10, 3) packing; it is equireplicate with replication number 7, and hence yields
an equireplicate (30, 21, 10, 7)-bbc.

4. Dual constructions. Since we are primarily interested in cases in which
b < v, it is natural to consider the dual set system. The dual set system of a set
system (V,B) is a set system (X,D) in which X = {xB : B ∈ B} and D = {Dy :
y ∈ V }, where Dy = {xB : y ∈ B ∈ B}. The dual of a (v, b, k)-set system with
replication numbers r1, . . . , rv is a (b, v)-set system with v blocks of sizes r1, . . . , rv
and having constant replication number k. Indeed, when the (v, b, k)-set system is
equireplicate with replication number r, its dual is a (b, v, r)-set system which has
constant replication number k. The dual of the set system in Table 1 is given in Table
5.

Table 5
Dual set system of (28, 14, 10, 5)-bbc.

0 3 7 8 9 4 5 7 9 10 1 4 7 8 13
1 3 6 8 12 0 1 2 3 13 3 5 8 10 13
2 4 10 11 13 0 6 7 10 13 2 6 8 9 13
0 1 4 6 9 4 5 6 12 13 5 6 7 8 11
3 6 9 10 11 0 2 4 5 8 0 5 9 11 13
1 2 7 9 11 1 3 4 5 11 4 8 9 11 12
0 1 8 10 11 2 3 5 9 12 0 2 6 11 12
2 3 4 6 7 3 7 11 12 13 0 1 5 7 12
2 7 8 10 12 1 2 5 6 10 1 9 10 12 13
0 3 4 10 12

The discrimination of the primal is reflected in the dual in a somewhat different
manner than in the primal. Two blocks of the dual sharing µ elements result in a
discrimination d of the primal satisfying d ≤ 2r − 2µ; hence maximizing d amounts
to minimizing µ, the intersection size of two blocks, since r is fixed. Translating this
into design vernacular, we establish the following.

Theorem 4.1. A t-(b, r, 1) packing on v blocks with replication number k yields
an equireplicate (v, b, k,min(r, b− r, 2(r − t+ 1)))-bbc with replication number r.

Proof. The dual of a t-(b, r, 1) packing on v blocks with replication number k is a
(v, b, k)-set system with replication number r in which every pair of elements occurs
in at most t− 1 blocks together.

Hence, our goal is to produce t-(b, r, 1) packings with t ≤ r/2 + 1. One potential
benefit of this dual approach when b < v is that we can examine constructions over Zb

rather than the larger Zv. We illustrate this by producing a number of 4-equireplicate
(2m,m, 8, 4)-bbc’s.

Theorem 4.2. A 4-equireplicate (2m,m, 8, 4)-bbc exists for all m ≥ 10.

Proof. The dual set system is constructed with elements in Zm and has two base
blocks which are developed modulo m. We need only ensure that the result is a 3-
(m, 4, 1) packing. When m = 10, use the base blocks {0, 1, 2, 6} and {0, 2, 4, 7}; when
m ≥ 11, use the base blocks {0, 1, 2, 7} and {0, 1, 3, 5}. The proof is completed by
verifying that no translate of a triple in either base block appears as a translate of a
different triple or as a different translate of this triple.

490 N. ALON, C. J. COLBOURN, A. C. H. LING, AND M. TOMPA

In a similar vein, other bbc’s are easily produced from 3-(b, 5, 1) packings:

v b k d Dual base blocks in Zb

30 15 10 5 {0, 1, 4, 11, 14}, {0, 2, 7, 8, 13}
32 16 10 5 {0, 2, 8, 14, 15}, {0, 3, 7, 11, 14}
34 17 10 5 {0, 3, 10, 12, 14}, {0, 4, 12, 15, 16}

The dual solutions thus far presented all have the property that v is an integral
multiple of b. We can vary the construction to admit other solutions. Suppose, for
example, that we are to produce a (25, 10, 10, 4)-bbc. Its dual is a (10, 25, 4)-set system
which is 10-equireplicate and forms a 3-(10, 4, 1) packing. Two base blocks, {0, 1, 2, 6}
and {0, 2, 4, 7}, generate 20 blocks in Z10. A third base block {0, 1, 3, 4} is used, but
in its development, we include only translates obtained by adding the even integers.
Since this last base block contains two even and two odd numbers, this development
ensures that the resulting packing is 10-equireplicate.

In general, by selecting certain translates out of one orbit of a base block, we can
vary k and b in the construction. We give some further examples of constructions of
this type next, subscripting one block with the integers to be added in forming its
translates. The first three employ packings with t = 3, while the last five employ
packings with t = 4.

v b k d Dual base blocks in Zb

27 12 9 4 {0, 1, 3, 5}, {0, 1, 2, 7}, {0, 3, 6, 9}0,1,2
30 12 10 4 {0, 1, 3, 5}, {0, 1, 2, 7}, {0, 2, 6, 8}0,1,2,3,4,5
32 20 8 5 {0, 1, 8, 14, 17}, {0, 2, 11, 18, 19}0,1,2,5,6,7,10,11,12,15,16,17
15 10 9 4 {2, 3, 5, 6, 7, 9}, {3, 4, 5, 6, 8, 9}0,2,4,6,8
28 21 8 6 {0, 1, 4, 9, 18, 20}, {0, 1, 7, 8, 14, 15}0,1,2,3,4,5,6
33 22 9 6 {0, 1, 6, 7, 10, 15}, {0, 1, 3, 11, 12, 14}0,1,2,3,4,5,6,7,8,9,10
24 21 8 7 {0, 1, 2, 4, 6, 7, 14}, {0, 3, 6, 9, 12, 15, 18}0,1,2
32 28 8 7 {0, 1, 2, 4, 7, 11, 17}, {0, 4, 8, 12, 16, 20, 24}0,1,2,3

In a number of cases, we have not been able to find (dual) solutions which are
cyclic modulo b. In some of these situations, we have resorted to using a smaller
group.

Theorem 4.3. There is a (3m, 2m, 9, 6)-bbc for all m ≥ 7.
Proof. We form the dual of the required bbc on the element set Zm ×

{0, 1}. We begin with three base blocks {(0, 0), (1, 0), (3, 0), (0, 1), (1, 1), (3, 1)}, {(2, 0),
(4, 0), (5, 0), (6, 0), (0, 1), (3, 1)}, and {(0, 0), (3, 0), (2, 1), (4, 1), (5, 1), (6, 1)}. Each
gives m blocks of the dual by adding the nonzero elements of Zm in turn to the
first coordinates of each element. It is easily verified that the result is a 3-(2m, 6, 1)
packing which is 9-equireplicate.

Theorem 4.4. There is a (4m, 3m, 8, 6)-bbc and a (5m, 3m, 10, 6)-bbc for all
m ≥ 5.

Proof. We form the dual of the required bbc on the element set Zm × {0, 1, 2}.
We begin with five base blocks:

{(0, 0), (1, 0), (2, 0), (3, 0), (4, 1), (4, 2)},
{(0, 1), (1, 1), (2, 1), (3, 1), (4, 0), (4, 2)},
{(0, 2), (1, 2), (2, 2), (3, 2), (4, 1), (4, 0)},
{(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2)},
{(0, 0), (2, 0), (0, 1), (2, 1), (0, 2), (2, 2)}.

Each gives m blocks of the dual by adding the nonzero elements of Zm in turn to
the first coordinates of each element. It is easily verified that the result is a 4-
(3m, 6, 1) packing and yields a (5m, 3m, 10, 6)-bbc. Deleting the last base block and
its translates yields a (4m, 3m, 8, 6)-bbc.

EQUIREPLICATE CODES FOR OLIGO ARRAYS 491

Proposition 4.5. There exists a (24, 15, 8, 5)-bbc and a (27, 15, 9, 5)-bbc.
Proof. The point set for the dual in each case is the 15 points Z12 ∪ {a, b, c}.

Start with the blocks obtained by developing {0, 1, 2, 4, 9} and {0, 1, 5} modulo 12.
Then the translates of {0, 1, 5} can be partitioned into three parallel classes of four
blocks each. For the three parallel classes in turn, add the points {a, b}, {a, c}, and
{b, c}, respectively, to each block of the parallel class. The result is the dual of the
(24, 15, 8, 5)-bbc.

To this dual, add the three distinct translates of {0, 3, 6, 9} modulo 12, placing
a, b, and c, respectively, in one of the three translates. This is the dual of the
(27, 15, 9, 5)-bbc.

For small values of d, a direct construction can be quite simple.
Proposition 4.6. There are (12, 6, 8, 2)-, (12, 8, 9, 2)-, (14, 7, 10, 2)-, and (15, 6,

10, 2)-bbc’s.
Proof. Start with a k-regular graph on n vertices for (k, n) = (4, 6), (3, 8), (4, 7), or

(5, 6), respectively. The complement of this set system forms the dual of the required
bbc.

Similarly, the complement of the blocks of a 2-(9, 12, 4, 3, 1) design forms the dual
of a (12, 9, 8, 3)-bbc.

We employ some constructions from Hadamard designs. A Hadamard 3-design
is a 3-(4n, 2n, n − 1) design [1]. Such a design has 8n − 2 blocks, and they occur in
4n−1 complementary pairs. Deleting one point of a 3-(4n, 2n, n−1) design produces
a 2-(4n − 1, 2n − 1, n − 1) design which has 4n − 1 blocks and replication number
2n − 1. Hence, the 2-design is symmetric, and consequently every two blocks of the
2-design intersect in n− 1 elements. The 3-design can be recovered from the 2-design
by including the complements of the blocks of the 2-design and including the blocks
with a single new element which is adjoined to each. From this construction, the 3-
design is an (n+1)-(4n, 2n, 1) packing. Deleting blocks retains this packing property,
but, more importantly, deleting complementary pairs of blocks retains the property
that the packing is equireplicate. Indeed, if we select j complementary pairs of blocks,
the replication number is j; when j ≥ 2n, the packing leads to a (2j, 4n, j, 2n)-bbc.
Using Hadamard designs for n ∈ {3, 4, 5}, we obtain the following.

Proposition 4.7. There exist (16, 12, 8, 6)-, (16, 20, 8, 10)-, (18, 12, 9, 6)-, (18,
16, 9, 8)-, (18, 20, 9, 10)-, (20, 12, 10, 6)-, and (20, 16, 10, 8)-bbc’s.

We also need one specific construction.
Proposition 4.8. There exist (18, 9, 8, 4)- and (18, 9, 10, 4)-bbc’s.
Proof. The second is the complement of the first. To construct the dual of the

first, we begin with nine points {(i, j) : i, j ∈ Z3}. We include all nine blocks of the
form {(i, k), (i, �), (j, k), (j, �)} with i, j, k, � ∈ Z3, i �= j, and k �= �. We then add all
nine blocks of the form {(i, j), (i, k), (a, �), (b, �)} when {i, a, b} = {j, k, �} = Z3. This
is a 3-(9, 4, 1) packing with 18 blocks, having constant replication number eight.

In Table 6, the dual of a (16, 38, 8, 19)-bbc is presented. The method used to
obtain this solution is of independent interest and is described in [3].

5. Nonexistence results. We have presented a large collection of constructions
for optimal equireplicate bbc’s, focusing on those with smaller discriminations in order
to use addition to produce those with larger discrimination. However, not all bbc’s
exist; in fact, those with low discrimination appear to be the least likely to exist. We
do not restrict to equireplicate bbc’s in this section. We establish a preliminary result
for small discrimination.

Theorem 5.1. An optimal (v, b, k, 1)-bbc exists only when v = k + 1 or k = 1.

492 N. ALON, C. J. COLBOURN, A. C. H. LING, AND M. TOMPA

Table 6
Dual of a (16, 38, 8, 19)-bbc.

0 4 6 7 8 9 10 11 13 14 17 19 21 27 28 29 32 35 37
0 2 4 5 8 9 15 16 17 18 19 20 22 25 27 29 31 32 34
0 1 5 6 14 16 18 19 20 23 24 26 27 28 30 31 34 35 37
0 3 7 8 12 13 16 18 20 21 26 28 29 30 31 32 33 35 36
1 2 5 6 7 9 11 13 20 21 22 24 25 30 31 32 34 35 36
1 2 3 4 5 10 13 14 15 16 20 21 24 27 29 30 32 33 37
0 1 3 4 5 7 11 12 14 17 19 20 22 23 32 33 34 36 37
2 5 6 7 8 9 12 14 15 16 19 23 25 29 30 33 35 36 37
1 2 3 4 6 12 13 15 17 23 25 26 28 29 31 32 34 35 37
2 3 6 7 10 11 15 16 17 18 20 21 22 23 27 28 31 36 37
3 4 5 6 9 10 11 12 18 19 22 24 26 27 29 31 33 35 36
0 1 2 8 10 11 12 13 15 17 19 24 27 28 30 31 33 34 36
9 10 11 13 14 15 18 19 20 21 22 23 25 26 28 29 30 33 34
1 3 5 7 8 9 10 11 12 14 15 16 17 18 24 25 26 28 32
0 2 3 4 7 8 10 12 14 21 22 23 24 25 26 27 30 34 35
0 1 4 6 8 9 13 16 17 18 21 22 23 24 25 26 33 36 37

Proof. If v ≥ 2k, the dual set system has b =
v/k� points and has at least
v − k + 1 blocks of size 1. When k > 1, some block is repeated, and hence the
discrimination is 0. If v < 2k, the dual set system has
v/(v − k)� points and has at
least k + 1 blocks of size v − 1. Its complement therefore has k + 1 blocks of size 1,
and hence contains a repeated block unless v − k = 1.

When the discrimination is two, the analysis is slightly more complex. We de-
scribe one concrete example and then give much briefer arguments thereafter. Let us
establish that a (31, 8, 8, 2)-bbc does not exist. If one were to exist, its dual has eight
points. It has 31 blocks, and each must have size at least two (and at most six). There
are 64 = 8 · 8 occurrences of points in blocks. Hence, there are either 30 blocks of size
two and one of size four, or there are 29 blocks of size two and two of size three. In
this case, since

(
8
2

)
= 28, there must be a repeated block of size two. However, then

the bbc has two identical columns, and its discrimination is zero, a contradiction. In
general, the nonexistence results all arise from an analysis of the cases that can arise,
showing that each cannot have the required discrimination.

Theorem 5.2. An optimal (v, b, k, 2)-bbc exists only if
1. v ≤ 13, v ∈ {29, 30}, or v ≥ 33 when k = 8;
2. v ≤ 14, v ∈ {32, 37, 38}, or v ≥ 41 when k = 9;
3. v ≤ 16, v ∈ {46, 47}, or v ≥ 51 when k = 10.
Proof. First we suppose that v ≥ 2k. Then b =
 2vk �. The dual of the required

bbc therefore has bk occurrences of elements distributed across v blocks, each having
size at least two. It follows that “most” blocks have size equal to two. If the dual has
a block of size three, then no block of size two can share both elements with the block
of size three. To maximize the number of blocks in the dual, we therefore construct
the dual with the largest possible number of blocks of size four and the remaining
blocks of size two.

Consider the case when k = 8. Write v = 4s + α with α ∈ {1, 2, 3, 4}. Then
b = 2s+ 1, and bk = 16s+ 8. It follows that the number of blocks of size two in the
dual, when no blocks of size three are chosen, is at least 4s− 4 + 2α. Now requiring
that 4s−4+2α ≤ (b2), we obtain that s(s−7) ≥ 4α−8. Hence, s ≥ 7 when α ∈ {1, 2}
and s ≥ 8 when α ∈ {3, 4}. When k = 9 or k = 10, the analysis is similar and is
omitted.

When v < 2k, we use the fact that a (v, b, k, 2)-bbc is equivalent to a (v, b, v−k, 2)-

EQUIREPLICATE CODES FOR OLIGO ARRAYS 493

bbc. The remaining cases have b = 5 but require more than 10 blocks of size two in
the dual of the complementary bbc.

The restrictions when the discrimination is three are more severe. In this case, the
dual has
 3vk � points, and its v blocks are almost all of size three. However, two blocks
of size three are permitted to intersect in only one element. This easily establishes
that when k ∈ {8, 9, 10} and 2k ≤ v ≤ 34, no optimal (v, b, k, 3)-bbc exists. When
v < 2k, a similar argument excludes v ∈ {13, 14, 15} when k = 8; v ∈ {15, 16, 17}
when k = 9; and v ∈ {15, 16, 17, 18, 19} when k = 10.

Turning to discrimination four, the blocks of size four in the dual form a pack-
ing in which every 3-subset appears in at most one block. Using this fact, we can
conclude that no optimal (v, b, k, 4)-bbc exists when v ∈ {15, 16, 17} and k = 8;
v ∈ {17, 18, 19, 20} and k = 9; or v ∈ {19, 20, 21, 22} and k = 10. For example, when
(v, k) ∈ {(16, 8), (18, 9), (20, 10)}, the dual is a 3-(8, 4, 1) packing with 16, 18, or 20
blocks; but the maximum packing has only 14 blocks.

For discrimination five, the blocks of size five again form a packing in which
every 3-subset appears in at most one block. When (v, k) ∈ {(17, 8), (19, 9), (21, 10),
(22, 10)}, the dual has 11 points and has at least 14 blocks of size five. Then consider
the derived design obtained by choosing a point containing the maximum number
of blocks of size five, selecting all blocks of size five containing this point, and then
deleting the point from each. This is a 2-(10, 4, 1) packing, which must have at
least seven blocks by construction. But no 2-(10, 4, 1) packing with seven blocks
exists. By complementation, we also eliminate the cases when (v, k) = (17, 9) or
(19, 10). A similar argument shows that no (24, 12, 10, 5)-bbc or (26, 13, 10, 5)-bbc
exists. A complete exhaustive search by backtracking established the nonexistence of
a (19, 12, 8, 5)-bbc.

The astute reader will have observed that fewer negative results arise for even
discrimination than for odd, and that as the discrimination increases, the negative
results are sparser. Indeed, in Tables 7 and 8 there are very few negative results for
d > 5. It is, however, possible to prove such results. We give examples in the following
two theorems.

Theorem 5.3. A (2k, 2d, k, d)-bbc does not exist when d is odd and d < 2k− 1.
Proof. Such a bbc is a 2-(2k, 2d, �d/2) packing. Hence, we require that �d/2 ·(

2k
2

) ≥ 2d · (k2). Letting d = 2s + 1, we require that s(2k − 1) ≥ (2s + 1)(k − 1).
Simplifying, 2ks− s ≥ 2ks+ k − 2s− 1, i.e., s ≥ k − 1, or d ≥ 2k − 1.

For even values of d, there is also a nonexistence result.
Theorem 5.4. A (2k, 2d, k, d)-bbc does not exist when d < k/2.
Proof. The columns of such a bbc are 2k binary vectors of length 2d so that the

Hamming distance between any pair is at least d. By the pigeonhole principle, k of
them share the same first coordinate, giving a set of k vectors of length 2d−1 so that
the Hamming distance between every pair is at least d. Since in each coordinate there
are at most �k2/4 pairs of these vectors that differ in this coordinate, and the sum
of distances between all pairs of these vectors is at least

(
k
2

)
d, it follows that

(2d− 1)k2/4 ≥ (2d− 1)�k2/4 ≥
(
k

2

)
d,

implying that d ≥ k/2, as needed.
Similar nonexistence results can be derived for other values of v and k, provided

v ≥ 2k and v−2k is small, using the Plotkin bound. (See, for example, [6, pp. 41–43].)

494 N. ALON, C. J. COLBOURN, A. C. H. LING, AND M. TOMPA

Table 7
Existence of optimal bbc’s I.

v k Existence for discrimination d, 1 ≤ d ≤ 40
0000000001 1111111112 2222222223 3333333334

1234567890 1234567890 1234567890 1234567890

9 8 +IIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

10 8 .++IIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

10 9 +IIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

11 8 .Y+YIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

11 9 .+YIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

11 10 +IIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

12 8 .++IIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

12 9 .++IIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

12 10 .++IIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

13 8 .Y.Y+YIYII IIIIIIIIII IIIIIIIIII IIIIIIIIII

13 9 .YY+IIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

13 10 .Y+IIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

14 8 ...YY+YY+I IIIIIIIIII IIIIIIIIII IIIIIIIIII

14 9 .YYI+YIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

14 10 .+YIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

15 8oY+YYY YIIIIIIIII IIIIIIIIII IIIIIIIIII

15 9 ...+Y+YIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

15 10 .+.I+IIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

16 8+.+.+ .I.I+I?I+I IIIIIIIIII IIIIIIIIII

16 9 ...YYY+YYY IIIIIIIIII IIIIIIIIII IIIIIIIIII

16 10 .Y.YY+YI+I IIIIIIIIII IIIIIIIIII IIIIIIIIII

17 8Yo+YY YIYIYIIIII IIIIIIIIII IIIIIIIIII

17 9Yo+YY YIYIYIIIII IIIIIIIIII IIIIIIIIII

17 10 ...YYY+IYI IIIIIIIIII IIIIIIIIII IIIIIIIIII

18 8 ...+YYoIII YIIIIIIIII IIIIIIIIII IIIIIIIIII

18 9+.+.+ .I.I.I+I?I ?IIIIIIIII IIIIIIIIII

18 10 ...+YYoIII YIIIIIIIII IIIIIIIIII IIIIIIIIII

19 8 ...Y.YY+YY IIYIIIIIII IIIIIIIIII IIIIIIIIII

19 9ooY+Y YYYYYIIIII IIIIIIIIII IIIIIIIIII

19 10ooY+Y YYYYYIIIII IIIIIIIIII IIIIIIIIII

20 8 ...+Y+YIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

20 9oYoY+Y YYYIIIIIII IIIIIIIIII IIIIIIIIII

20 10+.+.+ .I.I.I.I+I ?I?IIIIIII IIIIIIIIII

21 8 ...YYYY+YI YIIIIIIIII IIIIIIIIII IIIIIIIIII

21 9 ...Yo+YY+I YIIIIIIIII IIIIIIIIII IIIIIIIIII

21 10oooo+ YYYYYYYYYI IIIIIIIIII IIIIIIIIII

22 8 ...+YYYIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

22 9 ...YYYYI+I YIIIIIIIII IIIIIIIIII IIIIIIIIII

22 10YoYo+ YYYY+IYIYI IIIIIIIIII IIIIIIIIII

EQUIREPLICATE CODES FOR OLIGO ARRAYS 495

Table 8
Existence of optimal bbc’s II.

v k Existence for discrimination d, 1 ≤ d ≤ 40
0000000001 1111111112 2222222223 3333333334

1234567890 1234567890 1234567890 1234567890

23 8 ...YYYY+YY YIIIIIIIII IIIIIIIIII IIIIIIIIII

23 9 ...YoYYY+Y IYIIIIIIII IIIIIIIIII IIIIIIIIII

23 10 ...YoYYYY+ YIYIIIIIII IIIIIIIIII IIIIIIIIII

24 8 ...++++III IIIIIIIIII IIIIIIIIII IIIIIIIIII

24 9 ...YY+YI+I IIIIIIIIII IIIIIIIIII IIIIIIIIII

24 10 ...Y.YoIY+ YYII+IYIII IIIIIIIIII IIIIIIIIII

25 8 ...YYYY+II IIIIIIIIII IIIIIIIIII IIIIIIIIII

25 9 ...YoYYY+Y YIIYIIIIII IIIIIIIIII IIIIIIIIII

25 10 ...+o+YIYI IIIIIIIIII IIIIIIIIII IIIIIIIIII

26 8 ...+YYYIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

26 9 ...YYYYI+Y YYIIIIIIII IIIIIIIIII IIIIIIIIII

26 10 ...Y.YYYY+ YIYI+IIIII IIIIIIIIII IIIIIIIIII

27 8 ...YYYY+II IIIIIIIIII IIIIIIIIII IIIIIIIIII

27 9 ...++++III IIIIIIIIII IIIIIIIIII IIIIIIIIII

27 10 ...YYYYII+ IIIIIIIIII IIIIIIIIII IIIIIIIIII

28 8 ...+Y+YIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

28 9 ...YYYYY+I IIIIIIIIII IIIIIIIIII IIIIIIIIII

28 10 ...Y+YYYII IIIIIIIIII IIIIIIIIII IIIIIIIIII

29 8 .Y.YYYY+YI YIIIIIIIII IIIIIIIIII IIIIIIIIII

29 9 ...YYYYI+I IIIIIIIIII IIIIIIIIII IIIIIIIIII

29 10 ...YYYYII+ YYYIIIIIII IIIIIIIIII IIIIIIIIII

30 8 .Y.+YIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

30 9 ...YY+YY+I IIIIIIIIII IIIIIIIIII IIIIIIIIII

30 10 ...++++III IIIIIIIIII IIIIIIIIII IIIIIIIIII

31 8 ...YYYY+YY YIIIIIIIII IIIIIIIIII IIIIIIIIII

31 9 ...YYYYI+I YIIIIIIIII IIIIIIIIII IIIIIIIIII

31 10 ...YYYYYY+ IIIIIIIIII IIIIIIIIII IIIIIIIIII

32 8 ...++++III IIIIIIIIII IIIIIIIIII IIIIIIIIII

32 9 .Y.YYYYY+I IIIIIIIIII IIIIIIIIII IIIIIIIIII

32 10 ...Y+YYIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

33 8 .Y.YYYY+II IIIIIIIIII IIIIIIIIII IIIIIIIIII

33 9 ...YY+YI+I IIIIIIIIII IIIIIIIIII IIIIIIIIII

33 10 ...YYYYYY+ IIYIIIIIII IIIIIIIIII IIIIIIIIII

34 8 .Y.+YIYIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

34 9 ...YYYYY+I IIIIIIIIII IIIIIIIIII IIIIIIIIII

34 10 ...Y+YYIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

496 N. ALON, C. J. COLBOURN, A. C. H. LING, AND M. TOMPA

Since our focus here is on cases in the range of practical interest, we do not include a
detailed study of these results.

6. Existence of optimal bbc’s. We summarize the existence results for
equireplicate optimal bbc’s in the range of primary interest for the oligo array appli-
cation. We can assume that addition is applied to all of the basic designs produced.
Then it is an easy matter to verify that all but a handful of parameter sets are settled.
When k ∈ {8, 9, 10} and k < v ≤ 34, we have established existence or nonexistence
in all but five cases, namely, when (v, k, d) is one of (16, 8, 17), (18, 9, 19), (18, 9, 21),
(20, 10, 21), or (20, 10, 23).

In [3], we develop a hillclimbing method which is remarkably successful at produc-
ing bbc’s, even optimal ones. Indeed, when the bbc is not equireplicate, we succeeded
in producing a large number of base designs. In Tables 7 and 8, we give a statement
of the current result for all parameter sets with k ∈ {8, 9, 10} and k < v ≤ 34. The
encoding is as follows: + denotes the existence of an optimal equireplicate bbc, which
is described in this paper; ? denotes an unsettled equireplicate case; . denotes a pa-
rameter set for which nonexistence of any optimal bbc has been established; Y denotes
a nonequireplicate optimal bbc, found using the algorithm from [3]; and o denotes
an unsettled nonequireplicate case. The majority of entries are obtained by addition
of bbc’s with smaller discrimination; a construction of this type is denoted by I, for
“implied.” Note that sometimes an optimal bbc can be implied by the addition of two
nonequireplicate optimal bbc’s.

We present the status only for 1 ≤ d ≤ 40, but it can easily be established that
existence is implied for all d ≥ 40 for all parameter sets in our range, using addition.

The practical consequence of this is that for large discrimination, the problem
appears to become easier. However, only through the direct and computational con-
structions for small discrimination have we been able to establish such a strong exis-
tence result.

7. Concluding remarks. Optimal balanced binary codes appear, at first
glance, to require strong balance conditions leading to designs. Indeed, when v = 2k,
the conditions are quite severe and do require the pair-balance condition of balanced
incomplete block designs. However, when v is not near 2k, the packing conditions
that are required appear to be much less restrictive than do the conditions on block
sizes and replication numbers. This is the primary reason that the approach here of
constructing the required packings directly appears more fruitful than the approach
of starting with block designs and applying simple transformations.

One might expect that the nonequireplicate cases would be easier in view of the
increased flexibility in choosing replication numbers. In [3], we exploit this flexibility
to develop an heuristic search technique that is very successful.

While we have focused in this paper on cases in the range of practical interest, we
expect that similar conclusions and techniques arise more generally in the existence
of bbc’s.

Acknowledgments. Thanks to Jeff Dinitz, Vic Klee, Don Kreher, Esther
Lamken, and Rimli Sengupta for helpful suggestions.

REFERENCES

[1] T. Beth, D. Jungnickel, and H. Lenz, Design Theory, Cambridge University Press, Cam-
bridge, UK, 1986.

EQUIREPLICATE CODES FOR OLIGO ARRAYS 497

[2] C. J. Colbourn and W. de Launey, Difference matrices, in CRC Handbook of Combinatorial
Designs, C. J. Colbourn and J. H. Dinitz, eds., CRC Press, Boca Raton, FL, 1996, pp. 279–
289.

[3] C. J. Colbourn, A. C. H. Ling, and M. Tompa, A hillclimbing method for balanced binary
codes for oligo arrays, Bioinformatics, to appear.

[4] E. Hubbell and P. A. Pevzner, Fidelity probes for DNA arrays, in Proceedings of the Sev-
enth International Conference on Intelligent Systems for Molecular Biology, Heidelberg,
Germany, 1999, pp. 113–117.

[5] R. J. Lipshutz, S. P. A. Fodor, T. R. Gingeras, and D. J. Lockhart, High density synthetic
oligonucleotide arrays, Nature Genetics Supplement, 21 (1999), pp. 20–24.

[6] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-
Holland, Amsterdam, 1977.

[7] R. A. Mathon and A. Rosa, Balanced incomplete block designs, in CRC Handbook of Com-
binatorial Designs, C. J. Colbourn and J. H. Dinitz, eds., CRC Press, Boca Raton, FL,
1996, pp. 3–41.

[8] W. H. Mills and R. C. Mullin, Coverings and packings, in Contemporary Design Theory:
A Collection of Surveys, J. H. Dinitz and D. R. Stinson, eds., Wiley, New York, 1992,
pp. 371–399.

[9] R. Sengupta and M. Tompa, Quality control in manufacturing oligo arrays: A combinato-
rial design approach, in Pacific Symposium on Biocomputing, Mauna Lani, Hawaii, 2001,
pp. 348–359; also available via ftp://ftp.cs.washington.edu/tr/2000/08/UW-CSE-00-08-
03.PS.Z.

THE OBNOXIOUS CENTER PROBLEM ON A TREE∗

RAINER E. BURKARD† , HELIDON DOLLANI† , YIXUN LIN‡ , AND GÜNTER ROTE§

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 4, pp. 498–509

Abstract. The obnoxious center problem in a graph G asks for a location on an edge of the
graph such that the minimum weighted distance from this point to a vertex of the graph is as large as
possible. We derive algorithms with linear running time for the cases when G is a path or a star, thus
improving previous results of Tamir [SIAM J. Discrete Math, 1 (1988), pp. 377–396]. For subdivided
stars we present an algorithm of running time O(n logn). For general trees, we improve an algorithm
of Tamir [SIAM J. Discrete Math, 1 (1988), pp. 377–396] by a factor of log n. Moreover, a linear
algorithm for the unweighted center problem on an arbitrary tree with neutral and obnoxious vertices
is described.

Key words. location problems, center problem, obnoxious facilities, linear-time algorithm

AMS subject classifications. 90B80, 90B85, 90C35, 90C27

PII. S0895480198340967

1. Introduction. In the center problem, a set of clients on certain locations
(sites) is given. The center problem asks for finding a location for a new facility
from which the farthest client (site) can be reached in minimum time. It occurs if a
fast service in the case of an emergency is needed. This problem has received strong
interest since Hakimi (1964) published the first paper on this topic; see also Kariv
and Hakimi (1979). For a survey on center problems, see Handler (1990); for a study
of algorithms with respect to a good complexity, see Megiddo and Tamir (1983). In
particular, the case has been considered that the clients are modeled as vertices of a
tree. In this case it has been shown that the objective function is convex on each path,
which implies that a local optimum solution is also a global optimum. Exploiting this,
Megiddo (1983) gave a linear algorithm for the center problem in trees.

Recently, obnoxious location problems have found an increasing interest. In con-
trast to the usual problem, the center should be as far away as possible from the
given sites. Thus we have to maximize the minimum (weighted) distance from the
center to the sites. A formal definition of the problem is given in section 2. Such a
problem occurs, for example, if the center is a facility which produces toxic agents
which should be as far away as possible from the given locations of cities.

Another case where this model is applicable is a facility which is to be located
as far away as possible from obnoxious sites. The center in this case might be some
sensitive facility like an observatory or a radio station, which is affected by moisture
from lakes, pollution from cities, traffic from airports, or the like. In such models, it
is unnatural to use the metaphor of “clients” for the given locations; thus we prefer
the neutral term sites.

∗Received by the editors June 19, 1998; accepted for publication (in revised form) August 6, 2001;
published electronically October 4, 2001. This research has been supported by the Spezialforschungs-
bereich F 003 “Optimierung und Kontrolle,” Projektbereich Diskrete Optimierung.

http://www.siam.org/journals/sidma/14-4/34096.html
†Technische Universität Graz, Institut für Mathematik, Steyrergasse 30, A-8010 Graz, Austria

(burkard@opt.math.tu-graz.ac.at, dollani@opt.math.tu-graz.ac.at).
‡Department of Mathematics, Zhengzhou University, Zhengzhou 450052, People’s Republic of

China (linyixun@mail.zzu.edu.cn)
§Freie Universität Berlin, Institut für Informatik, Takustraße 9, D-14195 Berlin, Germany

(rote@inf.fu-berlin.de).

498

THE OBNOXIOUS CENTER PROBLEM ON TREES 499

Complexity issues regarding the placement of several facilities in an obnoxious
setting were considered by Tamir (1991). If we again consider the model where the
sites are vertices of a tree, the objective function is no longer convex or concave.
Drezner and Wesolowsky (1985) solve the obnoxious center problem on a tree with
n vertices in O(n3) time. Tamir (1991, 1988) gives two algorithms of O(n log2 n)
and O(kn log2 n) time, respectively, where k is a parameter that depends on the
structure of the tree. In section 6 we will make a simple observation which reduces
the time bound of the second algorithm to O(kn log n) time by the use of different
data structures. Tamir (1988) shows that the obnoxious center problem on a path
or a star with n vertices can be solved in O(n log n) time. In this paper we show
that the center problem on a path or a star can even be solved in linear time (in
sections 3 and 4, respectively). In section 5, we treat extended stars, which can be
obtained from stars by subdividing edges and introducing additional vertices on them.
We show that an obnoxious center in an extended star graph with b branches can be
found in O(n+ b log n) time.

In section 6 we design as well a linear algorithm for the obnoxious center problem
on a tree where all sites have the same weight. Even in this case the objective function
does not have any useful convexity properties. Obnoxious center problems for locating
a center in the plane have also been considered. Melachrinoudis and MacGregor Smith
(1995) used weighted Voronoi diagrams to find a weighted obnoxious center inside a
convex m-gon with n sites in O(mn2) time.

The counterpart to the center problem is the median problem, where a location
should be found such that the sum of weighted distances from the median to the sites
is minimized. A version including obnoxious sites has recently been treated in Burkard
and Krarup (1998). They showed that the median problem, where the friendly and/or
obnoxious sites correspond to the vertices of a cactus, can be solved in linear time.
(A cactus is a graph where any two cycles have at most one vertex in common.) Some
further questions for future research will be mentioned in section 7.

2. Obnoxious center problems. Let G = (V,E) be a simple graph with a set
of n vertices V = {v1, . . . , vn} and a set E of m edges. Each edge (vi, vj) ∈ E has
a positive length cij . Thus we can interpret each edge as the image of a closed real
interval [0, cij] of length cij . For any point z in this interval we have a corresponding
point P , and we define its distance to vi as |z| and its distance to vj as |cij − z|. This
enables us to define the shortest distance between any point P on an edge of G and a
vertex v of G. The distance between P and v, denoted by d(P, v), is thus the length
of a shortest path from P to v. Moreover, we consider each vertex vi of G as a site
(client) and attach a positive weight wi to it. The center problem on a graph G is to
minimize

f(P) = max
vi∈V

wid(P, vi)

over all points P on the edges of G. This objective function reflects the goal to locate
a facility (center) P as close to the clients vi as possible, so that the clients can quickly
get services from the center in case of an emergency.

In the case of an obnoxious facility one wants to maximize

g(P) = min
vi∈V

wid(P, vi).

This objective function places the new location as far away as possible from the sites
(vertices) vi of G. Note that the significance of weights is contrary to the usual case.

500 R. E. BURKARD, H. DOLLANI, Y. LIN, AND G. ROTE

Important and highly sensitive sites (or highly obnoxious sites) receive small weights.
Vertices which contain no sites should get weight ∞.

3. Obnoxious center problems on paths. If the input graph is a path, we
may put the n vertices on the real line and identify them with real numbers such that

0 = x1 < x2 < · · · < xn

and d(xi, xj) = |xi − xj |. Then the objective function is

g(z) = min{wi|z − xi| : i = 1, . . . , n } = min{g+(z), g−(z)}
with

g+(z) = min{wi(z − xi) : xi ≤ z },
g−(z) = min{wi(xi − z) : xi ≥ z }.

In this section we give a linear-time algorithm which finds the maximum of g(z) along
a path. We first describe how to compute g+(z) from left to right. We can compute
g−(z) in an analogous ways from right to left, and then it is easy to compute g(z)
and to find the maximum.

We incrementally compute the functions g+
1 , g+

2 , . . . , g+
n−1, which are defined as

follows:

g+
j : [xj , xn]→ R≥0 with g+

j (z) := min{wi(z − xi) : i = 1, . . . , j }.
The following properties are straightforward consequences of the definition, except
for the statement about the number of breakpoints in part (e), which we shall prove
later.

Lemma 3.1.
(a) For xj ≤ z < xj+1, we have g

+(z) = g+
j (z).

(b) g+
j is a piecewise linear concave and increasing function.

(c) g+
1 (z) = w1(z − x1).

(d) For j = 2, . . . , n− 1, g+
j (z) = min{wj(z − xj), g+

j−1(z)} in the domain of g+
j

(i.e., for z ≥ xj).
(e) The function g+(z) is piecewise linear and has at most 2n− 3 linear pieces.
Lemma 3.1(b) and (e) suggest a way to represent the functions g+

j and g+: as a
list of adjacent intervals, together with the coefficients a, b of a linear function az + b
for each interval. Actually, the list for g+

j can be conveniently organized as a stack
because we will modify only the list at its left end. In what follows, when we speak of
an interval, we will include the coefficient of a linear function defined on that interval
without mentioning it.

Lemma 3.1(c)–(d) opens the way for an incremental construction of these lists;
see Figure 1.

Incremental step: Construction of g+
j from g+

j−1. First scan. We scan

the list of intervals of g+
j−1 from xj−1 until we reach xj . This list of intervals is

removed and copied to the list of intervals that define the function g+, according to
Lemma 3.1(a). In general, the point xj lies in the middle of an interval. That interval
is then split into a left part, which is contributed to g+, and the right part, which
remains as part of the definition of g+

j−1.
Second scan. After this transformation, the domain of the function has been

reduced to [xj , xn], which is the domain of the function g+
j that we wish to compute.

THE OBNOXIOUS CENTER PROBLEM ON TREES 501

first scan second scan

z

g+
j−1(z)

xjxj−1

wj(z − xj)

x̄

Fig. 1. The construction of g+j from g+j−1.

We now apply Lemma 3.1(d). The function g+
j will start with an interval where

g+
j (z) = wj(z − xj). This interval extends until this linear function intersects the

graph of g+
j−1(z); from then on, g+

j (z) coincides with g
+
j−1(z). More precisely, this is

done as follows.

We scan the list of (remaining) intervals of g+
j−1 from the left and compare each

interval to the function wj(z − xj); as long as this function is smaller than g+
j−1 in

the whole range of the interval, we remove that interval from the list. When the two
functions intersect, we split the interval at the intersection point x̄, and we replace
the left half by an interval [xj , x̄] where the function wj(z − xj) is used.

This concludes the construction of g+
j .

We can now prove the bound of 2n − 3 on the total number of linear pieces of
g+. Initially, g+

1 has one piece. In the first scan, each piece that is contributed to the
final function g+ is removed from g+

j−1, except for one additional piece that results

from splitting one interval. In the second scan, the function g+
j gets one additional

piece (and it may lose other pieces). This gives a total of 1 + (n− 2)(1 + 1) = 2n− 3
pieces altogether, taking into account that the last iteration terminates by copying
everything from g+

n−1 to g+ in the first scan.

It is easy to see that the number of 2n− 3 pieces can actually be attained.

The computation of g− proceeds in the same way from right to left. Finally, we
vary z from x1 to xn and compute g(z) = max{g+(z), g−(z)}, simultaneously scanning
the two lists of intervals for g+ and g−, and we return the solution z attaining the
maximum of this function.

Theorem 3.2. The above algorithm solves the weighted obnoxious center problem
on a path in linear time.

Proof. We have to show only that the computation of g+ (and g−) takes linear
time: each interval that is looked at in the first scan contributes one piece to the
function g+. Therefore the total time for the first scan is O(n), by Lemma 3.1(e).
The time for the second scan is O(1 + k), where k is the number of intervals that
are removed from the list of intervals. Since the total number of removed intervals
cannot be bigger than the total number of intervals that were ever added to the list,
the total time for the second scan is also O(n). Note that the comparison of two linear

502 R. E. BURKARD, H. DOLLANI, Y. LIN, AND G. ROTE

functions and determining the intersection point in each interval can be executed in
constant time.

The final scan of the algorithm is easily done in O(n) time.
We remark that the essence of the above algorithm for computing g+ is the same

as an incremental algorithm for computing the intersection of half-spaces H1∩· · ·∩Hi,
for i = 1, . . . , n, if the half-spaces are inserted in the order of their intersection with a
fixed line (the x-axis in our case). In our case, we have the half-spaces Hj := { (z, y) :
y ≤ wj(z−xj) }, and we are actually only interested in the part lying above the x-axis.
The algorithm is geometrically dual to (and algebraically identical to) an incremental
algorithm for computing the convex hull for points in the plane which are sorted by
x-coordinate; cf., for example, Preparata and Shamos (1985) for a description of this
duality and for the linear-time convex hull algorithm for sorted points.

The unweighted version of this problem is essentially the Max-Gap problem of
finding the longest edge (or the maximum gap) between two successive numbers which
can be solved in linear time even if the numbers xi are not given in sorted order; see
Gonzalez (1975).

4. Obnoxious centers in star graphs. A star is a complete bipartite graph
K1,n. It is a tree T = (V,E) consisting of a central vertex v0 which has edges to n other
vertices {v1, . . . , vn}. Denote xi := c0i, for i = 1, . . . , n, and x0 = 0. The subproblem
of determining a locally optimum solution on the edge (v0, vi) will be denoted by Si.
It is equivalent to the problem on a path as follows: we put all vertices on the real
line such that v0 = 0, vi is to the right of v0 with distance |vi−v0| = xi, and all other
vertices vj (j �= i) are to the left of v0 with distance |vj − v0| = xj . In problem Si we
have to maximize the function

gi(z) = min

{
min
j �=i

wj(xj + z), wi(xi − z)
}

(4.1)

for 0 ≤ z ≤ xi (see Figure 2). We can omit the condition j �= i from (4.1) without
changing the problem because, for z ≥ 0, wi(xi + z) is always larger than the second
term of the expression, wi(xi − z):

gi(z) = min

{
min

j=0,...,n
wj(xj + z), wi(xi − z)

}
.(4.2)

Let the maximum be attained in z(i). Obviously, the point z(i) is a solution of
the following linear program in two variables y and z (see Figure 2):

min{ z : y ≤ wj(xj + z) for j = 0, . . . , n, y ≥ wi(xi − z) }.(4.3)

The constraints which are common to all problems Si can be written as y ≤ h(z),
where

h(z) := min
j=0,...,n

wj(xj + z).

Obviously, h(z) is a piecewise linear and increasing function. The point z(i) is the
intersection point of h(z) with wi(xi − z). Due to the monotonicity of h(z), the
obnoxious center problem asks for z∗ := max z(i). However, this z∗ can now be
obtained as optimal solution of the linear program (see Figure 3)

min{ z : y ≤ wj(xj + z) for j = 0, . . . , n; y ≥ wj(xj − z) for j = 1, . . . , n }.(4.4)

THE OBNOXIOUS CENTER PROBLEM ON TREES 503

h(z)

v0 viz(i)︸ ︷︷ ︸
v1, . . . , vn

z

y

Fig. 2. Graphical representation of subproblem Si. The shaded region is the feasible region
of (4.3). Adding the constraint indicated by the dotted line does not change the problem.

z∗

h(z)

(z∗, y∗)

0

y

z

Fig. 3. The feasible region of the linear program (4.4).

Theorem 4.1. Consider an optimal solution (z∗, y∗) of the linear program (4.4).
Then the optimal objective function value of the obnoxious center problem is y∗, and
the optimal locations problem are the points at distance z∗ from the central vertex v0
on all edges (v0, vi) for which y

∗ = wi(xi − z∗) holds.
Proof. First note that h(z∗) = y∗, and y∗ = wi(xi−z∗) must hold for at least one

index i, because otherwise there would be a solution of (4.4) with z < z∗. It is easy
to check that the locations which are constructed in the theorem have the claimed
objective function value.

We still have to show that there is no other solution. Consider a point P on
edge (v0, vi) at distance z from v0. If z < z∗, then h(z) < h(z∗) = y∗, and
hence there is a site vj whose distance d(P, vj) from P is h(z)/wj , which means
that wjd(P, vj) < y∗. If z > z∗, or if z = z∗ and i is not one of the indices j for which
y∗ = wj(xj−z∗) holds, then y∗ > wi(xi−z∗) and d(P, vi) = xi−z < y∗/wi, and thus

504 R. E. BURKARD, H. DOLLANI, Y. LIN, AND G. ROTE

wid(P, vi) < y∗.
The linear program (4.4) has 2n constraints and two variables. By the algorithm

of Megiddo (1983) it can be solved in linear time. Thus the obnoxious center in a star
graph can be found in linear time.

5. Obnoxious centers in extended star graphs. An extended star graph is
a tree which has a single vertex v0 with degree greater than 2. The remaining vertices
form paths from v0 to the leaves of the graph. We call these paths the branches of
the tree. This class of graphs is a mixture of paths and stars, which were considered
in the previous two sections. We will show that an obnoxious center in an extended
star with n vertices and b branches can be found in O(n + b log n) time. When b is
relatively small, the algorithm runs in linear time. However, when, for example, all
branches contain two edges and b ≈ n/2, the time complexity is O(n log n). We do
not see how to solve the problem in linear time even in this special case.

As in section 4, we denote xi := c0i. First we consider a local subproblem for each
branch separately: we move the center P on the ith branch using z := d(P, v0) as a
parameter. We construct the “local” objective function gi(z), considering only sites
on the ith branch (starting at v0) and ignoring all vertices on other branches. This
function is defined on some interval 0 ≤ z ≤ Zi, where Zi is the length of the branch.
The vertex v0 corresponds to z = 0. By the methods of section 3, all piecewise linear
functions gi can be constructed in linear time.

We also consider the function

h(z) := min
j=0,...,n

wj(z + xj).

As in the previous section, the optimum value is now given by

y∗ = max
i=1,...,b

max
0≤z≤Zi

min{h(z), gi(z)}.(5.1)

It is clear that this optimum is located either at a local maximum of some function
gi or at an intersection point of the graph of gi with the graph of h.

The overall approach for solving this problem can roughly be described as follows.
The function h is a piecewise linear concave and increasing function. We perform a
binary search among its breakpoints (ẑ, ŷ) to find the range of y values in which the
optimum value lies. To do this, we need to test whether y∗ ≥ ŷ for a given point
ŷ = h(ẑ) on the function h.

This test is carried out as follows. We successively look at each function gi,
decreasing z from the maximum permitted value Zi down to ẑ. We stop this scan as
soon as some value gi(z) ≥ ŷ with z ≥ ẑ is found. We have found a feasible solution
with value ŷ, and hence y∗ ≥ ŷ. On the other hand, if we have scanned all domains
z ≥ ẑ for all branches i without finding a value gi(z) ≥ ŷ, we know that y∗ < ŷ.

As we scan the functions gi, we remember the highest value ỹ that we have
encountered. If we later get another query with a different point (ẑ, ŷ), we may be
able to answer immediately because ỹ ≥ ŷ. Otherwise, we continue the right-to-left
scan of each function gi at the value z where we left off during the last previous scan
of this function.

Note that we scan only intervals where we know that gi(z) ≤ h(z). This means
that linear pieces of gi which were examined need not be examined again because
the feasible value ỹ is an upper bound of gi(z) over all intervals that were examined.
Therefore the time complexity for answering a sequence of tests of the condition y∗ ≥ ŷ

THE OBNOXIOUS CENTER PROBLEM ON TREES 505

is bounded by the total number of pieces of all functions gi, which is O(n), plus an
overhead of O(b) for each test. The overhead comes from the fact that we may have
to spend constant time for each branch i just to “look at” this branch. For example,
if we stopped the previous scan of gi because the point ẑ was reached, we may have
to repeatedly examine the single linear piece to which this point belongs.

We will now describe more precisely how the binary search among the breakpoints
of h is carried out. The function h is the lower envelope of n + 1 increasing linear
functions, whose slopes are given by the weights wi. We start by finding the median
ŵ of the n+ 1 slopes and identifying the leftmost point ŷ = h(ẑ) on the graph where
the slope becomes ≤ ŵ. This point can be identified by solving the linear program

max{ y − ŵz : z ≥ 0, y ≤ wj(z + xj) for j = 0, . . . , n }(5.2)

in the two variables y and z. Actually, this linear program may yield any point with
slope ŵ, not necessarily the leftmost point with slope ŵ or smaller. The leftmost
point can be found by perturbing the objective function or by solving the following
auxiliary linear program:

min{ z : y − ŵz = K∗, z ≥ 0, y ≤ wj(z + xj) for j = 0, . . . , n },

whereK∗ is the optimum value of (5.2). (This is a linear program in only one variable,
after using the equation to eliminate y.)

Now we test the condition y∗ ≥ ŷ as described above. If we find that y∗ ≥ ŷ, we
can discard the first half of the linear functions, with slopes > ŵ, from consideration
in h(z) because we know that the optimum cannot lie in the range z < ẑ. Otherwise,
if y∗ < ŷ, we can discard the other half of the linear functions from the definition of
h(z) because they play no role for restricting the optimum of (5.1). (In fact, in this
case, we have actually scanned the part with z ≥ ẑ of all branches, and we can restrict
the remaining search to the range z < ẑ.)

We continue this process by finding the median of the remaining pieces of h, and
so on, until only one linear piece of h is left. It is then easy to find the optimum value
of (5.1) directly in linear time.

Since the median of n numbers can be found in linear time by the algorithm of
Blum et al. (1973) (see also Aho, Hopcroft, and Ullman (1983)), the overall effort for
the binary search is

O(n) +O(n/2) +O(n/4) + · · · = O(n).

To this we must add the effort for the O(log n) queries, which is

O(log n) ·O(b) +O(n),

as discussed above. Summarizing, we have the following theorem.
Theorem 5.1. The weighted obnoxious center problem on an extended star tree

with n vertices and b branches can be found in O(n+ b log n) time and O(n) space.

6. The obnoxious center problem in general trees. In this section we con-
sider the obnoxious center problem in weighted and unweighted trees.

6.1. Finding an obnoxious center in weighted trees. Tamir (1991, 1988)
gives two algorithms of O(n log2 n) and O(kn log2 n) time complexity, respectively,
for solving the obnoxious center problem on an arbitrary tree with n vertices. The

506 R. E. BURKARD, H. DOLLANI, Y. LIN, AND G. ROTE

parameter k depends on the structure of the tree. For paths and stars k = O(1), and
for balanced trees k = O(log n), but there exist trees such that k = Θ(n). By an easy
observation, Tamir’s algorithm of 1988 can be improved by a factor of logn. Tamir
notes that, if the center is restricted to a single edge, the objective function is a lower
envelope of n linear functions. When one goes from an edge to an adjacent edge, not
all of these linear functions have to be changed. We can obtain the lower envelope of
the functions for the adjacent edge by removing some linear functions and adding new
ones. Tamir (1988) showed that one can successively obtain the objective function
for all edges with a total of O(kn) insertions and deletions of linear functions.

Tamir (1988) used the data structure of Overmars and van Leeuwen (1981) for
maintaining a lower envelope of n linear functions under deletions and insertions.
This data structure takes linear space and O(log2 n) time for a deletion or insertion.
The maximum of the current lower envelope over some given interval can be found in
O(log n) time.

However, the sequence of O(kn) insertions and deletions of linear functions can
be computed beforehand, and thus we can use the algorithm of Hershberger and
Suri (1996) for an off-line maintenance of the lower envelope of linear functions.
This data structure needs only O(n log n) time to process a sequence of n insertions,
deletions, and queries for the maximum, i.e., only O(log n) time per operation on the
average. In total, this reduces the complexity to O(kn log n). Note that for small k
(k = O(log n)), this time complexity bound is lower than the O(n log2 n) bound of
Tamir (1991).

6.2. A linear algorithm for finding an obnoxious center in unweighted
trees. Let us determine an obnoxious center in the tree T = (V,E) with edge lengths
cxy. The center can be placed in any vertex or on any edge of the tree but should
be as far away as possible from the vertices of some given set V0 ⊆ V of obnoxious
sites. Let us call the vertices in V0 black vertices and the vertices outside of V0 white
vertices. Thus our problem is to maximize

g(z) = min
v∈V0

d(z, v).

The objective function g(z) is not necessarily concave along a path. For example, in
the tree shown in Figure 4 (V0 consists of the 4 black vertices), g(z) is neither convex
nor concave along the path (a, b, c, d).

Fig. 4. Nonconvexity of objective function g(z).

Since g(z) is concave on each edge, an O(n2) algorithm is easy to realize by
examining every edge. In the following we describe a linear algorithm.

We first select an arbitrary vertex r as the root of the tree. Then we perform a
sweep from the leaves to the root, and for each vertex u, we compute the minimum
distance g+(u) from u to a black vertex in the subtree below u (including u itself).

THE OBNOXIOUS CENTER PROBLEM ON TREES 507

Finally, during a root-to-leaf sweep, for each vertex u, we compute the minimum
distance g(u) from u to any black vertex, and we also locate the optimal point on
each edge.

Phase I. We denote the set of children of the vertex u by S(u). We can set
g+(u) := 0 for all black vertices. For white vertices we have

g+(u) = min
v∈S(u)

(cuv + g+(v)).

This includes the case of white leaves (S(u) = ∅) for which we can initialize g+(u) =
∞. We then inductively compute g+(u) for all other white vertices, proceeding from
the leaves towards the root.

Phase II. We proceed from the root to the leaves. At the root r, we have g(r) :=
g+(r).

Now consider an edge (u, v) from a vertex u to its child v. We assume that g(u)
has already been determined correctly. For a point P at distance z from u on this
edge, we claim that the minimum distance to a black vertex is

min{g(u) + z, g+(v) + (cuv − z)} for 0 ≤ z ≤ cuv.(6.1)

The second expression is clearly equal to the minimum distance from P to the nearest
black vertex in the subtree of v. On the other hand, if the path from P to the nearest
black vertex goes through u, its length is represented by the first expression in the
above formula. It follows that the expression (6.1) is certainly not bigger than the
minimum distance from P to a black vertex.

It is possible that the first expression g(u)+z does not correspond to a path from
P to a black vertex. It may represent a walk that starts by going from P to u, returns
to v, and continues into the subtree of v. This happens precisely when the closest
black vertex of u lies in this subtree. However, then we must have g(u) = cuv+g

+(v),
and the second expression is smaller than the first. We conclude that there is a black
vertex whose distance from P equals (6.1), and hence the claim is true.

We can now determine the optimal location for the center on the edge (u, v) in
constant time by maximizing (6.1) over all z. For z = cuv, we get P = v, and hence

g(v) := min{g(u) + cuv, g
+(v)}.

This formula allows us to determine g(v) for every vertex v from the value g(u) of its
parent u, and we can inductively find g(v) for all vertices.

It is obvious that the above procedure takes linear time. Thus we have shown the
following theorem.

Theorem 6.1. The unweighted obnoxious center problem on a tree can be solved
in linear time.

7. Concluding remarks. In the study of obnoxious center problems, Tamir
(1988, 1991) presented O(n log n) algorithms for path trees and star trees, and an
O(n log2 n) algorithm for general trees. For the extremal cases, i.e., for paths (the
trees with largest diameter) and for stars (the trees with smallest diameter), as well
as for unweighted trees, we have obtained O(n) algorithms in this note. The question
whether one can get linear-time algorithms for general trees remains open.

For the multifacility obnoxious center problem on a path, an approach based on
the O(n log n) algorithm of Tamir (1988) significantly improved the O(n3) bound of

508 R. E. BURKARD, H. DOLLANI, Y. LIN, AND G. ROTE

Drezner and Wesolowsky (1985). Now, by using our linear algorithm of section 3, the
bound can be further improved to O(n).

A natural generalization of the center problem and the obnoxious center problem
is to combine the two objective functions f(x) and g(x) for locating a center x. A
similar approach was proposed for the generalized median problem by Burkard and
Krarup (1998). On one hand, we may view

f(z) = max
vi∈V+

wid(z, vi)

as the service cost for friendly sites in V+ ⊆ V in case of emergency, where wi > 0 for
vi ∈ V+. On the other hand, we may view

g(z) =M + max
vi∈V−

wid(z, vi)

as the damage cost of the obnoxious sites in V− ⊆ V in case of an emergency, where
wi < 0 for vi ∈ V− and M > 0 is a constant. Let p, q be the probabilities of these two
kinds of emergency events. Then the expected cost will be

E(z) = p · f(z) + q · g(z).
The model of minimizing E(z) would be an analogue of the median problem with
positive and negative weights (see Burkard and Krarup (1998)), and could be an
interesting problem for further study. First results in this respect concerning paths,
stars, and trees can be found in the recent report by Burkard and Dollani (2001).

Acknowledgment. We thank Gerhard Woeginger for useful discussions.

REFERENCES

A. V. Aho, J. E. Hopcroft, and J. D. Ullman (1983), Data Structures and Algorithms,
Addison-Wesley, Reading, MA.

M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan (1973), Time bounds for
selection, J. Comput. System Sci., 7, pp. 448–461.

R. E. Burkard and H. Dollani (2001), Center Problems with Pos/Neg Weights on Trees, SFB-
Report 215, Institute of Mathematics, Graz University of Technology, Graz, Austria.

R. E. Burkard and J. Krarup (1998), A linear algorithm for the pos/neg-weighted 1-median
problem on a cactus, Computing, 60, pp. 193–215.

Z. Drezner and G. O. Wesolowsky (1985), Location of multiple obnoxious facilities, Trans-
portation Sci., 19, pp. 193–202.

T. Gonzalez (1975), Algorithms on Sets and Related Problems, Technical report, Department of
Computer Science, University of Oklahoma, Norman, OK.

S. L. Hakimi (1964), Optimum locations of switching centers and the absolute centers and medians
of a graph, Operations Res., 12, pp. 450–459.

G. Y. Handler (1990), p-center problems, in Discrete Location Theory, P. B. Mirchandani and
R. L. Francis, eds., Wiley, New York, pp. 305–347.

J. Hershberger and S. Suri (1996), Off-line maintenance of planar configurations, J. Algo-
rithms, 21, pp. 453–475.

O. Kariv and S. L. Hakimi (1979), An algorithmic approach to network location problems I: The
p-centers, SIAM J. Appl. Math., 37, pp. 513–538.

O. Kariv and S. L. Hakimi (1979), An algorithmic approach to network location problems II:
The p-medians, SIAM J. Appl. Math., 37, pp. 539–560.

N. Megiddo (1983), Linear-time algorithms for linear programming in R3 and related problems,
SIAM J. Comput., 12, pp. 759–776.

N. Megiddo and A. Tamir (1983), New results on the complexity of p-center problems, SIAM J.
Comput., 12, pp. 751–758.

E. Melachrinoudis and J. MacGregor Smith (1995), An O(mn2) algorithm for the maximin
problem in E2, Oper. Res. Lett., 18, pp. 25–30.

THE OBNOXIOUS CENTER PROBLEM ON TREES 509

M. H. Overmars and J. van Leeuwen (1981), Maintenance of configurations in the plane, J.
Comput. System Sci., 23, pp. 166–204.

F. Preparata and M. I. Shamos (1985), Computational Geometry: An Introduction, Springer-
Verlag, New York.

A. Tamir (1988), Improved complexity bounds for center location problems on networks by using
dynamic data structures, SIAM J. Discrete Math., 1, pp. 377–396.

A. Tamir (1991), Obnoxious facility location on graphs, SIAM J. Discrete Math., 4, pp. 550–567.

STRUCTURAL DIAGNOSIS OF WIRING NETWORKS: FINDING
CONNECTED COMPONENTS OF UNKNOWN SUBGRAPHS∗

WEIPING SHI† AND DOUGLAS B. WEST‡

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 4, pp. 510–523

Abstract. Given a graph G = (V, E), we want to find the vertex sets of the components of an
unknown subgraph F = (V,E) of G such that E ⊆ E. We learn about F by sending an oracle a
query set S ⊆ V , and the oracle tells us the vertices connected to S in F . The objective is to use
the minimum number of queries to partition the vertex set V into components of F . In electronic
circuit design, the problem is also known as structural diagnosis of wiring networks.

Key words. graph theory, graph algorithm, lower bound, fault diagnosis, component, connec-
tion class

AMS subject classifications. 68Q25, 68R10, 05C85, 05C40, 94C12

PII. S0895480100371286

1. Introduction.

1.1. Problem formulation. Diagnosis of wiring networks is an important prob-
lem in the design and production of very large scale integration, multichip module,
and printed circuit board systems [1, 4, 5, 7, 8, 12]. A wiring network consists of a
set of nets. Each net contains a driver, a set of receivers, and electric conductors that
connect the driver and the receivers. The logic value (1 or 0) of a good net is set
by its driver and observed by its receivers. When two or more nets are involved in a
short fault, their receivers all receive the logical OR of the values of their drivers. To
diagnose a wiring network, we send test vectors of 0’s and 1’s from the drivers, and
observe the outputs from the receivers, to find all the short faults.

In this paper, we study structural diagnosis, that is, the detection and location of
all short faults between nets using the information regarding the particular routing
of the nets. In contrast, behavioral diagnosis does not use any structural information
and assumes all faults are possible. From the circuit layout information, we can find
all places where a direct short fault may occur and represent the information as an
undirected graph G = (V, E), which we call the adjacency graph. Each vertex v ∈ V
represents a net and each edge vivj ∈ E represents a potential direct short fault
between nets vi and vj . Note that although G records only potential direct short
faults between pairs of nets, we may have multiple-net short faults through sequences
of direct shorts involving two nets each.

In any graph G, vertices vi and vj are connected if G contains a path from vi to
vj . The components of a graph G are its maximal connected subgraphs. The vertex
sets of the components are the equivalence classes of the connection relation, which
we call the connection classes of G.

The actual presence of direct short faults among the nets can be viewed as a fault
graph F = (V,E), which is a subgraph of G. The vertex set of F is the same as the

∗Received by the editors April 24, 2000; accepted for publication (in revised form) May 9, 2001;
published electronically October 23, 2001.

http://www.siam.org/journals/sidma/14-4/37128.html
†Department of Electrical Engineering, Texas A&M University, College Station, TX 77843 (wshi@

ee.tamu.edu). The research of this author was supported in part by NSF grant MIP-9309120.
‡Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801

(west@math.uiuc.edu). The research of this author was supported in part by NSA/MSP grant
MDA904-93-H-3040.

510

DIAGNOSIS OF WIRING NETWORKS 511

vertex set of G. The edge set of F is a subset of the edge set of G, but it is not given
to us. Each edge vivj of F represents the presence of an actual direct short fault
between nets vi and vj . Figure 1 shows an adjacency graph G, a fault graph F , and
the connection classes of F . In general, it is not possible to uniquely determine F .
For example, in Figure 1, we cannot distinguish whether F has two edges or three
edges among {v1, v2, v3}.

G

❝
❝

❝
❝

�
�

��❅
❅

❅❅

v1 v2

v3v4

F

❝
❝

❝
❝

❅
❅

❅❅

v1 v2

v3v4

Connection
Classes

{v1, v2, v3}
{v4}

Fig. 1. Adjacency graph G, fault graph F , and connection classes of F .

Formally, the problem of structural diagnosis can be described as follows. Given
an adjacency graph G, we want to find the connection classes of the unknown fault
graph F ⊆ G. We obtain information about F only through queries to an oracle.
For any query set S ⊆ V , the oracle tells us Q(S), the set of vertices connected
to vertices of S in the fault graph F . In other words, Q(S) is the union of the
connection classes that intersect S. In the example of Figure 1, Q({v1}) = {v1, v2, v3}
and Q({v2, v4}) = {v1, v2, v3, v4}. The objective is to find the connection classes of F
using the minimum number of queries. Diagnosing a wiring network corresponds to
finding the connection classes of the fault graph F , and applying tests corresponds to
querying the oracle.

1.2. Previous results. Diagnosis algorithms may be adaptive or nonadaptive
[1]. In an adaptive algorithm, each query is computed using the responses to previous
queries. In a nonadaptive algorithm, all query inputs are decided before asking any
queries. Adaptive algorithms can be used in applications where test vectors and
results are sent and received though a external device. Nonadaptive diagnosis can be
used in applications where tests are hardwired inside of the system.

There are three levels of diagnostic resolution. The highest level is full diagnosis,
finding all the connection classes. The second level is faulty net identification, identi-
fying all the nets involved in short faults. The lowest level is fault detection, detecting
whether there is any fault at all. Faulty net identification and fault detection have
been well understood [4, 8, 12]. In this paper, we study full diagnosis.

Tables 1 and 2 summarize the previous best results. In the tables, lg denotes the
base 2 logarithm, n is the number of nets, G is the adjacency graph, and χ(G) is the
chromatic number of G.

For behavioral diagnosis of n nets, which is the special case of structural diagnosis
where G = Kn, Kautz [8] showed that �lg n� tests are necessary and sufficient to detect
whether some short exists. He used the counting sequence method, which is optimal
for fault detection but does not provide faulty net identification. To identify all the
nets involved in short faults, Cheng, Lewandowski, and Wu [4] proposed the maximum
antichain method that uses lg n+ 1

2 lg lg n+O(1) tests. In this method, the bit strings
sent by the nets all contain an equal number of 0’s and 1’s. The maximum antichain
algorithm is proved to be optimal, or within 1 from optimal, under various restrictions
on how the results are analyzed [4, 12]. For nonadaptive full diagnosis, a number of

512 WEIPING SHI AND DOUGLAS B. WEST

Table 1
Best algorithms for behavioral diagnosis (G = Kn).

Diagnostic Adaptive Best algorithm Number of Optimal
resolution tests

fault
detection no counting seq [8] �lgn� yes
faulty net

identification no max antichain [4] (1 + o(1)) lgn almost
full no walking 1 skip 1 [12] n− 1 yes

diagnosis yes divide conquer [12] �lgn� yes

Table 2
Best algorithms for structural diagnosis (arbitrary G).

Diagnostic Adaptive Best algorithm Number of Optimal
resolution tests

fault
detection no graph coloring [4, 7] �lgχ(G)� yes
faulty net (1 + o(1))·

identification no max antichain [4] lgχ(G) almost
full no decomposition [5] ? ?

diagnosis yes ? ? ?

researchers proposed the walking ones method. In this method, each query contains
a single vertex. After n queries, we can look at each output Q({vi}) to tell which
vertices are shorted to vi. Shi and Fuchs [12] proved that if we skip any one test
from the walking ones algorithm, then it is optimal. For adaptive full diagnosis, Shi
and Fuchs [12] presented a divide-and-conquer algorithm that uses �lg n� tests, which
is optimal. Shi and West [13] also gave an optimal randomized algorithm that uses
expected lg lg n+ lg k queries, where k is the number of connection classes.

For structural diagnosis, where the adjacency graph G is an arbitrary graph, sev-
eral researchers [4, 7] observed that �lgχ(G)� tests are sufficient for fault detection,
where χ(G) is the chromatic number of G. It can be shown that �lgχ(G)� tests
are also necessary: Consider an adversary that responds Q(S) = S while potential
edges remain; this result is equivalent to showing that the minimum number of bi-
partite subgraphs needed to cover G is �lgχ(G)�. Although these observations imply
that finding the minimum of tests for fault detection is NP-hard, it relates the fault
detection problem to the well-known graph theory problem, where approximation
algorithms are available. The maximum antichain algorithm is also applied to struc-
tural diagnosis [4], using lgχ(G)+ 1

2 lg lgχ(G)+O(1) tests for faulty net identification.
For full diagnosis, Feng, Huang, and Lombardi [5] proposed a graph decomposition
algorithm.

1.3. Our results. We present a variety of results for full diagnosis using graph
theoretic techniques. In section 2, we propose adaptive algorithms for structural di-
agnosis. Theorem 2.7 leads to a method of approximating the minimum number of
adaptive tests for arbitrary adjacency graphs. In section 3, we consider the non-
adaptive problem. We prove that deciding whether a set of queries can perform full
diagnosis is NP-hard, even if G = Kn. Theorem 3.7 gives a method of approximat-
ing the minimum number of nonadaptive queries for arbitrary adjacency graphs. In
sections 2 and 3, we also present optimal or near optimal adaptive and nonadaptive al-
gorithms when the adjacency graphs are complete graphs, complete bipartite graphs,

DIAGNOSIS OF WIRING NETWORKS 513

paths, trees, planar graphs, or random graphs.

2. Adaptive algorithms. In this section, we study adaptive algorithms for
finding the connection classes of an unknown subgraph F of an arbitrary graph G. An
adaptive algorithm A implicitly defines a decision tree. At each node of the decision
tree, the algorithm selects a set of vertices S and makes a query. Upon receiving the
set Q(S) from the oracle, the algorithm selects a subtree. Each leaf of the decision
tree corresponds to a partition of the vertex set V (G) into connection classes. The
decision tree cannot be represented explicitly because the number of leaves is at least
the number of ways to partition V (G), which is exponential.

Definition 2.1. Let AG be the set of all adaptive algorithms that find the con-
nection classes of an unknown subgraph of G. Let q(A,F) be the number of queries
used by algorithm A when the unknown subgraph is F . We define q(G), the adaptive
test number of a graph G, to be

q(G) = min
A∈AG

max
F⊆G

q(A,F).

In other words, q(G) is the minimum number of tests necessary and sufficient for
adaptive full diagnosis when the adjacency graph is G.

Graph G1 is a minor of graph G2 if G1 can be obtained from G2 by a sequence of
edge deletions and edge contractions. For example, Figure 2 shows that the complete
graph K4 is a minor of the complete bipartite graph K3,3.

❞
❞
❞

❞
❞
❞

�
��

✁
✁
✁
✁
✁✁

�
��

❅
❅❅

❅
❅❅

❆
❆
❆
❆
❆❆ ❞

❞
❞
❞

❞

�
��

✄
✄
✄
✄
✄✄

❅
❅❅

✁
✁✁

❈
❈
❈
❈
❈❈

❆
❆❆

❞ ❞
❞
❞

✂
✂
✂
✂
✂
✂

❇
❇

❇
❇

❇
❇

✡
✡✡

❏
❏❏

⇒ ⇒

Fig. 2. K4 is a minor of K3,3.

Lemma 2.2. If G1 is a minor of G2, then q(G1) ≤ q(G2).
Proof. If G1 is obtained from G2 by deleting (or contracting) an edge e, then

the problem of finding connection classes for an unknown subgraph F1 of G1 is the
problem of finding the connection classes of an unknown subgraph F2 of G2 with the
additional information that F2 does not contain (or does contain) edge e. With more
information about F2 within G2, we do not need more queries.

To see how to construct an algorithm for G1 given an algorithm for G2, assume
G1 is obtained from G2 by contracting an edge vivj to v′i, where vi, vj ∈ V2 and
v′i ∈ V1. Any algorithm A2 that finds the connection classes for G2 can be modified to
become an algorithm A1 for G1 as follows. Whenever A2 makes a query S, A1 makes
a query S′, where

S′ =
{
S if vi /∈ S and vj /∈ S,
S ∪ {v′i} − {vi, vj} otherwise.

Lemma 2.3. If the vertex sets of graphs G1 and G2 are disjoint, and G1 + G2

denotes the disjoint union of G1 and G2, then q(G1 +G2) = max{q(G1), q(G2)}.
Proof. Let V1, V2 be the vertex sets for G1, G2, and let A1, A2 be optimal al-

gorithms for finding connection classes on these graphs. We define an algorithm on

514 WEIPING SHI AND DOUGLAS B. WEST

G1 +G2. Whenever A1 wants to query S1 ⊆ V1 and A2 wants to query S2 ⊆ V2, we
query S1 ∪S2. Since Q(S1) = Q(S1 ∪S2)∩ V1 and Q(S2) = Q(S1 ∪S2)∩ V2, both A1

and A2 can proceed.
Definition 2.4. For any graph G = (V, E) and S ⊆ V , the S-connection graph

GS of G is the graph with vertex set S and the edge set consisting of all pairs vivj such
that vi, vj ∈ S and G has a path from vi to vj that intersects S only at its endpoints.

For example, Figure 3 shows a graph G and its S-connection graph GS . The
concept of an S-connection graph allows us to concentrate on the set of vertices S
and simplify the rest of the graph to keep only the connection information.

G

❞
❞

❞ ❞ ❞
❞
❞ ❞

❞✡
✡

❏
❏ ✡

✡

❏
❏v2

v1

v3

v5

v4

GS

❞

❞
❞

❞

❞

v2

v1

v3

v4

v5�
��

❅
❅❅

❅
❅❅

�
��

Fig. 3. GS is an S-connection graph of G for S = {v1, v2, v3, v4, v5}.

Definition 2.5. For any adjacency graph G = (V, E) and S ⊆ V , the restricted
connection class problem (G,S) is the problem of finding the connection classes of an
unknown subgraph F of G, where F is restricted to subgraphs of G such that Q(S) = V .
The number of queries required to solve this problem is

q′(G,S) = min
A

max
F
q(A,F),

where F satisfies the restriction described above, A has the knowledge that F is re-
stricted, and q(A,F) is the number of queries used by A when the fault graph is F .

For example, consider the adjacency graph G in Figure 1 and the restricted con-
nection class problem (G, {v2, v4}). Since the restriction requires that Q({v2, v4}) =
{v1, v2, v3, v4}, we know the fault graph F must contain at least two edges among
{v1, v2, v3}. Therefore, the restricted problem can be solved using only one query,
Q({v2}).

Arguing as in the proof of Lemma 2.2, it follows that if G1 is a minor of G2 and
both contain the vertex set S, then q′(G1, S) ≤ q′(G2, S).

Lemma 2.6. For any graph G = (V, E) and a set of vertices S ⊆ V , q′(G,S) ≤
q(GS).

Proof. We first show that, for every fault graph F of G, there exists a fault graph
H of GS such that the connection classes of H are the intersections of the connection
classes of F with S. H consists of edges vivj such that F has a path from vi to vj
intersecting S only at its endpoints. The graph H incorporates the information of
which pairs of vertices in F are in the same connection classes.

Let A be an optimal algorithm that solves the connection class problem for GS .
We use A to solve the restricted connection class problem (G,S). At each step, if A
wants to make a query R on GS , we make a query R on G and use Q(R) ∩ S as a
simulated response on GS . This is the correct response for an actual subgraph H of
GS whose connection classes are the intersections with S of the connection classes of
the unknown subgraph F of G. Algorithm A uses the response Q(R)∩S to choose the
next query to make on GS . When A completes its work, it declares the connection
classes forH. We claim that this partition of S permits us to determine the connection

DIAGNOSIS OF WIRING NETWORKS 515

classes of F without further queries. If this claim is true, then we have used at most
q(GS) queries to solve the restricted connection class problem.

Let Ci, Cj be any two connection classes of F . Since Q(S) = V , Ci ∩ S = ∅ and
Cj ∩ S = ∅. Also, Ci ∩ S and Cj ∩ S are connection classes in H. Thus we know the
correct distribution of S among connection classes of F . Since A determines that Ci
and Cj are distinct classes, some response contains one of them but not the other.
Therefore, we learn that each vertex v ∈ Ci is not connected to any vertex in Cj for
any j = i.

For any graph G = (V, E) and set S ⊆ V , the induced subgraph of G by S is the
graph G[S] whose vertex set is S and the edge set is {vivj : vivj ∈ E and vi, vj ∈ S}.
The graph obtained by deleting the vertices in S is G− S; thus G[V − S] = G− S.

Theorem 2.7. For any graph G with vertex set V ,

q(G) ≤ 1 + min
S⊆V

max{q(GS), q(G− S)}.

Proof. For any algorithm that solves the connection class problem on G, let S
be the set of vertices chosen by the algorithm to make the first query. The response
Q(S) partitions G into disjoint subgraphs G[Q(S)] and G−Q(S) such that the fault
graph F has no edge between Q(S) and G−Q(S). Therefore,

q(G) ≤ 1 + min
S⊆V

max
Q(S)

max{q′(G[Q(S)], S), q(G−Q(S))}

= 1 + min
S⊆V

max

{
max
Q(S)

q′(G[Q(S)], S),max
Q(S)

q(G−Q(S))
}

≤ 1 + min
S⊆V

max{q′(G,S), q(G− S)}.

In the last step, we used the fact that G[Q(S)] is a minor of G and that G−Q(S) is
a minor of G− S. From Lemma 2.6, the theorem is proved.

Corollary 2.8. Let G be a graph with vertex set V . For any S ⊆ V , if
G1, . . . , Gk are components of G−S, then q(G) ≤ 1+max{�lg |S|�, q(G1), . . . , q(Gk)}.

Proof. Since every S-connection graph is a minor of K|S|, q(GS) ≤ q(K|S|) =
�lg |S|�. From Lemma 2.3, q(G− S) = max{q(G1), q(G2), . . . , q(Gk)}.

Theorem 2.9. For any graph G with vertex set V , if, for every S ⊆ V , GS is
obtained by deleting or contracting each edge not in G[S], then

q(G) = 1 + min
S⊆V

max{q(GS), q(G− S)}.

Proof. Every optimal algorithm begins by making a query on some set S, after
which it must solve the restricted problem (G[Q(S)], S) and the usual connection class
problem on G−Q(S). It chooses S to minimize the worst-case subsequent number of
queries. This yields the first equality

q(G) = 1 + min
S⊆V

max
Q(S)
{max{q′(G[Q(S)], S), q(G−Q(S))}}

= 1 + min
S⊆V

max

{
max
Q(S)

q′(G[Q(S)], S),max
Q(S)

q(G−Q(S))
}

≥ 1 + min
S⊆V

max{q′(G,S), q(G− S)}.

In the last step, we choose Q(S) = V for the first term, and we choose Q(S) = S
for the second term. Then, since GS is a minor of G, we have q′(G,S) ≥ q′(GS , S).

516 WEIPING SHI AND DOUGLAS B. WEST

Finally, we observe q′(GS , S) = q(GS) since the restricted problem (GS , S) is actually
the unrestricted problem on GS . Therefore,

q(G) ≥ 1 + min
S⊆V

max{q(GS), q(G− S)}.

The other direction of the inequality is Theorem 2.7.
Theorem 2.7 and Corollary 2.8 can be used to design an approximation algorithm

for general graphs, such as the one at the end of this section. Theorem 2.9 can be used
to obtain exact expressions for the adaptive test number on some classes of graphs.

Corollary 2.10. For the complete graph Kn on n vertices, q(Kn) = �lg n�.
Proof. This was first proved by Shi and Fuchs [12]. Here we obtain it from

Theorem 2.9. Each S-connection graph of Kn is K|S|, which is a minor of Kn. Also,
Kn − S = Kn−|S|. Therefore, q(Kn) = 1 + q(K�n/2) = �lg n�.

Corollary 2.11. For the n-vertex path Pn, q(Pn) = �lg lg(n+ 1)�.
Proof. Each S-connection graph is P|S|, which is a minor of Pn. The graph G−S

has n− |S| vertices. From the pigeonhole principle, at least one component of G− S
is a path of at least (n− |S|)/(|S|+ 1) vertices. On the other hand, if the vertices of
S are evenly spaced among the n vertices, then every component in G − S contains
at most (n− |S|)/(|S|+ 1) vertices. Therefore,

q(Pn) = 1 + min
S⊆V

max{q(P|S|), q(P�(n−|S|)/(|S|+1))}.

Solving the equation |S| = (n − |S|)/(|S| + 1) gives |S| = √n+ 1 − 1. Therefore,
q(Pn) = 1 + q(P�√n+1−1�), which yields q(Pn) = �lg lg(n+ 1)�.

Theorem 2.12. If G is a tree of n vertices, then q(G) ≤ lg lg n + 3, and the
queries can be constructed in polynomial time.

Proof. By removing a single vertex, an n-vertex tree can be partitioned into
components having at most n/2 vertices each. (Pick any vertex v in the tree; if some
component in G− {v} has more than n/2 vertices, move to the neighbor of v in that
component and repeat until all components have size at most n/2.)

We iteratively place such splitting vertices into S until each remaining component
has at most 2

√
n vertices. This process is modeled by a decomposition tree T . The

parents of leaves in T correspond to connected subgraphs of G with at least 2
√
n

vertices, so there are at most
√
n/2 of them. When the leaves of T are deleted,

we have a tree with at most
√
n/2 leaves and thus fewer than

√
n vertices, each

corresponding to a vertex of S.
If GS at this point is not a tree, as in Figure 3, we add additional vertices of G to

S. Let G′ denote the subgraph of G that is the union of all paths in G joining vertices
of G. We add to S all vertices that have degree at least 3 in G′. (In Figure 3, one
vertex is added.) Since G′ has fewer than

√
n leaves, we add fewer than

√
n vertices to

S. The final set S has fewer than 2
√
n vertices. The graph GS is the graph obtained

from G′ by contracting an edge incident to a vertex of degree 2 (unless both endpoints
are in S) until no further such operations are available.

Let f(n) = max q(G), where the maximum is taken over all n-vertex trees. By
Theorem 2.7, f(n) ≤ 1 + f(2

√
n). This recurrence yields f(n) ≤ lg lg n + f(8) =

lg lg n+ 3.
Theorem 2.12 is essentially best possible because the test number of the path is

within three of this bound.
Theorem 2.13. If G is the complete bipartite graph Km,n, then

q(G) = �lg(min{m,n}+ 1)�.

DIAGNOSIS OF WIRING NETWORKS 517

Proof. Assume without loss of generality that m ≤ n. If we pick any �m/2�
vertices in the partite set of size m to use as S in Theorem 2.7, then

q(Km,n) ≤ 1 + max{q(K�m/2), q(K�m/2,n)}
≤ 1 + q(K�m/2��,n).

With q(K1,n) = 1, the recurrence yields q(Km,n) ≤ �lg(m+ 1)�.
On the other hand, contracting m − 1 edges of a matching in Km,n yields a

minor Km+1, as illustrated in Figure 2. From Lemma 2.2, q(Km,n) ≥ q(Km+1) =
�lg(m+ 1)�.

Next consider that G is a planar graph. Planar graphs arise naturally when the
routing is planar, and direct short faults occur only between wires that are close
together [7].

Theorem 2.14 (planar separator theorem; see Lipton and Tarjan [10]). Let G
be an n-vertex planar graph. In O(n) time we can partition V (G) into three sets,
A, B, and C, such that (1) no edge has one endpoint in A and the other endpoint in
B, (2) |A|, |B| ≤ 2n/3, and (3) |C| ≤ √8n.

Corollary 2.15. Let G be an n-vertex planar graph. In O(n) time we can find
a set S ⊂ V (G) such that |S| ≤ (12 + 6

√
2)
√
n, and each component of G− S has at

most n/4 vertices.
Proof. From Theorem 2.14, V (G) can be partitioned into A, B, and C such that

there is no edge between A and B, |A|, |B| ≤ 2n/3, and |C| ≤ √8n. We call such a
set C a separator. The sizes of A and B are bounded by αn and (1 − αn) for some
1/3 ≤ α ≤ 2/3. Recursively finding separators CA for G[A] and CB for G[B], we have
|CA ∪ CB | ≤

√
8αn +

√
8(1− α)n < √8n√2. We apply Theorem 2.14 recursively

for 4 levels, reducing all components among the remaining vertices to order at most
(2/3)4n = 16n/81 < n/4. Let S be the union of all the separators found in this tree
of separations. We have

|S| ≤
√
8n(1 + 21/2 + 22/2 + 23/2) =

√
n(12 + 6

√
2).

Since each C can be found in time linear in the number of vertices, the total time to
find S is O(n).

Theorem 2.16. If G is a planar graph of n vertices, then q(G) ≤ 1
2 lg n+O(1),

and each query can be constructed in O(n) time.
Proof. Let f(n) = max q(G), where the maximum is taken over all n-vertex planar

graphs. By Corollaries 2.8 and 2.15,

f(n) ≤ 1 + max{lg(√n(12 + 6
√
2)), f(n/4)}.

By induction it can be shown that f(n) ≤ 1
2 lg n+c+1, where c = lg(12+6

√
2).

We do not know whether Theorem 2.16 is best possible. The best lower bound is
lg lg n when G is a path of n vertices. Note that the S-connection graph of a planar
graph need not be planar. We leave it as an open problem to close the gap. Please
note that since no planar graph contains K5 or K3,3 as a minor, it is not possible to
prove any nontrivial lower bound using Lemma 2.2.

Random graphs [2] are generated by letting each edge occur with probability 1/2.
When we say almost every graph has property X, it means the probability for a
random graph on n vertices to have property X intends to 1 as n goes to infinity. We
next show that solving the connection class problem for random graphs is almost as
hard as that for complete graphs.

518 WEIPING SHI AND DOUGLAS B. WEST

Theorem 2.17. For almost every graph G, q(G) ≥ lg n− 1
2 lg lg n+ O(1). This

bound also holds for every graph with at least n2/4 edges.

Proof. Bollobás, Catlin, and Erdős [3] proved that almost every n-vertex graph
has Km as a minor, where m = (1 + o(1))n/

√
lg n. Lemma 2.2 then yields q(G) ≥

lgm = lg n − 1
2 lg lg n + O(1) almost always. In fact, every graph of n vertices and

about n2/4 edges has Km as a minor, where m = (1 + o(1))n/
√
lg n (see Bollobás [2,

p. 279]).

In general, computing q(G) appears to be NP-hard, but we have not proved
this. Observe that the minimum number of queries to determine whether F = Kn

equals �lgχ(G)�. Thus q(G) ≥ �lgχ(G)�, but it is still possible that q(G) is easier to
compute.

It is important to clarify that the arguments of all theorems in this section give
procedures for generating the first query for the algorithms whose number of queries
satisfies the resulting bounds, but the arguments are not recursive algorithms for
finding the connection classes. For example, in the proof of Theorem 2.7, we assumed
the worst case that Q(S) = V and Q(S) = G − S, but the actual response is not
necessarily the worst case. Thus we must take Q(S) into account to decide each
query to solve a particular instance.

The proof in Theorem 2.7 can be used to design a heuristic for general graphs:
Find a vertex separator S, construct GS and the components in G − S, and then
recurse for GS and G− S in parallel. The key is to find a vertex separator S so that
max{q(GS), q(G − S)} is minimized. In general, when S is small (large), q(GS) is
small (large) while q(G − S) is large (small). Therefore, we may experiment on the
size of S until we balance q(GS) and q(G− S).

Algorithm 1 is the adaptive diagnosis algorithm. It iteratively maintains a compo-
nent structure P = {(Gi, Ri) : i = 1, 2, . . . , t}, where {G1, G2, . . . , Gt} is a collection
of adjacency graphs whose vertex sets form a partition of V , and {R1, R2, . . . , Rt}
is a collection of “representative” subsets of vertices such that Ri ⊆ V (Gi) and
Q(Ri) = V (Gi). In other words, each (Gi, Ri) is a restricted connection class problem.
This property of Ri’s implies that each Gi is a union of components. Algorithm 1 ini-
tializes with the component structure P = {(G,V (G))} and then refines the partition
to reduce the size of each Ri. When the algorithm terminates, every Ri is reduced to
a single vertex, and therefore every V (Gi) is one connection class. The hardest step
is step 4, where we have to use the theorems in this section to find the set Si.

For example, Figure 4 considers G = P15 and uses Corollary 2.11 to generate
the queries. The edges in the adjacency graph G are shown, and the edges in the
fault graph F are marked with “×.” The dark vertices are vertices in the query set
S. After the first query, we have five subgraphs containing potential components,
including two in G[Q(S)] and three in G − Q(S). Each subgraph is a path. We use
Corollary 2.11 to generate the next query for each subgraph. Because the 7-vertex
component in G[Q(S)] was generated by two vertices of S, we know that all but one
of its edges are faults, and one additional query at v8 finishes the restricted problem.
After the second query, we have all the connection classes of F .

3. Nonadaptive algorithms. In this section, we study nonadaptive algorithms
for solving the connection class problem. A nonadaptive algorithm T is a sequence of
queries S1, S2, . . . , St and a subroutine that analyzes the responses Q(S1), Q(S2), . . . ,
Q(St) to derive the connection classes. The query sets S1, S2, . . . , St are decided before
asking any queries. We say that a nonadaptive algorithm T solves the connection class
problem for G if, for every F ⊆ G, T finds the connection classes of F .

DIAGNOSIS OF WIRING NETWORKS 519

Algorithm 1. Adaptive full diagnosis.
Input: Adjacency graph G.
Output: All connection classes.
1: P ← {(G,V (G))}.
2: Repeat
3: For each (Gi, Ri) ∈ P do
4: Find Si ⊂ Ri.
5: Query ∪Si, with result Q← Q(∪Si).
6: P ′ ← ∅.
7: For each (Gi, Ri) ∈ P do
8: Ui ← Q ∩ V (Gi).
9: For each component C of Gi[Ui] do
10: P ′ ← P ′ ∪ {(C, Si ∩ V (C))}
11: For each component C of Gi − Ui do
12: P ′ ← P ′ ∪ {(C,Ri ∩ V (C))}.
13: P ← P ′.
14:Until |Ri| = 1 for all (Gi, Ri) ∈ P .
15: Report each V (Gi) as one connection class.

❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝× × × × × × ×
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

Q({v4, v8, v12}) = {v3, v4, v5, v6, v7, v8, v9, v12}� � �

❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝× × × × × × ×
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

� � � �Q({v2, v8, v10, v14}) = {v2, v6, v7, v8, v9, v10, v11, v14, v15}

❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝ ❝× × × × × × ×
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

final result

Fig. 4. Find connection classes of F ⊂ P15 in 2 queries.

Definition 3.1. Let TG be the set of all nonadaptive algorithms that solve the
connection class problem for G. Let the number of queries used by an algorithm T
be t(T). The nonadaptive test number t(G) of a graph G is the minimum number of
nonadaptive queries that always suffices to solve the following connection class problem
of G:

t(G) = min
T∈TG

t(T).

A sequence of queries S1, S2, . . . , St defines a sequential test vector X(vi) for each
vertex vi. X(vi) is a t-bit binary vector xi1xi2 · · ·xit, where xij = 1 if vi ∈ Sj ,
and xij = 0 otherwise. Conversely, sequential test vectors X(v1), . . . , X(vn), where
X(vi) = xi1xi2 · · ·xit, define a set of queries S1, S2, . . . , St by Sj = {vi : xij = 1}. We

520 WEIPING SHI AND DOUGLAS B. WEST

will also use sequential test vectors to describe the queries in this section because the
vector language underscores the history of queries on each vertex. In Figure 5, each
row is a sequential test vector, and each column corresponds to one query.

test vectors queries
X(v1) 0 0 1 1 S1 = {v2, v5}
X(v2) 1 0 0 1 S2 = {v3}
X(v3) 0 1 1 0 S3 = {v1, v3, v5}
X(v4) 0 0 0 0 S4 = {v1, v2}
X(v5) 1 0 1 0

Fig. 5. Sequential test vectors and queries.

It is well known that the sequence of queries S1, S2, . . . , Sn, where Si = {vi} (the
so-called walking ones sequence), is sufficient to solve the connection class problem.
It is also known that a sequence of queries is sufficient if it contains the walking ones
sequence as a subsequence or is diagonally independent. It is less obvious that the
queries in Figure 5 can also perform full diagnosis for K5.

Lemma 3.2 (see Shi and Fuchs [12]). A necessary and sufficient condition for
sequential test vectors X(v1), . . . , X(vn) to solve the connection class problem on Kn
is that for any disjoint nonempty vertex sets U, V , ∨u∈UX(u) = ∨v∈VX(v), where
the operation ∨ is the bit-wise Boolean OR.

Lemma 3.2 does not give an efficient method to check whether the set of queries
can perform full diagnosis because the number of such V1 and V2 subsets is exponential
in terms of n. Next, we prove that it is unlikely that there exists any polynomial time
verifiable characterization.

Theorem 3.3. It is NP-hard to tell whether a set of sequential test vectors can
solve the connection class problem for G, even if G = Kn.

Proof. By Lemma 3.2, it is sufficient to show the following problem is NP-hard.
Problem Π: Given a set of t-bit binary vectors T = {X1, . . . , Xn},

are there disjoint nonempty subsets of indices I and J such that
∨i∈IXi = ∨j∈JXj?

We use a reduction from the not-all-equal 3SAT problem, which is a known NP-
complete problem [6], to prove Π is NP-hard. Due to the page limit, the details of
the reduction are omitted and can be found in [11].

Theorem 3.4. A necessary and sufficient condition for sequential test vectors
X(v1), . . . , X(vn) to perform full diagnosis for G is that ∨v∈UX(v) = ∨v∈WX(v)
whenever U,W are disjoint nonempty subsets of V (G) such that G[U], G[W], and
G[U ∪W] are connected graphs.

Proof. If the condition fails and there are U and W as described, then consider
fault graphs F1 and F2 of G. Graph F1 has components G[U], G[W], and the rest
are isolated vertices. Graph F2 has component G[U ∪W], and the rest are isolated
vertices. Clearly, F1 and F2 have different connection classes. However, the responses
from the oracle for F1 and F2 are the same.

Conversely, suppose that the condition holds. First partition the set of vertices
into disjoint subsets according the response of each query as follows. Before the ith
step, suppose that we have partitioned V (G) into V1, . . . , Vm. The response of the
next query Q(Si) further partitions each Vj into Vj ∩Q(Si) and Vj−Q(Si). When we
finish all the queries, report each maximal vertex set inducing a connected subgraph
of G that lies in a single Vi as one connection class of the fault graph F . We show

DIAGNOSIS OF WIRING NETWORKS 521

that this algorithm works correctly.
If C is a connection class of F , then C ⊆ Q(S) or C ∩ Q(S) = ∅ for every

S ⊆ V (G). Thus all of C remains in the same Vk, and all of C will be reported to be
in the same connection class.

If connection classes C1, . . . , Ck of F are reported as being a single connection class
D, then G[D] is connected because each set reported as a connection class induces a
connected subgraph of G. Also, at each iteration the algorithm leaves the entire set D
unpartitioned. Thus each Q(Si) contains all or none of D. Thus Si contains a vertex
of some Cj if and only if it contains a vertex of each Cj . In particular, ∨v∈Cj

X(v) is
the same for all j. Letting U = C1 and W = C2 ∪ · · · ∪ Ck yields a violation of the
condition.

Ideas like those in section 2 allow us to compute nonadaptive test numbers of
some graphs.

Lemma 3.5. If G1 is a minor of G2, then t(G1) ≤ t(G2).
Proof. The proof is similar to Lemma 2.2.
Lemma 3.6. If graphs G1 and G2 are disjoint, then

t(G1 +G2) = max{t(G1), t(G2)}.

Proof. The proof is similar to Lemma 2.3.
Theorem 3.7. For a graph G with vertex set V ,

t(G) ≤ 1 + min
S⊆V
{t(GS) + t(G− S)}.

Proof. For the set S achieving the minimum, we make the queries consisting of
S, a minimum set of queries for GS , and a minimum set of queries for G − S. Each
resulting sequential test vector X(v) is the concatenation of one truth bit for v ∈ S,
the sequential test vector for v in the query set for GS , and the sequential test vector
for v in the query set for G− S.

Let U,W be disjoint nonempty subsets of V (G) such that G[U], G[W], and G[U ∪
W] are connected. It suffices to show that ∨v∈UX(v) = ∨v∈WX(v).

If U,W both lie outside S, then U,W and U ∪W induce connected subgraphs
in G− S. Thus the last t(G− S) bits of the sequential test vectors yield the desired
nonequality.

If exactly one of U,W intersects S, then query S yields the desired nonequality,
since ∨v∈UX(v) and ∨v∈WX(v) differ in the first bit.

Finally, suppose that both U and W intersect S. Let U ′ = U ∩ S and W ′ =
W ∩S. By construction, U ′,W ′, U ′∪W ′ all induce connected subgraphs of GS . Thus
the t(GS) bits of the sequential test vectors corresponding to GS yield the desired
nonequality.

The algorithm of Feng, Huang, and Lombardi [5] is a special case of Theorem 3.7
by letting GS to be K|S|.

Shi and Fuchs [12] proved t(Kn) = n−1, using general consequences of Lindström
[9] and Tverberg [14]. We now consider other families of graphs.

Theorem 3.8. If G is the complete bipartite graph Km,n, then t(G) = min{m,n}.
Proof. The proof is similar to Theorem 2.13.
Theorem 3.9. For the n-vertex path Pn, t(Pn) = �log n�.
Proof. For the upper bound, pick the center vertex as S in Theorem 3.7. Then

t(Pn) ≤ 1 + t(P�n/2�). Solving the recurrence relation with t(P1) = 0 gives t(Pn) ≤
�lg n�.

522 WEIPING SHI AND DOUGLAS B. WEST

For the lower bound, let U be the set of �n/2� vertices closest to one end of
the path, and let W be the set of the remaining �n/2� vertices closest to the other
end. Note that U,W, and U ∪W all induce connected subgraphs. For sequential test
vectors solving the connection class problem, we must have ∨v∈UX(v) = ∨v∈WX(v).
Let j be a coordinate where they differ. Then elements of U (or W) have test vectors
that are all 0 in coordinate j. That means we can solve the connection class problem
for U (or W) without using query Sj . Therefore, t(P�n/2�) ≤ t(Pn)−1 and t(P1) = 0.
Solving the recurrence relation yields t(Pn) ≥ �lg n�.

Theorem 3.10. If G is a tree of n vertices, then t(G) ≤ �lg n�, and the queries
can be constructed in O(n log n) time.

Proof. As in Theorem 2.12, each n-vertex tree can be divided into subtrees of order
at most �n/2� by removing one vertex. Let f(n) = max t(G), where the maximum
is taken over all n-vertex trees. From Theorem 3.7, f(n) ≤ 1 + f(�n/2�). Solving
the recurrence relation with f(1) = 0 yields f(n) ≤ �lg n�. The time to find each
separator is linear in the number of vertices. The depth of the recursion is O(log n).
Therefore, the total time to generate the queries is O(n log n).

The upper bound in Theorem 3.10 holds with equality for paths by Theorem 3.9.

Theorem 3.11. If G is an n-vertex planar graph, then t(G) = O(
√
n), and the

set of queries can be computed in polynomial time.

Proof. Let f(n) = max t(G), where the maximum is taken over all n-vertex
planar graphs G. From Theorems 2.14 and 3.7, f(n) ≤ √8n+ f(2n/3), which yields
f(n) = O(

√
n). The time to find each separator is O(n). The time to find all

separators is O(n log n) since the depth of the recursion is O(log n).

Theorem 3.12. For almost every graph G, t(G) ≥ (1 + o(1))n/
√
lg n.

Proof. The proof is similar to Theorem 2.17.

Let χ(G) be the chromatic number of G. Since lgχ(G) queries are necessary to
tell whether F = Kn, at least this many queries are needed in the worst case to find
all the connection classes. Therefore, t(G) ≥ lgχ(G). If the conjecture of Hadwiger
[3] is true, then t(G) ≥ χ(G)− 1. Hadwiger’s conjecture states that each graph G has
Kχ(G) as a minor.

4. Discussion. We presented new adaptive and nonadaptive algorithms for in-
terconnect diagnosis. The adaptive algorithms reduce the number of tests exponen-
tially compared with traditional nonadaptive algorithms. We also show that struc-
tural information can further reduce the number of tests drastically for certain sparse
graphs such as planar graphs. For dense graphs, there is not much gain using struc-
tural diagnosis.

Our results for special families of graphs are summarized in Table 3. In the table,
n is the number of vertices of G except for Km,n, and all fractions are rounded to
the ceiling unless otherwise specified. The lower bound for a family is the maximum
number of tests necessary for any graph in that family. The upper bound for a family
is the number of tests sufficient for all graphs in that family. The computation time
for generating the queries is low-order polynomial for all the algorithms in Table 3.
The results for Kn were first given by Shi and Fuchs [12], but we include them here
for completeness.

To use Theorems 2.7 and 3.7 for general graphs, it is crucial that we find good
multiway vertex separators. Unfortunately, there are few practical algorithms for
finding good vertex separators of general graphs.

DIAGNOSIS OF WIRING NETWORKS 523

Table 3
Number of tests for full diagnosis of special families of adjacency graphs.

Adap- Km,n Path Tree Planar Random
tive Kn m ≤ n graph graph

lower lgn−
yes bound lgn lg(m+ 1) lg lg(n+ 1) lg lg(n+ 1) lg lg(n+ 1) 1

2
lg lgn

upper
bound lgn lg(m+ 1) lg lg(n+ 1) lg lgn+ 3 1

2
lgn lgn

lower

no bound n− 1 m �lgn� �lgn� �lgn� n/
√

lgn

upper
bound n− 1 m �lgn� �lgn� O(

√
n) n− 1

REFERENCES

[1] M. Abramovic, M. A. Breuer, and A. D. Friedman, Digital System Testing and Testable
Design, Computer Science Press, Woodland Hills, CA, 1990.

[2] B. Bollobás, Random Graphs, Academic Press, New York, 1985.
[3] B. Bollobás, P. Catlin, and P. Erdős, Hadwiger’s conjecture is true for almost every graph,

European J. Combin., 1 (1980), pp. 195–199.
[4] W.-T. Cheng, J. L. Lewandowski, and E. Wu, Optimal diagnostic methods for wiring in-

terconnects, IEEE Trans. Computer-Aided Design, 11 (1992), pp. 1161–1166.
[5] C. Feng, W. Huang, and F. Lombardi, A new diagnosis approach for short faults in inter-

connects, in Proceedings of the 1995 Fault Tolerant Computing Symposium, pp. 331–339.
[6] M. R. Garey and D. S. Johnson, Computers and Intractability—A Guide to the Theory of

NP-Completeness, Freeman, New York, 1979.
[7] M. Garey, D. Johnson, and H. So, An application of graph coloring to printed circuit testing,

IEEE Trans. Circuits and Systems, 23 (1976), pp. 591–599.
[8] W. H. Kautz, Testing for faults in wiring networks, IEEE Trans. Comput., 23 (1973), pp. 358–

363.
[9] B. Lindström, A theorem on families of sets, J. Combin. Theory Ser. A, 13 (1972), pp. 274–

277.
[10] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math.,

36 (1979), pp. 177–189.
[11] W. Shi, Complexity of Finding Two Disjoint Subsets That Have the Same Union, Technical

Report TAMU-ECE-2001-03, Department of Electrical Engineering, Texas A&M Univer-
sity, College Station, TX, 2001.

[12] W. Shi and W. K. Fuchs, Optimal interconnect diagnosis of wiring networks, IEEE Trans.
on VLSI, 3 (1995), pp. 430–436.

[13] W. Shi and D. B. West, Diagnosis of wiring networks: An optimal randomized algorithm for
finding connected components of unknown graphs, SIAM J. Comput., 28 (1999), pp. 1541–
1551.

[14] H. Tverberg, On equal unions of sets, in Studies in Pure Mathematics, L. Mirsky, ed., Aca-
demic Press, London, 1971, pp. 249–250.

RESERVING RESILIENT CAPACITY IN A NETWORK∗

G. BRIGHTWELL† , G. ORIOLO‡ , AND F. B. SHEPHERD§

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 4, pp. 524–539

Dedicated to the memory of Ewart Lowe

Abstract. We examine various problems concerning the reservation of capacity in a given
network, where each arc has a per-unit cost, so as to be “resilient” against one or more arc failures.
For a given pair (s, t) of nodes and demand T , we require that, on the failure of any k arcs of the
network, there is sufficient reserved capacity in the remainder of the network to support an (s, t) flow
of value T . This problem can be solved in polynomial time for any fixed k, but we show that it is
NP-hard if we are required to reserve an integer capacity on each arc.

We concentrate on the case where the reservation has to consist of a collection of arc-disjoint
paths: here we give a very simple algorithm to find a minimum cost fractional solution, based on
finding successive shortest paths in the network. Unlike traditional network flow problems, the
integral version is NP-hard: we do, however, give a polynomial time 15

14
-approximation algorithm in

the case k = 1 and show that this bound is best possible unless P = NP.

Key words. network flows, resilience, capacity reservation

AMS subject classifications. 90B10, 90B25

PII. S0895480100368189

1. Introduction. A commonly encountered network design problem is that of
reserving capacities in a network so as to support a given set of pairwise traffic de-
mands. Algorithms for this network capacity allocation problem have been developed
by a number of groups; see, for example, [6, 8, 9, 19, 21, 22, 23]. One significant
drawback to this “vanilla” capacity reservation model is that it does not account for
the failure of certain network elements. For instance, if we simply reserve capacity for
a commodity along a single path, we make ourselves totally vulnerable to the failure
of any arc (or node) along this path. In many practical settings, this is not acceptable,
and we thus wish to reserve our capacities so as to be resilient to certain failure states
in the network.

Several groups have recently addressed this issue of “resilience” or “survivability”
in network design problems; see, e.g., [2, 3, 5, 10, 14, 15, 20, 24, 25, 26, 27]. Their
solution techniques are based primarily on polyhedral or branch and cut methods,
and hence produce exact optimal solutions if they terminate, and usually give some
guarantee of optimality even before terminating. Such techniques are not always the
right selection in a given scenario. On one hand, the need for exact solutions must
be balanced with the degree to which the input costs and data are known or certain.
These methods also do not exhibit polynomially bounded running time, and hence
performance may not scale well as network sizes grow. This may prove to be an even

∗Received by the editors February 22, 2000; accepted for publication (in revised form) July 25,
2001; published electronically October 23, 2001. A longer version of this paper appears as [11].

http://www.siam.org/journals/sidma/14-4/36818.html
†Centre for Discrete and Applicable Mathematics, London School of Economics, Houghton Street,

London WC2A 2AE, UK (graham@tutte.lse.ac.uk). The research of this author was supported by
EU-HCM grant CMRX-CT98 0202 DONET and was carried out in part while visiting the University
of Memphis.

‡Dept. of Computer Science, Systems and Production, University of “Tor Vergata”, 110-00133
Rome, Italy (oriolo@disp.unirom2.it). The research of this author was supported by EU-HCM grant
CMRX-CT98 0202 DONET.

§Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ 07974-0636
(bshep@research.bell-labs.com).

524

RESERVING RESILIENT CAPACITY 525

larger issue for resilient capacity reservation, which initially appears to be a much less
tractable problem computationally (cf. [10]). In addition, many applications require
solutions in time scales which force the adoption of heuristics with fast run-time
properties.

Many existing network planning tools for the (vanilla) capacity allocation problem
resort to some form of repeated single-source-destination heuristics. That is, for each
demand pair (si, ti) a shortest path is found and then as much flow as possible is
pushed on this path. The process is then repeated until all demands are met. In
its most general form, the cost of an edge is updated as a function of its remaining
capacity. This approach is fast and allows for trivial implementation in software. In
its simpler forms, however, one easily concocts examples where it produces solutions
arbitrarily far from the optimum. Of course, there are many examples where the
exact methods do not even find feasible solutions in a comparable running time.
Moreover, they can require substantial mathematical sophistication on the part of its
implementors.

Another situation where the single source-destination pair model applies is in an
on-line setting. Here, the demands are being given sequentially as they arise in the
network. This area is becoming increasingly important as network management be-
comes a concern of network operators. This is heightened by the changing nature of
demands from customers. In particular, bursty or short-term data transfers are be-
coming increasingly common. As a result, larger amounts of point to point bandwidth
are being traded on shorter time frames.

The present paper is dedicated to adapting the shortest path (or mincost flow)
model to a minimum cost resilient capacity reservation model. We are restricting
ourselves to the study of resilient capacity allocation for traffic generated by a single
source-destination pair of nodes; we show that even this case presents some surprising
difficulties. Overviews of previous computational and theoretical work on related
survivability and augmentation problems can be found in [18] and [17].

We adopt the viewpoint that the network, with specified nodes s and t, is given to
us, along with a per-unit cost ca for each arc a, and that we are free to reserve, once
and for all, as much capacity as we like on whatever arcs we choose. Our objective is
to find a “reservation vector” x minimizing the total cost, cost(x) =

∑
a caxa, subject

to supporting a given target amount T of traffic from s to t, even if any one, or more
generally any k, of the arcs in the network fails.

This rough description of the problem admits many different versions, depending
on the type of network we are dealing with, the way we are required to recover from arc
failures, and especially on any structure imposed on the vector of reserved capacities
itself. In this paper, we consider two types of constraints on the capacity reservation
vector.

1. Integrality. We may be forced to reserve capacity in discrete amounts, so that
our reservation vector must be integral.

2. Structural. Specifically, it may be required that our reservation vector be
formed by selecting a collection of disjoint (s, t)-paths (i.e., directed paths from s to
t in the network) and assigning a capacity to each path. (We call such a reservation
a diverse-path reservation.)

Diverse-path solutions have several features which are attractive to network plan-
ners. For a start, a diverse-path routing may be “hardwired” at the terminating
nodes, thus decreasing routing complexity. If traffic flow control is centralized, then
this allows load balancing of traffic over the collection of diverse paths. Even if this is

526 G. BRIGHTWELL, G. ORIOLO, AND F. B. SHEPHERD

not the case, as in a noncooperative network, the restoration phase is much simpler
since an arc failure may be treated as a path failure, and traffic routed along the path
may be shifted to the remaining nonfailed paths. One final advantage is that they are
conceptually simple to visualize and work with in any operational setting.

2. Summary of results. In this paper, we consider various versions of the
resilience problem; we summarize these and our results in this section.

Throughout, we suppose (sometimes implicitly) that we are given a directed graph
(network) D = (V,A) with node set V and arc set A. We always assume that D
comes with two nodes permanently fixed as the source s and the destination t. We
also suppose that we are given a rational number T (usually an integer) representing
the required traffic flow from s to t through the network D in the case of failure and
an integer k representing the maximum number of arcs that may fail. Finally, we are
also given a vector (ca) of nonnegative rational (again, usually integer) costs on the
arcs a of D. We are seeking a reservation vector, which is a nonnegative vector (xa)
on the arcs a, representing the amount of capacity reserved on the arcs of D.

A reservation vector x = (xa) is (T, k)-resilient if, for each set K of at most k
arcs in A, the reserved capacities on the arcs in A−K are sufficient to admit an (s, t)
flow of value T . The cost of a reservation vector x is cost(x) =

∑
a∈A caxa. Our aim

in all versions considered is to find a minimum cost (T, k)-resilient reservation vector
x in D.

The problem stated above is the General Resilience problem. We do not
normally treat k as part of the input, so an instance of this problem, for resilience
against k failures, consists of a network D, with specified source and destination, a
demand T , and a cost vector c on the arcs of D. If the reservation vector x is required
to be an integer, then the demand T and all the costs must also be integers, and we
have the Integer Resilience problem.

As explained in section 3, for each fixed k, General Resilience can be solved
in polynomial time using linear programming or the ellipsoid algorithm. However,
we show in section 7 that Integer Resilience is strongly NP-hard even for k = 1,
although we do give a simple (k + 1)-approximation algorithm.

For most of the paper, we concentrate on the case where the reservation vector is
also required to be a diverse-paths reservation; i.e., it is derived from a set P1, . . . , Pm
of arc-disjoint (s, t)-paths with capacity xj reserved on each arc of path Pj (j =
1, . . . ,m).

In section 4, we consider the case where the (s, t)-paths P1, . . . , Pm to be used
are prespecified. In this case, we may as well consider each path as a single arc from
s to t, whose cost is the sum of the individual arc-costs, and we have the k-Failure
Allocation problem, an instance of which consists simply of a demand T and a
sequence of costs c1, . . . , cm, where we assume that c1 ≤ · · · ≤ cm. The problem is to
find a nonnegative real vector x = (x1, . . . , xm) to minimize cost(x) =

∑
cjxj subject

to the (T, k)-resilience constraint that the sum of any m − k of the xj is at least T .
If we additionally impose the constraint that the xj be integers, then we have the
Integer k-Failure Allocation problem.

We give an extremely simple algorithm for solving both k-Failure Allocation
and its integer counterpart. For the case k = 1, a polynomial time algorithm (for
the integer version) based on convex optimization is already explained in the work
of Bartholdi, Orlin, and Ratliff [7], which addresses certain integer programming
problems arising from matrices with the circular ones properties in each row. Our
results provide additional information on the structure of the optimal fractional and

RESERVING RESILIENT CAPACITY 527

integral solutions, which is needed later in the paper when we study the Integer
Diverse-Path Resilience problem without the paths being prefixed. Some of these
structural properties were independently observed by Bienstock and Muratore [10],
who gave a complete linear description for an associated polyhedron.

In sections 5 and 6, we turn to the case when our diverse-path reservation x may
use any set of diverse (s, t)-paths. The problems we consider are the Diverse-Path
Resilience problem and Integer Diverse-Path Resilience problem, which are
exactly the same as General Resilience and Integer Resilience except that the
reservation vector x is required to be a diverse-path reservation.

Using the information from section 4 about the nature of any optimal diverse-
path reservation, we give a simple combinatorial algorithm, based on finding successive
shortest paths in the network, to solve Diverse-Path Resilience.

However, Integer Diverse-Path Resilience turns out to be NP-hard, even
for k = 1. Here instead we give a polynomial time 15

14 -approximate algorithm in the
case k = 1 and show this bound is the best possible (if P �= NP). Similar results hold
if k takes other values or is unrestricted.

We conclude the paper with a discussion of a possible application to the case
of more than one source-destination pair and a few remarks about other types of
resilience problems.

3. Polyhedral formulation. Given a directed graph D = (V,A), and any S ⊆
V , let δ+(S) denote the set of arcs with tail in S and head in V − S and set δ−(S) =
δ+(V − S). We call S ⊆ V an (s, t)-set if s ∈ S and t ∈ V − S.

Let Q+ denote the set of nonnegative rational numbers, so that Q
A
+ is the set of

all assignments of nonnegative rationals to each member of the arc-set A, which we
frequently view as a vector. For any vector x ∈ Q

A
+ and A′ ⊆ A, we denote by x(A′)

the sum
∑
a∈A′ xa.

The problem of finding a minimum cost (T, k)-resilient reservation vector can
be expressed as an optimization problem over a certain polyhedron, which we now
describe.

For any rational T , (s, t)-set S, and setK ⊆ δ+(S) of at most k arcs, the partial T -
cut constraint associated with the pair (S,K) is the constraint x(δ+(S)−K) ≥ T. The
resilience polyhedron is defined by the following system of all partial cut constraints:

R(T, k,D) =

{
x ∈ Q

A
+ : x(δ+(S)−K) ≥ T for each (s, t)-set S

and K ⊆ δ+(S) with |K| ≤ k

}
.

(3.1)

Note that R(T, k,D) is empty if there is an (s, t)-set S with δ+(S) of size at
most k, and otherwise R(T, k,D) is full-dimensional. It is straightforward to verify
that R(T, k,D) consists exactly of the (T, k)-resilient vectors, and so the General
Resilience problem—finding a minimum cost (T, k)-resilient reservation—is that of
minimizing the linear function cost(x) =

∑
a∈A caxa over R(T, k,D).

A consequence of this formulation is that, for each fixed k, there is a polynomial
time algorithm to solve General Resilience. Indeed, it is easily seen that the
separation problem for R(T, k,D) amounts to solving at most |A|k maximum flow
problems. Moreover, the problem can be rephrased as that of finding a single edge
capacity vector x, together with an (s, t) flow vector yK of value T for each failing
set K of size k (i.e., with yKa = 0 for a ∈ K), subject to the constraint yKa ≤ xa for
each arc a and each failing set K. This formulation constitutes a linear program with
a polynomially bounded number of variables and constraints. This is not, however,

528 G. BRIGHTWELL, G. ORIOLO, AND F. B. SHEPHERD

offered as a practical approach, even for k = 1, and the remainder of the paper
addresses the task of finding more direct combinatorial algorithms.

4. Reservations on a fixed set of paths. A version of the material in this sec-
tion, written for a nontechnical audience, appears as [13]. A more thorough handling
of the polyhedron considered implicitly herein (including a complete linear description
of the integer hull) has been given by Bienstock and Muratore [10]. The case k = 1
can also be regarded as a special case of a problem treated by Bartholdi, Orlin, and
Ratliff [7]; our methods give a somewhat simpler solution in this special case.

We start by considering k-Failure Allocation and its integer version. Recall
that these problems can be formulated as follows.

k-Failure Allocation. Given a demand T , and a sequence of nonnegative costs
c1 ≤ c2 ≤ · · · ≤ cm, find a nonnegative real vector x = (x1, x2, . . . , xm) minimizing
cost(x) =

∑m
i=1 cixi subject to the constraint that

∑
i �∈K xi ≥ T for every set K of

size k.
Integer k-Failure Allocation. As above, with x required to be integer.
We start with a result that is fundamental in much of the rest of the paper. For

k < j ≤ m, let zj,k be the reservation vector defined by

zj,ki =

{
T/(j − k), i ≤ j,

0, i > j.

Theorem 4.1. An optimal solution to k-Failure Allocation is obtained at
one of the solutions zj,k.

Proof. Because of the symmetry of the situation and the ordering of the costs ci,
it is clear that there is an optimal solution such that x1 ≥ x2 ≥ · · · ≥ xm. Thus we
lose nothing by including these inequalities as constraints. Once we do this, we see
that, if the constraint xk+1 + xk+2 + · · ·+ xm ≥ T is satisfied, all the other resilience
constraints given by the removal of k of the paths are automatically satisfied. Thus
we may reformulate the problem as follows.

Given a demand T , and a sequence of costs c1 ≤ c2 ≤ · · · ≤ cm, find nonnegative
real numbers x1, . . . , xm to minimize

∑
i cixi subject to the constraints x1 ≥ x2 ≥

· · · ≥ xm ≥ 0 and xk+1 + · · ·+ xm ≥ T .
We note for future reference that the same reformulation goes through if the xi

are all constrained to be integers.
Consider a basic optimal solution for the resulting linear program which necessar-

ily satisfies m linearly independent inequalities with equality. If there are j nonzero
variables at the optimum, then the only possibility is that all of the inequalities
x1 ≥ x2, . . . , xj−1 ≥ xj , xj+1 ≥ · · · ≥ xm ≥ 0, and xk+1 + · · ·+ xm ≥ T are satisfied
with equality, i.e., that x1 = x2 = · · · = xj = T/(j − k) and xj+1 = · · · = xm = 0.
This is just the solution zj,k, and the result follows.

Solving k-Failure Allocation thus amounts to choosing amongst the solutions
zj,k. In fact, the structure of the problem allows a particularly simple procedure for
doing this. Note that 1

T cost(z
j,k) is equal to Aj,k = (c1 + · · · + cj)/(j − k), which

is the average of c1 + c2 + · · · + ck+1, ck+2, . . . , and cj . The Aj,k are decreasing
in j up to the minimum, which is attained for the last j where cj < Aj−1,k, and
increasing thereafter: this unimodality property will be a recurring theme. Thus we
may terminate our search for the minimum value of cost(zj,k) if ever we find that
cj+1 ≥ Aj,k.

For Integer k-Failure Allocation, we show that the following procedure
suffices.

RESERVING RESILIENT CAPACITY 529

First find the optimal fractional solution zj,k, i.e., the optimal solution of the
corresponding instance of k-Failure Allocation. Then (if zj,k is not already an
integer vector) consider the two integer solutions “nearest” to zj,k, as follows.

(a) Set r equal to either
T/(j − k)� or �T/(j − k). (Here �a denotes the next
integer above the real number a and
a� the next integer below.) Note that r may be
zero if T < j − k.

(b) If r is one of the two chosen values and r is nonzero, we attempt to construct
a solution x with all the nonzero xi, except possibly one, equal to r. To do this, we
set � = �T/r+ 1; if � ≤ m, set x1 = x2 = · · · = x
−1 = r, x
 = T − (�− k − 1)r, and
x
+1 = · · · = xm = 0. (The choice of � ensures that x
 ≤ x1 = r. If r =
T/(j − k)�,
we could have � > m, but this is not possible with r = �T/(j − k).)

Note that this is a feasible solution, since removing any k of the xi leaves capacity
at least (�− k − 1)r + x
, which is constructed to be at least T .

(c) We now have either one or two candidate integral solutions corresponding to
the two choices of r in (a). We denote by zj,k,+ the solution with r =
T/(j−k)� (if it
is feasible) and by zj,k,− the solution with r = �T/(j−k) (which is always feasible).1

To finish, just calculate the costs of the two solutions and choose the lower.
Theorem 4.2. Suppose we have an instance of k-Failure Allocation in which

the optimal solution is zj,k. Then the optimal solution x to the corresponding instance
of Integer k-Failure Allocation is either x = zj,k,+ or x = zj,k,−.

Proof. We work with the reformulation of the problem as in the beginning of the
proof of Theorem 4.1, which, as we noted, is also valid for the integer case. Suppose
that x is an optimal integer solution.

Clearly, we have x1 = x2 = · · · = xk+1 at the optimum. Now suppose that some
xj is nonzero but that not all of x1, . . . , xj−1 are equal. Then let i be the minimum
index with xi < x1; note that i ≥ k + 2 by the previous observation. Also let x
 be
the last nonzero variable, so k + 2 ≤ i < j ≤ �. Increasing xi by one and decreasing
x
 by one keeps the solution feasible, and xk+1 + · · · + xm is unaltered. Also, this
operation does not increase the cost.

We have thus shown that one may restrict attention to integral solutions where
there is some j, with k + 2 ≤ j ≤ m, such that all of x1, . . . , xj−1 are equal, and all
of xj+1, . . . , xm are equal to 0. If the value of xj is q, then the common value of the
earlier xi is (T − q)/(j − k − 1), which is an integer, at least q.

At this point, there is still potentially one solution for each integer value x1 ≥
T/m, namely, to set j = k + �T/x1, and q = T − (j − k − 1)x1; observe that this
solution is equal to

q(j − k)

T
zj,k +

(
1− q(j − k)

T

)
zj−1,k.

Thus each of our candidate integral solutions is a convex combination of two
consecutive zi,k’s. Let A be the set of all such convex combinations; we think of A
as a “path” with vertices corresponding to zk+1,k, . . . , zm,k; any vector on this path
gives a feasible solution. Note that the first coordinate value x1 decreases along A,
and the solution cost is unimodal along A, since it is linear between the vertices. If
the fractional optimum is attained at a vertex with x1 equal to r, then the lowest
cost integer solution on A, and hence the overall integer optimum, is obtained by
taking x1 to be either �r or
r�. This amounts to taking either zj,k,+ or zj,k,−, as
required.

1The notation zj,k,+, zj,k,− indicates moving from zj,k towards zj+1,k or zj−1,k.

530 G. BRIGHTWELL, G. ORIOLO, AND F. B. SHEPHERD

We close this section with a bound relating the costs of the optimal integral and
fractional solutions to k-Failure Allocation.

Proposition 4.3. For any j > k ≥ 1, cost(zj,k,−)/cost(zj,k) < 1 + k(j−k)
jT <

1 + k
T .

Proof. Recall that, in the solution zj,k, the j cheapest paths are chosen, each with
capacity T/(j−k). The “rounded” solution zj,k,− is obtained from this by taking the
�− 1 cheapest paths with capacity x = �T/(j − k), and the next cheapest path with
capacity T − (�− k − 1)x, where � = �T/x+ k ≤ j.

The first observation is that the average cost per unit of reservation in zj,k,− is
no greater than that in zj,k. Thus cost(zj,k,−)/cost(zj,k) is at most the ratio of the
total numbers of units of capacity reserved in the two allocations.

In zj,k, a total of jT/(j − k) units of capacity are allocated, while in zj,k,−, the
total is (�− 1)x+ T − (�− k − 1)x = T + kx. Hence we have

cost(zj,k,−)
cost(zj,k)

≤ T + kx

jT/(j − k)
= 1 +

k

jT
((j − k)x− T) .

Now (j − k)x − T < j − k, by definition of x, so that we have the estimate as
claimed.

Corollary 4.4. If OI is the cost of the optimal solution to an instance of
Integer k-Failure Allocation with target flow T , and OF the cost of the optimal
solution to the corresponding instance of k-Failure Allocation, then OI < (1 +
k/T)OF .

Consideration of the proof of Proposition 4.3 shows that the ratio (1+k/T) cannot
in general be improved. Indeed, if our network consists of a large number M of paths
of cost 1, then it is easy to see that OI = T + k, whereas OF = MT/(M − k); as
M →∞, OI/OF → (1 + k/T).

5. Diverse-path reservations without specified paths. We now turn to
the Diverse-Path Resilience problem, when we are still required to find a resilient
reservation consisting of a set of diverse paths in a given network D, but we are not
restricted as to what paths we may use. Our aim here is to give a fast algorithm for
Diverse-Path Resilience, whatever number k of failures is to be allowed for.

Theorem 4.1 implies that the optimal solution has as support the arcs of some
j > k diverse paths with each arc in the support given capacity T/(j− k). Of course,
j can take only integer values up to the (s, t)-connectivity κ = κ(D) of D. We may
take advantage of this structure and apply the successive shortest path method (cf.
[1]) for minimum cost flow problems, thus needing only to solve κ(D) shortest path
problems.

For an arc a = (u, v) ∈ A, we let a− denote an “artificial” arc (v, u) not present in
D. In the course of the following algorithm, we construct a series of auxiliary digraphs
Dj , each of which contains exactly one from each pair a, a−. We assume that we are
given a digraph D with κ(D) > k.

In the algorithm Paths below, we find a succession of arc-sets P1,P2, . . . , where
each Pj is the arc-set of a set of j diverse (s, t)-paths of minimum cost. Each Pj+1 is
derived from Pj by adding a cheapest path in the network Dj with costs cj . Adding
the arc a− corresponds to removing the arc a. In line with our earlier notation, zj,k

denotes the diverse-path reservation using the paths of Pj . The algorithm terminates
if zj+1,k is at least as expensive as zj,k.

RESERVING RESILIENT CAPACITY 531

Paths(D, k)
{

j = 0;D0 = D; c0 = c;P0 = ∅;
While (Dj contains a directed (s, t)-path)

Let Qj be the arc-set of a minimum cj-cost
directed (s, t)-path in Dj

Set Pj+1 = (Pj −R) ∪ F
where R = {a ∈ A : a− ∈ Qj}
and F = A ∩Qj

If j ≥ k, let zj+1,k be the vector obtained by assigning

T/(j + 1− k) to each arc in Pj+1

If j ≥ k and cost(zj+1,k) ≥ cost(zj,k)
then Output(zj,k) and Quit

Dj+1, c
j+1 are the same as Dj , c

j except

if a ∈ R
remove a−, and include a with cost cj+1

a = ca
if a ∈ F

remove a, and include a− with cost cj+1
a− = −ca

Set j = j + 1;
EndWhile

Output(zj,k)
}

We also refer to the version of the algorithm which does not terminate early and
thus generates a reservation vector zj,k for every j = k + 1, . . . , κ(D).

Proposition 5.1 (cf. [1]). Let c be a nonnegative vector of arc costs in a network
D = (V,A). The algorithm Paths finds a minimum cost (T, k)-resilient diverse-path
reservation.

To establish correctness, we need two facts. First, for each j, the collection Pj
induces a minimum cost collection of j diverse (s, t)-paths; this follows from the
correctness of the successive shortest path method. This implies that each solution
zj,k is the minimum cost solution using j paths, and hence the minimum cost (T, k)-
resilient vector is among these vectors zj,k. Moreover, traditional flow theory implies
that for each j ≥ k+1, zj,k is a minimum cost flow of value jT/(j−k) subject to the
capacities T/(j − k) on each arc. Second, as we now show, the sequence cost(zj,k) is
unimodal for j ≥ k + 1, and so early termination is justified.

Proposition 5.2. Let h, i, and j be such that k < h < i < j ≤ κ(D). If
cost(zh,k) ≤ cost(zi,k), then cost(zi,k) ≤ cost(zj,k).

Proof. Suppose the contrary: there exists h, i, j, with h < i < j, such that
cost(zh,k) ≤ cost(zi,k) and cost(zi,k) > cost(zj,k). Let M = T i

i−k and choose λ ∈
(0, 1) such that i

i−k = λ h
h−k+(1−λ) j

j−k . Then z′ = λzh,k+(1−λ)zj,k is a flow of value

iT/(i− 1) and does not exceed T/(i− 1) on any arc. Thus by the remarks preceding
the proposition, cost(z′) ≥ cost(zi,k). However, of course cost(z′) = λcost(zh,k)+(1−
λ)cost(zj,k) < cost(zi,k), a contradiction.

6. Integer diverse-path reservations. We now turn to Integer Diverse-
Path Resilience, where we are required to find a minimum-cost diverse-path reser-
vation taking integer values. We assume throughout this section that the demand T
is also an integer.

Again the results of section 4 give us information about the structure of an optimal

532 G. BRIGHTWELL, G. ORIOLO, AND F. B. SHEPHERD

solution: Theorem 4.2 shows that the support of an optimal solution consists of a
collection of diverse (s, t)-paths P1, P2, . . . , Pj , where the arcs of the first j − 1 paths
will reserve a common amount, r, of capacity, and the last path’s arcs will reserve
capacity T−(j−1−k)r ≤ r.2 We now show that the subproblem with k = 1 and T = 3,
denoted by 3-idp, is NP-hard. Let 2Div-Paths denote the problem of determining
whether a given digraph D, with four distinct nodes s1, t1, s2, t2, contains a pair of
arc-disjoint paths P1, P2, where Pi joins si and ti (i = 1, 2). Fortune, Hopcroft, and
Wyllie [16] show that this problem is NP-complete.

Theorem 6.1. The problem 3-idp is NP-hard. Furthermore, unless P = NP,
there is no polynomial time (1 + ε)-approximation algorithm with ε < 1

14 .
Proof. Suppose that we are given an instance of 2Div-Paths as above. Construct

a digraph obtained from D by adding new nodes s, t as well as the arcs (s, t), (s, s1),
(s, s2), (t1, t), and (t2, t) with costs 3, 1, 2, 1, and 2, respectively. All remaining arcs
have cost zero. This is our instance of 3-idp. From Theorem 4.2, we deduce that
an optimal 3-resilient reservation on diverse paths will have either support on (i) 2
diverse paths, in which case capacity 3 is reserved on each of the arcs of these paths,
or (ii) 3 diverse paths in which case two of the paths will have reserved capacity 2
and the third capacity 1.

Note that the cheapest collection of 2 diverse paths has cost 5, and hence any
solution of the form (i) will have cost at least 15. Next note that if there exists
a positive solution to the instance of 2Div-Paths, with Pi a path between si, ti
(i = 1, 2), then by assigning capacity 2 to the arc (s, t) and the arcs of P1, and
capacity 1 to the arcs of P2, we obtain a solution to 3-idp of cost 14. Conversely,
if the instance of 2Div-Paths has no solution, then any “3-path” solution to 3-idp
will use only paths of cost 3, from which we deduce that the reservation will cost at
least 15. Thus the optimal solution to the instance of 3-idp is 14 if and only if the
instance of 2Div-Paths has a positive solution and is otherwise at least 15. The result
follows.

We continue to concentrate on the case k = 1 but allow T to take arbitrary
integer values. We have already seen in Proposition 4.3 that applying the rounding
procedure to an optimal fractional solution yields a (1 + 1

T)-approximation to the
optimal fractional solution and hence to the optimal integral solution. It is clear that
the optimal fractional solution is integral in the case T = 2, so in fact we have a
polynomial time 4

3 -approximation algorithm for arbitrary T : we now improve this to
a 15

14 -approximation algorithm which, in view of Theorem 6.1, is best possible. Note
that, by Proposition 4.3, we may assume that T ≤ 13.

Consider the polynomial time algorithm A (based on Paths) that finds, for each
value of j, the fractional solution zj,1 based on some cheapest set of j diverse paths,
and the two “rounded” integer solutions zj,1,− and zj,1,+, and chooses the best among
all of the integer solutions. The algorithm A can fail to find the optimal integer
solution because it may use a minimum cost set of � paths in which the costs are
distributed “more evenly” between the paths (in particular, the most expensive path
is cheaper) than in some other (not necessarily even minimum cost) set of � paths.
All we know is that an optimal solution for an instance of Integer Diverse-Path
Resilience has the same form as either z
,1,− or z
,1,+ for some �, since it arises
from a similar rounding process applied to some collection of diverse paths.

Let OF be the cost of a fractional optimum solution, OI the cost of an integer

2In essence, we thus need to solve an integer 2-multicommodity flow problem where both com-
modities have the same source and destination.

RESERVING RESILIENT CAPACITY 533

optimum solution, and OA the best solution among those considered by the algorithm,
i.e., the value returned by A. Clearly, we have OF ≤ OI ≤ OA.

Theorem 6.2. The algorithm A is a 15
14 -approximate algorithm for Integer

Diverse-Path Resilience with k = 1, that is, for each instance OA ≤ 15
14OI .

We note that the quality of approximation by the algorithm depends greatly on
the input T . If we view A as an infinite collection of algorithms {AT }∞T=1, each
restricted to instances with a fixed value of the demand T , then many of these—in
particular, those with large values of T—are (1 + ε)-approximate algorithms with
ε < 1

14 . Indeed, Proposition 4.3 tells us that, for each T , OA < (1 + 1/T)OF ≤
(1 + 1/T)OI .

Furthermore, we note in the course of the proof that, for T = 1, 2, 4, 6, and 12, A
solves the problem exactly.

Proof. Take any instance of the problem, and let z∗ be an optimum solution, say,
using paths P1, . . . , P
, P
+1. We certainly know that there is no better solution using
these paths, so by Theorem 4.2 we know that P1, . . . , P
 all have the same reserved
capacity r under z∗, and path P
+1, which has the greatest cost among these paths,
has reserved capacity y ≤ r. Furthermore, r is either
T/(� − 1)� or �T/� with
T = (�− 1)r + y.

Clearly, we can assume that OI �= OA. In particular, this means that 0 < y < r;
otherwise one of z
+1,1 or z
,1 would be an integral solution found by A whose cost
was at most that of z∗. We may thus assume that � ≥ 2 and that 2 ≤ r ≤ (T + 1)/2.

The values of T and r determine y and �. Also, as noted above, Proposition 4.3
implies the result for T ≥ 14, so we may assume that T ≤ 13 and that r ≤ �T/2 ≤ 7.
There are thus only a finite number of possible forms of z∗ (in fact, just 23 pairs
(T, r) satisfy all the restrictions mentioned so far), and we rule all of these out using
the same basic method. At this point, let us observe that there are no cases with
T = 1, 2, 4, 6, or 12; for these values of T , any r not dividing T exactly is not of the
form
T/(� − 1)� or �T/� for any integer �. In particular, we may assume that we
have T ≥ 3.

We require a lower bound on cost(z∗) = OI . Notice that z∗ can be written as y
times the characteristic vector of some set of � + 1 diverse paths, plus (r − y) times
the characteristic vector of some set of � diverse paths. Let Ci be the cost of reserving
one unit of capacity on the arcs in a cheapest collection of i diverse paths. Therefore
we have OI = cost(z∗) ≥ yC
+1 + (r − y)C
.

Our algorithm A considers some integer solution z† of the same form as z∗ (i.e.,
the same values of T, r, y, �), using some set of �+1 paths of cost C
+1. The cost of z

†

is at most what it would be if all the �+1 paths had the same cost (�r+y)C
+1/(�+1).
Therefore OA is at most this quantity, i.e.,

C
+1 ≥ �+ 1

�r + y
OA =

�+ 1

T + r
OA.

We aim for a similar bound on C
, and to get this we need to look at a solution
produced by A on at most � paths. Accordingly, let r′ = �T/(� − 1); there is some
integer solution with reserved capacity r′ on the first m < � paths from C
, and v ≤ r′

on one further path, with total of reserved capacities on all the paths equal to T + r′.
Our algorithm will have looked at an integer solution with a cost at least as low as
some solution of this form, and the average cost of a path in any solution of this form
is at most C
/�, as in the proof of Proposition 4.3.

534 G. BRIGHTWELL, G. ORIOLO, AND F. B. SHEPHERD

Therefore we have OA ≤ (T + r′)C
/�, i.e., C
 ≥

T+r′OA. We conclude that

OI ≥
(
y(�+ 1)

T + r
+

(r − y)�

T + r′

)
OA.

After a little manipulation, this becomes

OI
OA
≥ 1− (r′ − r)(r − y)�

(T + r)(T + r′)
≡ 1−G.

We could now run through all the 23 cases separately and show that G ≤ 1/15 in
each case, but we can save a little effort.

First, we consider all cases with � = 2. In this case, we have r′ = T , and
r = �T/2, which implies that r′ = T = 2y + 1 and r = y + 1. Now G = 2y/(3y +
2)(4y + 2) ≤ 1/15 for y ≥ 1.

Next, if r = 2, we have y = 1, T = 2� − 1, and r′ = 3. This gives G =
�/(2�+ 1)(2�+ 2) ≤ 1/15 for � ≥ 2. Assume from now on that �, r ≥ 3. This implies
that T ≥ 7 and that r < T/2.

If r′ = r + 1, then, since also (r − y)� < r� < T + r, we have G < 1/(T + r + 1),
and we are done if T +r ≥ 14. Therefore we may assume T ≤ 10, whence, since � ≥ 3,
we have r ≤ 4. On the other hand, if r′ = �T/(�− 1) ≥ r + 2 ≥ (T + 1)/�+ 2, then
we have T ≥ �2 + �−1; thus the only two cases with T ≤ 13 are � = 3 and T = 11, 13.

From hereon in, there seems to be no great saving on dealing with all the cases
individually. Here are all the cases not so far ruled out.

T r � y r′ G
7 3 3 1 4 6/110
8 3 3 2 4 3/132
9 4 3 1 5 9/182
10 3 4 1 4 8/182
10 4 3 2 5 6/210
11 4 3 3 6 6/255
13 5 3 3 7 12/360

All the values for G above are less than 1/15, so the theorem is proved.
It is clear that this technique can be used to prove similar results for other values

of k. If k is allowed to take any value, we have the following result.
Theorem 6.3. There is a polynomial time 6

5 -approximation algorithm for Inte-
ger Diverse-Path Resilience with k as part of the input. Furthermore, there is
no polynomial time (1+ ε)-approximation algorithm for the problem with ε < 1

5 unless
P = NP.

Proof (sketch). Our algorithm is the obvious adaptation of algorithm A: find
optimal fractional solutions zj,k for each possible j, round these solutions, and choose
the best. We define OF , OI , and OA as before.

An argument exactly as in Theorem 6.2 shows that, if OI and OA are not equal,
then

OI
OA
≥ 1− (r′ − r)(r − y)�k

(T + rk)(T + r′k)
≡ 1−G,

where r′ = �T/(� − k), r is equal to either
T/(� − k)� or �T/(� − k + 1), and
T + rk = �r+ y with 0 < y < r. Therefore we need to show that the quantity G is at
most 1/6 in all cases.

RESERVING RESILIENT CAPACITY 535

Note that T + rk > �r and T + r′k > r′k, so we have

G ≤ (r′ − r)(r − y)

rr′
.

For both possible values of r, one can show that the integers r′, r, and (r′−r)(r−y)
satisfy r′ > r > (r′− r)(r− y), so G is at most n/(n+1)(n+2) for some nonnegative
integer n, and this quantity is always at most 1/6, as required.

To see that this approximation ratio is best possible, take an instance I of 2Div-
Paths and a large value of k; set T = 3 and construct an instance of Integer
Diverse-Path Resilience as follows. There are nodes ai, bi, ci, di, for i = 1, . . . , k+
1, as well as s and t. There are arcs of cost 1 from s to each ai, from ci to bi+1

(i = 1, . . . , k), and from each di to t. There are also arcs of cost 2 from s to b1 and
from ck+1 to t. We also take a copy of our instance I of 2Div-Paths for each i with
initial nodes ai and bi and corresponding terminal nodes di and ci: all arcs involved
cost 0. If there are arc-disjoint paths linking each ai and di, and each bi and ci, then
we can use these to make k+1 diverse paths of cost 2, and another path (through all
the bi and ci), of cost k + 4. Reserving 2 units on the first k + 1 paths and 1 unit on
the last gives a (3, k)-resilient reservation of cost 5k + 8. If there are no such linking
paths, then there is no reservation costing less than 6k + 6. (We can either reserve
capacity 3 on each of the k + 1 diverse paths of cost 2 or use the only set of k + 2
diverse paths, in which each path has cost 3.)

7. Integer resilience. We next show that the problem of finding a minimum
cost integral (T, k)-resilient vector is NP-hard, even in the single-failure case k = 1.
We couch the problem as a decision problem.

Integer Resilience.
Instance: a digraph D, with integer costs cij on the arcs, with a single source s

and destination t, a demand T (integer), and a target cost C (integer).
Question: is there an integer reservation vector x on the arcs of D such that

c · x ≤ C, and such that x is (T, 1)-resilient?
Theorem 7.1. Integer Resilience is strongly NP-complete.
Proof. (We omit some of the details: a full proof can be found in [11].) Certainly

the problem is in NP, since checking (T, 1)-resilience simply involves finding flows of
value T in the networks obtained by removing individual edges.

To prove the problem is NP-complete, we give a reduction from 3D-Matching.
Recall that an instance of 3D-Matching consists of three sets A, B, C of size n and
a collection T of m “triangles,” each containing exactly one element from each of A,
B, and C; the question is whether A ∪B ∪ C can be written as the disjoint union of
n triangles from T .

Suppose that we are given an instance of 3D-Matching as above. We show how
to construct an instance of Integer Resilience with m+ 3n + 2 nodes, 11m+ 3n
arcs, each of cost 1, n, or 2n, such that there is a (4m + 3n − 1)-resilient integer
reservation of cost at most (2n+ 1)(4m+ 3n) + n if and only if the original instance
did possess a 3D-matching.

We take one node of D for each triangle abc ∈ T , one node for each element of
A∪B∪C, and also nodes s and t. We take four parallel arcs, each of cost 1, from s to
each node corresponding to an element of T . Each node abc has seven arcs leaving it:
four, of cost 2n, go directly to t and one, of cost n, to each of the constituent elements
a, b, and c. Finally, there is a single arc of cost n from each element of A ∪B ∪ C to
t.

536 G. BRIGHTWELL, G. ORIOLO, AND F. B. SHEPHERD

Given a 3D-matching U , we can find a (T, 1)-resilient reservation, with T =
4m+3n−1, by reserving capacity 1 on all arcs entering t and all arcs leaving elements
of U ; we further reserve capacity 1 on arcs from s to elements of T \U and capacity 2 on
arcs from s to elements of U . It is easy to check that this reservation is (T, 1)-resilient
and has the required cost (2n+ 1)(4m+ 3n) + n.

Conversely, if there is a (T, 1)-resilient reservation with this cost, one may easily
check that it must involve reserving capacity 1 on all arcs into t and also on one arc
entering each node of A ∪ B ∪ C. Such a set of arcs has total cost 2n(4m+ 3n) and
includes between 4 and 7 arcs from each node of T . For v ∈ T , let d(v) be the number
of reserved arcs leaving v.

For v ∈ T , the reservations on the four arcs between s and v must total at least
d(v), and the sum of any three of them must be at least d(v)−1 (since after deleting an
arc there still exists a T -flow). The minimum cost of such a reservation between s and
v is just 4 if d(v) = 4 but d(v)+1 if d(v) ∈ {5, 6, 7}. Therefore the total cost of a (T, 1)-
resilient reservation consistent with the values d(v) is 2n(4m+3n)+

∑
v d(v) plus the

numberN of elements v for which d(v) > 4. We know that
∑
v d(v) = T+1 = 4m+3n,

and one may check thatN ≥ n, with equality if and only if d(v) = 7 for just n elements
of T , and d(v) = 4 for the remainder. The arcs out of T can be distributed in such
a manner only if those elements v with d(v) = 7 constitute a 3D-matching in the
original instance.

On the positive side, there is a simple (k+1)-approximate algorithm for Integer
Resilience, namely, to find a cheapest set of k + 1 edge-disjoint paths and reserve
capacity T on each arc. The following result states that this is indeed a (k + 1)-
approximate algorithm.

Proposition 7.2. If x is a (T, k)-resilient reservation vector, then cost(x) ≥
1
k+1cost(z

k+1,k).
Proof. Let x be a minimum cost (T, k)-resilient vector. Define x′ by setting, for

each arc a, x′a = min((k + 1)xa, T); it follows that x
′ ≥ x.

Let S be any (s, t)-set. We claim that x′(δ+(S)) ≥ (k + 1)T . Suppose first that
there is a set K of k+1 arcs in δ+(S) such that, for a ∈ K, xa ≥ T

k+1 , and so x′a = T .

Then x′(δ+(S)) ≥∑a∈K x′a = (k + 1)T .

If instead xa < T
k+1 for all arcs a ∈ δ+(S) except for those in a set K of k arcs.

Then x(δ+(S)−K) ≥ T , and so x′(δ+(S)−K) = (k + 1)x(δ+(S)−K) ≥ (k + 1)T .
This proves our claim.

Now, since x′(δ+(S)) ≥ (k + 1)T for each (s, t)-set S, there exists an (s, t) flow
x′′ of value (k + 1)T such that x′′ ≤ x′, so in particular no arc has reserved capacity
more than T ; thus x′′ is a (T, k)-resilient vector.

As we remarked earlier, the diverse-path reservation zk+1,k is a minimum cost
(s, t) flow of value (k + 1)T subject to an upper bound T on the flow through any
given arc. It follows that cost(zk+1,k) ≤ cost(x′′) ≤ cost(x′) ≤ (k + 1)cost(x).

Thus we have that the minimum cost diverse-path reservation has at most k + 1
times the cost of an optimal (T, k)-resilient reservation. Of course, this is of greatest
interest in the case k = 1. The ratio k + 1 between the two optimal costs is best
possible, as can be seen by considering a network D with three nodes s, u, and t,
k + 1 arcs of cost 1 from s to u, and many arcs of large cost c from u to t.

8. Conclusions.

8.1. Future directions. AlthoughGeneral Resilience can be solved in poly-
nomial time for fixed k, we have been unable to find a truly practical algorithm for

RESERVING RESILIENT CAPACITY 537

(b)(a)

T/2

T/2

T/2

s

T/3

T/2

T/2

s t

T

T

tT/3 T/3

T/3

T/3

T/3

T

T

Fig. 8.1. (a) Vertex of R(T, 1, D) with a cycle; (b) basic solution for both arc-failure and
node-failure resilience.

the problem even in the case k = 1. It is natural to believe that there might be an
algorithm which uses some generalization of cycle augmentation for standard mini-
mum cost flows. In order to explain why it is likely to be difficult to find such an
algorithm, we give in Figures 8.1(a) and 8.1(b) two examples of vertices of polyhedra
R(T, 1, D), which of course give the unique optimal solution to instances of General
Resilience. Indeed, the polyhedral structure for general resilience appears to be
quite rich; further examples are provided in [11].

There are other versions of resilience questions which we did not investigate.
For instance, one may wish to guard against node failures instead of or as well as
arc failures: this problem can be formulated using our previous models and then
applying standard splitting operations on nodes other than s and t. Figure 8.1(b)
also represents a basic solution for such a fractional node-failure resilience problem.

In a further paper [12], we consider the effect of imposing upper bounds on the
capacities that can be reserved on each arc.

Finally, another critical concern is how we may recover from failures. In the case
of diverse-path reservations, we have the best possible scenario. The node s can be
programmed so that if a communication path fails, it simply shunts its traffic onto the
remaining paths. For general reservation vectors, the rerouting of traffic may be more
complex. Indeed, unless the reservation vector was carefully constructed, traffic on
the nonfailed communication paths may need also to be rerouted from scratch. The
distinction between whether or not we may disturb nonfailed traffic flows leads to two
types (strong and weak) of resilience problems; these are discussed in some detail in
the technical report [11].

8.2. Applications to more than one source-destination pair. We now
consider the problem where we are given a collection of node pairs (s1, t1), . . . , (sq, tq)
as well as a collection of demands Ti, i = 1, 2, . . . , q, and (possibly) a collection of
integers k1, . . . , kq. Each commodity i must reserve capacity in a network D which is
(Ti, ki)-resilient for the source-destination pair (si, ti).

In developing solution techniques for a general multicommodity instance, we feel
there is significant computational benefit in insisting that each commodity is handled
by diverse-path reservation vectors. This is despite the fact that such reservations
may cost more, even in the 1-commodity case (e.g., Figures 8.1(a) and 8.1(b)). This
approach replaces the complexity of general resilience constraints with the simpler
subproblem of deciding, for each commodity i, the number ni of diverse paths to be
included in the support of its reservation vector. This subproblem may be handled by

538 G. BRIGHTWELL, G. ORIOLO, AND F. B. SHEPHERD

some branching scheme and, for any fixed choice of the ni’s, the optimization problem
can be formulated as a much simplified multicommodity network design problem.

For instance, suppose that for each arc a we may purchase up to Ma units of ca-
pacity, each at cost ca. We then formulate the diverse-path multicommodity resilience
problem, where each commodity i must use a diverse-path reservation on (exactly) ni
paths, as a mixed integer program.

min
∑
a caya,∑q

i=1
Ti

ni−ki r
i
a = ya ≤Ma for each arc a,

ri(δ+(v)) = ri(δ−(v)) for each i and v �= si, ti,
ri(δ+(si))− ri(δ−(si)) = ni for each i,
ria ∈ {0, 1}, ya ∈ Z for each a and i.

A solution ri is thus an (si, ti) 0-1 flow vector of value ni, and the first family of
constraints state that the total capacity reserved on an arc a is at most Ma.

Acknowledgments. The first and second authors acknowledge support from
DIMACS during extended visits to Bell Labs. The authors are grateful for insightful
remarks and encouragement from Gautam Appa, Dan Bienstock, Fan Chung, Michele
Conforti, Bharat Doshi, Susan Powell, Paul Seymour, and Mihalis Yannakakis, as well
as two anonymous referees.

A major inspiration for this work was Dr. Ewart Lowe, of British Telecom, who
tragically died in a diving accident on May 22, 1998, off the coast of Normandy. Ewart
introduced the authors to many mathematical problems in telecommunications. He
also acted as mentor to the final author during his projects for British Telecom. We
dedicate this paper to the memory of his inspiration, generosity, and his unbounded
enthusiasm, which are greatly missed by all who knew him.

REFERENCES

[1] A.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows—Theory, Algorithms, and
Applications, Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] D. Alevras, M. Grötschel, and R. Wessäly, Cost-efficient network synthesis from leased
lines, Ann. Oper. Res., 76 (1998), pp. 1–20.

[3] D. Alevras, M. Grötschel, and R. Wessäly, Capacity and Survivability Models for Telecom-
munication Networks, Technical Report 97-24, Konrad-Zuse-Zentrum für Information-
stechnik Berlin, Berlin, Germany, 1997.

[4] N. Ascheuer, M. Grötschel, and J. Rambau, Combinatorial online optimization in practice,
Optima, 57 (1998), pp. 1–6.

[5] A. Balakrishnan, T. Magnanti, J. Sokol, and Y. Wang, Modeling and Solving the Sin-
gle Facility Line Restoration Problem, Working Paper OR 327-98, Operations Research
Center, MIT, Cambridge, MA, 1998.

[6] F. Barahona, Network design using cut inequalities, SIAM J. Optim., 6 (1996), pp. 823–837.
[7] J.J. Bartholdi, J.B. Orlin, and H.D. Ratliff, Cyclic scheduling via integer programs with

circular ones, Oper. Res., 28 (1980), pp. 1074–1085.
[8] D. Bienstock, S. Chopra, O. Günlük, and C. Tsai, Minimum cost capacity installation for

multicommodity network flows, Math. Programming, 81 (1998), pp. 177–199.
[9] D. Bienstock and O. Günlük, Capacitated network design—polyhedral structure and compu-

tation, INFORMS J. Comput., 8 (1996), pp. 243–260.
[10] D. Bienstock and G. Muratore, Strong inequalities for capacitated survivable network design

problems, Math. Program., 89 (2000), pp. 127–147.
[11] G. Brightwell, G. Oriolo, and F.B. Shepherd, Some Strategies for Reserving Resilient

Capacity, LSE CDAM Report 98-04, London School of Economics, London, UK, 1998.
[12] G. Brightwell, G. Oriolo, and F.B. Shepherd, Reserving Resilient Capacity with Upper

Bound Constraints, LSE CDAM Report 2000-03, London School of Economics, London,
UK, 2000.

RESERVING RESILIENT CAPACITY 539

[13] G. Brightwell and F.B. Shepherd, Consultancy Report: Resilience Strategy for a Single
Source-Destination Pair, LSE CDAM Report 96-22, London School of Economics, London,
UK, 1996.

[14] S.J. Bye and M. Herzberg, An optimal spare-capacity assignment model for survivable net-
works with hop limits, in Proceedings of GLOBECOM, San Francisco, 1994, pp. 1601–1606.

[15] S.J. Bye and M. Herzberg, Spare-capacity assignment in survivable networks for multi-link
and node failures with hop limits, in Proceedings of Networks’94, 1994, pp. 381–386.

[16] S. Fortune, J. Hopcroft, and J. Wyllie, The directed subgraph homeomorphism problem,
Theoret. Comput. Sci., 10 (1980), pp. 111–121.

[17] A. Frank, Connectivity and network flows, in Handbook of Combinatorics, Vol. 1, R.L. Gra-
ham, M. Grötschel, and L. Lovász, eds., North-Holland, Amsterdam, 1995, pp. 111–177.

[18] M. Grötschel, C.L. Monma, and M. Stoer, Design of survivable networks, in Network Mod-
els, Handbooks in Operations Research and Management Science, North-Holland, Amster-
dam, 1995, pp. 617–672.

[19] O. Günlük, Branch-and-cut algorithm for capacitated network design problems, Math. Pro-
gramming, 86 (1999), pp. 17–39.

[20] R.R. Irashko, M.H. MacGregor, and W.D. Grover, Optimal capacity placement for path
restoration in mesh survivable networks, IEEE International Conference on Communica-
tions, Dallas, 1996, pp. 1568–1574.

[21] T. Magnanti, P. Mirchandani, and R. Vachani, Modelling and Solving the Capacitated
Network Loading Problem, MIT OR Working Paper, OR 239-91, MIT, Cambridge, MA,
1991.

[22] T. Magnanti, P. Mirchandani, and R. Vachani, The convex hull of two core capacitated
network design problems, Math. Programming, 60 (1993), pp. 233–250.

[23] T. Magnanti, P. Mirchandani, and R. Vachani, Modelling and solving the two facility
capacitated network loading problem, Oper. Res., 43 (1995), pp. 142–157.

[24] T. Magnanti and Y. Wang, Polyhedral Properties of the Network Restoration Problem—
With the Convex Hull of a Special Case, Working Paper OR 323-97, Operations Research
Center, MIT, Cambridge, MA, 1997.

[25] H. Sakauchi, Y. Nishimura, and S. Hasegawa, A self-healing network with an economical
spare-channel assignment, in Proceedings of GLOBECOM, San Diego, CA, 1990, pp. 438–
443.

[26] I. Saniee, Optimal routing designs in self-healing communications networks, Int. Trans. Oper.
Res., 3 (1996), pp. 187–195.

[27] B.D. Venables, W.D. Grover, and M.H. MacGregor, Two strategies for spare capacity
placement in mesh restorable networks, IEEE International Conference on Communica-
tions, Geneva, 1993, pp. 267–271.

WHEN IS INDIVIDUAL TESTING OPTIMAL FOR
NONADAPTIVE GROUP TESTING?∗

S. H. HUANG† AND F. K. HWANG†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 4, pp. 540–548

Abstract. The combinatorial group testing problem is, assuming the existence of up to d
defectives among n items, to identify the defectives by as few tests as possible. In this paper, we
study the problem for what values of n, given d, individual testing is optimal in nonadaptive group
testing. Let N(d) denote the largest n for fixed d for which individual testing is optimal. We will
show that N(d) = (d + 1)2 under a prevalent constraint in practical nonadaptive algorithms and
prove that N(d) = (d+ 1)2 for d = 1, 2, 3, 4 without any constraint.

Key words. nonadaptive group testing, disjunct matrix, union-free matrix

AMS subject classifications. 05D05, 05B20

PII. S0895480199359247

1. Introduction. In combinatorial group testing, a prototype problem called
the (d̄, n) problem is to assume that there are up to d defectives among n given items,
and the problem is to separate the good items from the defective ones by group tests.
A (group) test is administered on an arbitrary subset S of the items with two possible
outcomes; a negative outcome means S contains no defectives and a positive outcome
means S contains at least one defective, not knowing exactly how many or which ones.
A group testing algorithm is optimal if it minimizes the worst-case number of tests
required.

A group testing algorithm is sequential if the tests can be done sequentially and
the outcomes of previous tests are known at the time to determine the current test.
A group testing algorithm is nonadaptive if all tests must be specified at once. A
nonadaptive algorithm can be represented by a 0-1 matrix where columns are items,
rows are tests, and a 1-entry in cell (i, j) means item j is contained in test i. Note
that a column can be viewed as a subset whose elements are indices of the rows
incident to the column. Thus we can talk about the union of columns. Group testing
has applications to blood testing, electrical and chemical testing, coding, multiaccess
channel conflict resolution, etc. Recently, nonadaptive group testing has been shown
to play a crucial role in the clone library screening problem.

Kautz and Singleton [8] introduced the notions of “d̄-separable” and “d-disjunct”
of 0-1 matrix Mt×n; the former requires that no two unions of up to d columns are
identical, while the latter requires that no union of d columns contains a column not
in the union. They showed that both properties guarantee Mt×n to be a nonadaptive
(d̄, n) algorithm, while the d-disjunct property has an extra feature of simplifying the
process of identifying defectives. These two properties were also called r-union-free
and r-cover-free [3, 4] in extremal set theory.

A trivial d-disjunct algorithm not using the idea of group testing would test the
n items individually, which requires n tests. Thus it is of interest to know for what
values of n, given d, individual testing is optimal.

∗Received by the editors July 6, 1999; accepted for publication (in revised form) June 7, 2001;
published electronically October 23, 2001.

http://www.siam.org/journals/sidma/14-4/35924.html
†Department of Applied Mathematics, National Chiao-Tung University, Hsinchu 30050, Taiwan,

Republic of China (u8622522@math.nctu.edu.tw, fhwang@math.nctu.edu.tw). This research was
partially supported by Republic of China National Science Council grant NSC 90-2115-M-009-007.

540

WHEN IS INDIVIDUAL TESTING OPTIMAL? 541

A similar question as posed in the title has been asked on sequential group testing
for exactly d defectives. (Thus the state of the last item can be deduced without
testing.) Hu, Hwang, and Wang [5] conjectured that individual testing is optimal if
and only if n ≤ 3d. They proved the “necessary” part, but the sufficient condition is
proved only for n ≤ 2.5d, improving an earlier sufficient condition n ≤ 2d of Hwang
[7]. Du and Hwang [1] further improved the sufficient condition to n ≤ 2.625d, but
the conjecture remains open.

Back to the nonadaptive case, let N(d) denote the largest n for fixed d for which
individual testing is optimal. Bassalygo (see [2]) first gave a lower bound.

Lemma 1.1. N(d) ≥ (d+2
2

)
.

Erdös, Frankl, and Füredi [3] conjectured that

lim N(d)/d2 = 1 (weaker version),

N(d) ≤ (d+ 1)2 (stronger version)

and stated without giving details that they can prove the stronger version for d ≤ 3.
In this paper, we will prove N(d) ≤ (d+ 1)2 for d+ 1 a prime power. Thus(

d+ 2

2

)
≤ N(d) ≤ (d+ 1)2.

This establishes N(d) = O(d2), as opposed to N(d) = O(d) in the sequential case. We
will also show that under a prevalent constraint in practical nonadaptive algorithms,
N(d) = (d + 1)2. Finally, we prove N(d) = (d + 1)2 for d=1, 2, 3, 4 without any
constraint.

2. A necessary condition. Let t(d, n) denote the minimum number of tests a
nonadaptive algorithm requires, given d and n. We first make an observation.

Lemma 2.1. The existence of a d-disjunct matrix Mt×n with t < n implies
N(d) ≤ t.

Proof. t(d, n) is clearly nondecreasing in n. Hence, the existence of a d-disjunct
Mt×n with n > t implies t+ 1 items can be done in t tests, or, equivalently, N(d) ≤
t.

Let λcc′ denote the inner product of two columns c and c
′
. Define λ̄ = maxλcc′

over all pairs of columns. A 0-1 matrix is called a weight-w matrix if each column is
a w-set. The following lemma is well known [10].

Lemma 2.2. A weight-w matrix is (�w/λ̄� − 1)-disjunct.
Corollary 2.3. If λ̄ = 1, then a weight-w matrix is (w − 1)-disjunct.
The main result in this section is the following theorem.
Theorem 2.4. N(d) ≤ (d+ 1)2 for d+ 1, a prime power.
Proof. By Lemma 2.1 and Corollary 2.3, it suffices to construct a weight-(d+ 1)

matrix M(d+1)2×n with λ̄ = 1 and (d+ 1)2 < n.
It is well known [9] that if d + 1 is a prime power, then there exists a set of

d mutually orthogonal latin squares (MOLS). Each such square will generate d + 1
columns (as (d+1)-subsets of {0, 1, 2, . . . , (d+1)2−1}) of M , one for each set of cells
(i, j) having the same entry k, 0 ≤ k ≤ d, and cell (i, j) is translated to the number
i(d+ 1) + j. Clearly, columns generated from the same square have λcc′ = 0. Due to
orthogonality, columns generated from different latin squares satisfy λcc′ = 1. Thus
the d MOLS generate a total of (d+ 1)d columns of M with λ̄ = 1. Finally, consider
the (d + 1) × (d + 1) matrix S, where the entry in cell (i, j) is just (i, j). Clearly,
the columns (rows) of S have λcc′ = 0, and each row-column pair has λrc = 1.

542 S. H. HUANG AND F. K. HWANG

Furthermore, the set of cells having the same entry from a latin square must be a
transversal; i.e., they have distinct row indices and distinct column indices. Let s be
a transversal, r a row, and c a column of S. Then λsr = λsc = 1. Thus we can add the
2(d+1) rows and columns of S to be columns of M and preserve the λ̄ = 1 property.
The total number of columns in M is now

(d+ 1)d+ 2(d+ 1) = (d+ 1)(d+ 2).

Note that the base set of the columns is the set {0, 1, . . . , (d + 1)2 − 1}. By treating
the base set as the set of tests, then we have constructed a (d+ 1)2 × (d+ 1)(d+ 2)
matrix with λ̄ = 1.

3. A necessary and sufficient condition under λ̄ = 1. Constructing ef-
ficient d-disjunct matrices is a difficult task, with the simplest and most prevalent
method being given by Corollary 2.3, i.e., constructing matrices with λ̄ = 1. In this
section, we study the problem given in the title of this paper under the constraint
λ̄ = 1.

Let Mt×n be a 0-1 matrix. Let G(M) denote the graph with the rows of M as
vertices and an edge between two vertices if and only if the inner product of the two
corresponding rows (viewed as subsets of {1, 2, . . . , n}) is not zero. Let dG(v) denote
the degree of v in G.

Lemma 3.1. Suppose M is weight-(d + 1) and λ̄ = 1. Then G(M) consists of n
edge-disjoint Kd+1 (complete graph of order d+ 1).

Proof. Each column generates a Kd+1. The λ̄ = 1 property forces the Kd+1’s to
be edge disjoint.

Recently, W. T. Huang and Hwang observed (private communication) that a
previous result of Weideman and Raghavarao [12] for the d̄-separable matrix can be
extended to the following lemma.

Lemma 3.2. Any d-disjunct matrix with λ̄ = 1 can be reduced to one where no
column weight exceeds d+ 1 with the d-disjunct property preserved.

Let n(d, t) denote the largest n such that there exists a d-disjunct Mt×n. A
column in M is called isolated if there exists a row incident to this column only.

It is easily observed in the following lemma.
Lemma 3.3. Let Mt×n be a d-disjunct matrix containing an isolated column.

Then

n ≤ 1 + n(d, t− 1).

Proof. Deleting the isolated column and its incident row does not affect the
d-disjunct property.

Note that to determine N(d), we need to find an Mt×n satisfying t < n and
minimizing n. A matrix with no nonisolated column always satisfies t ≥ n, and hence
cannot be such a candidate, and consequently is of no interest. Therefore, we assume
from now on that we consider only matrices with an isolated column.

Dyachkov and Rykov [2] proved the following lemma.
Lemma 3.4. Let M be a d-disjunct matrix. Then a column with weight at most

d must be isolated.
Lemma 3.5. Let M be a d-disjunct matrix with λ̄ = 1 and no column weight less

than d+ 1. Then n ≤ 	 t(t−1−r)
(d+1)d
, where t− 1 ≡ r (mod d).

Proof. By Lemmas 3.2 and 3.4, we may obtain a constant weight-w matrix M∗

with w = d + 1 from M. Consider G(M∗). Each vertex has a maximum possible

WHEN IS INDIVIDUAL TESTING OPTIMAL? 543

degree of t− 1. By Lemma 3.1, d | dG(v). Hence, dG(v) ≤ (t− 1)− r. Thus the total
number of edges in G satisfies

n×
(
d+ 1

2

)
=

ΣdG(v)

2
≤ t[(t− 1)− r]

2
,

or n ≤ 	 (t(t− 1− r)
(d+ 1)d

.

We are now ready to prove the main result of this section.
Theorem 3.6. Under λ̄ = 1, N(d) = (d+ 1)2 for d+ 1, a prime power.
Proof. By Theorem 2.4, it suffices to prove N(d) ≥ (d + 1)2, which is done by

proving the nonexistence of a d-disjunct matrix M[(d+1)2−1]×(d+1)2 with λ̄ = 1.
Let Mt×n be a d-disjunct matrix with λ̄ = 1 and t = (d+1)2−1. By Lemma 3.2,

we may assume that every column of M has weight at most d+ 1.
Case (i). No column of M has weight less than d+1. Since t− 1 = (d+1)2− 2 =

(d+ 1)d+ d− 1, t− 1− r = (d+ 1)d. By Lemma 3.5,

n ≤ t(d+ 1)d

d(d+ 1)
= t.

Case (ii). There exists a column of M with weight at most d. Let C be the set of
columns with weight at most d. By Lemma 3.4, each column c ∈ C is isolated; i.e.,
there exists a row r(c) incident only to c. Let M ′ be obtained from M by deleting c
and {r(c) : c ∈ C}. Then M ′ is a (t− | C |) × (n− | C |) weight-(d + 1) matrix with
λ̄ = 1, since

t− | C | −1 = d(d+ 1) + d− 1− | C |, t− 1− | C | −r ≤ d(d+ 1).

By Lemma 3.5,

(n− | C |) ≤
⌊
(t− | C |)(d+ 1)d

d(d+ 1)

⌋
,

which again leads to n ≤ t.
4. N(d) for small d. Bassalygo (see [2]) proved the following lemma.
Lemma 4.1. Let M be a d-disjunct matrix and c a column of M with weight w.

Then t(d, n) ≥ w + t(d− 1, n− 1).
Spencer [11] proved the following lemma
Lemma 4.2. n(1, t) = (t

� t
2 �).

Theorem 4.3. N(1) = 4.
Proof. By Theorem 2.4, N(1) ≤ 4. Since n(1, 3) = 3, N(1) ≥ 4. Hence,

N(1) = 4.
Lemma 4.4. n(2, 7) = 7.
Proof. Let M7×n be a 2-disjunct matrix. If λ̄ = 1, then Lemma 4.4 follows from

Theorem 3.6. Therefore, we may assume the existence of two columns, c and c′, with
λcc′ > 1. Then c is either isolated or has weight at least 4.

(i) c is isolated. By Lemmas 1.1 and 3.3,

n ≤ 1 + n(2, 6) = 1 + 6 = 7.

544 S. H. HUANG AND F. K. HWANG

(ii) c has weight at least 4. Deleting c and its incident rows, the reduced matrix
M ′ can have at most three rows and is 1-disjunct. By Lemma 4.2, M ′ can have at
most three columns. Then n ≤ 4.

Theorem 4.5. N(2) = 9.
Proof. Since d + 1 = 3 is a prime power, by Theorem 2.4, N(2) ≤ 9. Therefore,

it suffices to prove N(2) ≥ 9, or n(2, 8) = 8.
Let M8×n be 2-disjunct. By Theorem 3.6, we may assume the existence of two

columns, c and c′, with λcc′ > 1.
(i) c is isolated. Then by Lemmas 3.3 and 4.4

n ≤ 1 + n(2, 7) = 8.

(ii) c has weight at least 4. Then by Lemmas 4.1 and 4.2

t(2, 8) ≥ 4 + t(1, 7), or n(2, 8) ≤ 7.

Corollary 4.6. N(3) ≥ 13.
Proof. By Lemmas 3.4 and 4.1, t ≥ (d + 1) + t(d − 1, n − 1) for a d-disjunct

matrix Mt×n (with at least one nonisolated column), since n(2, 8) = 8, t(2, 12) ≥ 9.
Therefore, t ≥ 4 + t(2, n− 1) ≥ 4 + 9 = 13 for n ≥ 13. It implies that t(3, n) = n for
n ≤ 13, i.e., N(3) ≥ 13.

Let I(c) be a collection of different b-subsets, b ≥ 2, of {1, 2, 3, . . . , t} denoting
the intersection property of column c with other columns. For example, I(c) =
{(1, 2), (1, 3, 4)} means that there exists at least one column c1 intersecting c at rows
1 and 2, and there exists at least one column c2 intersecting c at rows 1, 3, 4.

Let M1 be a t × n1 weight-4 2-disjunct matrix with no isolated column. Then
λ̄ ≤ 2. We will do some deletions on M1 to reduce weight 4 to weight 3 such that the
2-disjunct property is still preserved in (M1)

i, i ≥ 0, which is the reduced matrix after
the ith deletion. Note that deleting a 1-entry of c will affect other I(c′) in general.
Therefore, after each deletion, we need to reconsider the I(c) of the reduced matrix,
where c has weight 4.

Consider I(cj), j ≤ n1, of (M1)
i, i ≥ 0, and I(cj) �= ∅, where cj has weight 4. The

deletion rule is as follows:
(1) If I(cj) ⊆ {(xj , yj), (xj , zj), (xj , vj);xj �= yj �= zj �= vj ∈ {1, 2, 3, . . . , t}} in

(M1)
i, then delete the 1-entry in row xj of cj ; hence the reduced column has weight 3

and has an inner product at most one with any other column of (M1)
i. (M1)

i remains
2-disjunct by Lemma 3.2.

(2) If I(cj) = {(xj , yj), (xj , zj), (yj , zj);xj �= yj �= zj ∈ {1, 2, 3, . . . , t}} in (M1)
i,

then do nothing at this moment until the last step.
Finally, we will get a reduced matrix (M1)

f with no case (1) after f deletions. If
case (2) does not occur, we are done. If case (2) occurs, then there exists a t × n′1
submatrix M ′1 contained in (M1)

f which has the following four properties:
(1) M ′1 has at least four columns and each column of M ′1 has weight 4.
(2) ∀cj ∈ C(M ′1), I(cj) has the form {(xj , yj), (xj , zj), (yj , zj);xj �= yj �= zj ∈

{1, 2, 3, . . . , t}}.
(3) cj ∈M ′1 and |ci

⋂
cj | = 2 =⇒ ci ∈M ′1.

(4) M ′1 doesn’t contain a submatrix with fewer columns having properties (1),
(2), and (3).

Let M ′′1 be a q × n′1 submatrix of M ′1, where the q rows of M ′′1 are the collection
of rows {xi, yi, zi : ci ∈ C(M ′), I(ci) = {(xi, yi), (xi, zi), (yi, zi)}}. Then we have the
following lemma.

WHEN IS INDIVIDUAL TESTING OPTIMAL? 545

Lemma 4.7. n′1 ≥ q.
Proof. Suppose c ∈ M ′1 and I(c) = {(x, y), (x, z), (y, z)}. Then each row x, y, z

must have at least three 1-entries in M ′′1 . For example, x appears once in c, once in a
column intersecting c at (x, y), and once in a column intersecting c at (x, z). Suppose
c has a fourth 1-entry v also in M ′′1 . Then v ∈ {x′, y′, z′} for some column c′ with
I(c′) = {(x′, y′), (x′, z′), (y′, z′)}. Therefore, row v has at least four 1-entries. Let k
be the number of columns with four 1-entries in M ′′. Then counting the number of
1-entries by column and by row separately, we have 3n′1 +k ≥ 3q+k, or n′1 ≥ q.

Lemma 4.8. Suppose c = {x, y, z, v} and I(c) = {(x, y), (x, z), (y, z)} ∀c ∈
C(M ′1). Then c′

⋂{x, y, z} �= ∅ implies v /∈ c′ in a 2-disjunct matrix.

Proof. Without loss of generality, assume that c′ contains x. Suppose to the
contrary that c′ also contains v. By the definition of I(c), there exists a column c′′

containing (y, z). Then c′
⋃
c′′ contains c, contradicting the 2-disjunct.

Lemma 4.9. n(2, 9) = 12.

Proof. The proof uses the Steiner triple system with v = 9 and b = 12 [9].

Lemma 4.10. n(2, 10) ≤ 13.

Proof. Let M10×n be a 2-disjunct matrix. If M has an isolated column, then by
Lemmas 3.3 and 4.9, n ≤ 1+ n(2, 9) = 1+12 = 13. If λ̄ = 1 and there exists no isolated

column in M, then r ≡ 10 − 1 ≡ 1 (mod 2). By Lemma 3.5, n ≤ 	 10(10−1−1)
3·2
 = 13.

Therefore, we may assume M has no isolated column and λ̄ > 1. Let column c have
maximum weight of M. Then c has weight at least 4.

(i) c has weight greater than 4. Then by Lemmas 4.1 and 4.2,

t(2, 14) ≥ 5 + t(1, 13) = 11, or n(2, 10) ≤ 13.

(ii) c has weight 4. Then M is 2-disjunct with λ̄ = 2, and each column has weight
3 or 4. Let M = M1

⋃
M2, where M1 is a 10 × n1 weight-4 matrix, and M2 is a

10× (n− n1) weight-3 matrix.

We first make an observation. Because M is 2-disjunct with λ̄ = 2 and has
maximum weight 4, it forces both M1,M2 to be 2-disjunct with M1 having λ̄ = 2,M2

having λ̄ = 1, and ∀c1 ∈M1, c2 ∈M2, λc1c2 ≤ 1.

Next we want to claim that M1 with λ̄ = 2 can be reduced to a matrix with λ̄ = 1
by deleting some 1-entries and remains 2-disjunct.

By the method we used previously, we get matrix (M1)
f ,M ′1,M

′′
1 from (M1)

f . If
M ′1, hence M

′′
1 , does not exist, then we are done. Otherwise, by relabeling the rows,

we may assume that c1 = {1, 2, 3, 4}. The completion of I(c1) = {(1, 2), (1, 3), (2, 3)}
implies the following submatrices must be in M ′1 (see Figure 1):

Note that the completion of I(c2), I(c3), I(c4) requires at least one more row. In
fact, if q = 4, then (b) shows the only way to complete I(c2), I(c3), and I(c4). This
case can be taken care of by deleting the circled 1’s. It is easily verified that any
two columns intersect at most once after the deletion. Hence, λ̄ = 1 in M ′1. In other
words, M can be reduced to a matrix which remains 2-disjunct with λ̄ = 1 and has
column weight 3 or 4. Hence, by Lemma 3.5, t− 1− r = 8, n ≤ 	 10×8

3×2
 = 13.

If q ≥ 5, then there are other ways to complete I(c2), I(c3), and I(c4). By
Lemma 4.7, n′1 ≥ q ≥ 5. Let c5 be a new column in M ′′1 . Since M ′′1 is minimal, I(c5)
must intersect {(1, 2), (1, 3), (2, 3)}. Without loss of generality, assume (1, 2) ∈ I(c5).

Since c5 intersects all c1, c2, c3, and c4, by Lemma 4.8, c5 cannot intersect the
fourth 1-entries of these columns. Therefore, the other two 1-entries of c5 must take
up new rows, say, rows 8 and 9 (see Figure 2(a)).

546 S. H. HUANG AND F. K. HWANG

C1 C2 C1C4C3 C4C3C2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

(a) (b)

Fig. 1. Forced submatrices in M ′
1.

c1 c2 c3 c4 c5 c1 c2 c3 c4 c5 c6
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1
1 1

1 1
1 1

1 1 1
1 1 1
1 1

(a) (b)

Fig. 2. Larger forced submatrices.

Inspecting the relation between c5 and the other ci, we notice its first two 1-entries
are symmetric, and so are its last two. Therefore, we may assume (1, 8) ∈ I(c5). To
complete I(c5), there must exist c6 containing rows 1 and 8. Since c6 intersects
all other columns except c4, among the existing rows, it can contain only row 7.
Therefore, the fourth 1-entry of c6 must be a new row, say, row 10. However, we
still need at least one more row to complete I(c2), I(c3), and I(c4). Hence, the total
number of rows exceed 10.

Lemma 4.11. n(3, 13) = 13.
Proof. Let M13×n be a 3-disjunct matrix. If λ̄ = 1, then Lemma 4.11 follows

from Theorem 3.6. Therefore, we may assume the existence of two columns c and c′

with λcc′ > 1. Then c is either isolated or has weight at least 5.
(i) c is isolated. By Lemma 3.3 and Corollary 4.6,

n ≤ 1 + n(3, 12) = 1 + 12 = 13.

(ii) c has weight at least 5. Deleting c and its incident rows, the reduced matrix
M ′ can have at most 8 rows and is 2-disjunct. By n(2, 8) = 8, then n ≤ 9.

Lemma 4.12. n(3, 14) = 14.
Proof. Let M14×n be a 3-disjunct matrix. If λ̄ = 1, then Lemma 4.12 follows

from Theorem 3.6. Therefore, we may assume the existence of two columns c and c′

with λcc′ > 1. Then c either is isolated or has weight at least 5.

WHEN IS INDIVIDUAL TESTING OPTIMAL? 547

(i) c is isolated. By Lemmas 3.3 and 4.11,

n ≤ 1 + n(3, 13) = 1 + 13 = 14.

(ii) c has weight at least 5. Deleting c and the incident rows, the reduced matrix
M ′ can have at most 9 rows and is 2-disjunct. By Lemma 4.9,

n ≤ 1 + n(2, 9) = 13.

Theorem 4.13. N(3) = 16.

Proof. Since d+ 1 = 4 is a prime power, by Theorem 2.4, N(3) ≤ 16. Therefore,
it suffices to prove N(3) ≥ 16 or n(3, 15) = 15. Let M15×n be a 3-disjunct matrix.
By Theorem 3.6, we may assume the existence of two columns c and c′ with λcc′ > 1.

(i) c is isolated. Then by Lemmas 3.3 and 4.12

n ≤ 1 + n(3, 14) = 15.

(ii) c has weight at least 5. Then by Lemmas 4.1 and 4.10

n ≤ 1 + n(2, 10) ≤ 1 + 13 = 14.

With similar but slightly more complicated arguments, we can also prove N(4) =
25 [6].

5. Conclusion. In this paper, we studied the problem of when individual testing
is optimal for nonadaptive group testing. We showed that N(d) ≤ (d + 1)2 is a
necessary condition by constructing the d-disjunct matrix M[(d+1)2−1]×(d+1)2 , where
d + 1 is a prime power. Besides, we showed that N(d) ≥ (d + 1)2 is a sufficient
condition under λ̄ = 1. Hence, under λ̄ = 1 and d+1 a prime power, N(d) = (d+1)2

is a necessary and sufficient condition of the problem we studied. We also prove that
N(d) = (d+1)2 for d = 1, 2, 3, 4 without any constraint, giving further support to the
conjecture N(d) = (d+ 1)2 for d+ 1, a prime power. However, for d+ 1, not a prime
power, we still know little about N(d).

REFERENCES

[1] D. Z. Du and F. K. Hwang, Minimizing a combinatorial function, SIAM J. Algebraic Discrete
Methods, 3 (1982), pp. 523–528.

[2] A. G. Dyachkov and V. V. Rykov, A survey of superimposed code theory, Problems Control
Inform. Theory, 12 (1983), pp. 229–242 (in Russian).

[3] P. Erdös, P. Frankl, and D. Füredi, Families of finite sets in which no set is covered by
the union of r others, Israel J. Math., 51 (1985), pp. 79–89.

[4] P. Frankl and D. Füredi, Union-free hypergraphs and probability theory, European J. Com-
bin., 5 (1984), pp. 127–131.

[5] M. C. Hu, F. K. Hwang, and J. K. Wang, A boundary problem for group testing, SIAM J.
Algebraic Discrete Methods, 2 (1981), pp. 81–87.

[6] S. H. Huang, When is Individual Testing Optimal for Nonadaptive Group Testing? Master
thesis, Department of Applied Mathematics, National Chiao-Tung University, Hsinchu,
Taiwan, 1999.

[7] F. K. Hwang, A minimax procedure on group testing problems, Tamkang J. Math., 2 (1971),
pp. 39–44.

[8] W. H. Kautz and R. R. Singleton, Nonrandom binary superimposed codes, IEEE Trans.
Inform. Theory, 10 (1964), pp. 363–377.

[9] C. C. Lindner and C. A. Rodger, Design Theory, CRC Press, New York, 1997.

548 S. H. HUANG AND F. K. HWANG

[10] Q. A. Nguyen and T. Zeisel, Bounds on constant weight binary superimposed codes, Problems
Control Inform. Theory, 17 (1988), pp. 223–230.

[11] J. Spencer, Minimal completely separating systems, J. Combin. Theory, 8 (1970), pp. 446–447.
[12] C. A. Weideman and D. Raghavarao, Nonadaptive hypergeometric group testing designs for

identifying at most two defectives, Commun. Statist. Theory Methods, 16 (1987), pp. 2997–
3006.

ASYMPTOTIC MINIMUM COVERING RADIUS OF BLOCK CODES∗

PO-NING CHEN† AND YUNGHSIANG S. HAN‡

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 14, No. 4, pp. 549–564

Abstract. In this paper, we restudy the covering radius of block codes from an information
theoretic point of view by ignoring the combinatorial formulation of the problem. In the new setting,
the formula of the statistically defined minimum covering radius, for which the probability mass
of uncovered space by M spheres can be made arbitrarily small, is reduced to a minimization of
a statistically defined spectrum formula among codeword-selecting distributions. The advantage
of the new view is that no assumptions need to be made on the code alphabet (such as finite,
countable, etc.) and the distance measure (such as additive, symmetric, bounded, etc.) in the
problem transformation, and hence the spectrum formula can be applied in most general situations.
We next address a sufficient condition under which uniform codeword-selecting distribution minimizes
the spectrum formula. With the condition, the asymptotic minimum covering radius for block codes
under J-ary quantized channels and constant weight codes under Hamming distance measure are
determined to display the usage of the spectrum formula.

Key words. covering radius, block codes, information spectrum

AMS subject classifications. 94B65, 94A24

PII. S0895480100379993

1. Introduction. We first introduce the notations used in this paper. We
denote the n-tuple alphabet by Xn = X × X × · · · × X . For any two elements
xn = (x0, x1, . . . , xn−1) and yn = (y0, y1, . . . , yn−1) in Xn, we use µn(x

n, yn) to de-
note the n-fold measure1 on the “distance” between them. In our study, the codewords
are drawn from a pregiven codeword set Sn, which can be either the entire space Xn

or its proper subset. Such a generalization will be useful for some specific applications,
such as constant weight codes, where the codewords are drawn from a subset (of Xn)
containing only words of fixed weight.

Based on the above notations, the problem on the minimum covering radius be-
comes the following: for given M and Sn, determine the minimum radius ρ(M,Sn)
for which M spheres that center at M selected elements from Sn jointly cover the
entire space Xn. Specifically,

ρ(M,Sn)�= min
C⊂Sn

|C|=M

max
xn∈Xn

min
yn∈C

µn(x
n, yn),(1)

∗Received by the editors October 23, 2000; accepted for publication (in revised form) August 16,
2001; published electronically October 23, 2001.

http://www.siam.org/journals/sidma/14-4/37999.html
†Department of Communications Engineering, National Chiao Tung University, Hsin Chu, Taiwan

30050, ROC (poning@cc.nctu.edu.tw). The work of this author was supported by the National
Science Council of Taiwan under project code NSC 89-2213-E-009-106.

‡Department of Computer Science and Information Engineering, National Chi Nan University,
Nan Tou, Taiwan 545, ROC (yshan@csie.ncnu.edu.tw). The work of this author was supported by
the National Science Council of Taiwan under project code NSC 89-2213-E-260-002.

1Conventionally, a distance [16, p. 139] should satisfy the properties of (i) nonnegativity, (ii)
being zero iff two points coincide, (iii) symmetry, and (iv) triangle inequality. The spectrum formula
derived in this paper, however, is applicable to any measurable function defined over the alphabets.
Since none of the above four properties are assumed, the measurable function on the “distance”
between two code letters is therefore termed generalized distance function. For simplicity, we will
abbreviate the generalized distance function simply as the distance function in the remaining part of
the paper.

549

550 PO-NING CHEN AND YUNGHSIANG S. HAN

where |C| denotes the size of the set C. Here we do not assume that the M elements
drawn from Sn must be distinct. In other words, one can choose M identical elements
from Sn as long as the resultant codebook gives the minimum covering radius. In
addition, we implicitly assume that |Sn| > 0.

The problem of determining the covering radius has been studied by many re-
searchers [2], [5], [6], [7], [8], [9], [10], [11], [12], [14], [15], [17], [18], [19], [20], [21]
among which [2], [5], [6], [11], [17], and [19] focused on its asymptotic behavior with
respect to block length n under an exponentially increasing size M = enR and a fixed
rate R. Specifically, [5], [17], and [19] investigate this problem based on combinato-
rial techniques, while the studies in [2] and [11] introduce probabilistic approaches.
All the mentioned works concentrated on codes transmitted over binary symmetric
channel, where Hamming distance is the only distance measure.

In this paper, we employ a new notion from information-spectrum methodologies
[3], [13] to determine the asymptotic minimum covering radius among (a prespecified
class of) block codes. As a result, the asymptotic minimum covering radius formula
can be established under any alphabet Xn and any measure on the “distance” between
elements in Xn. With the new expression, we can now, for example, investigate the
asymptotic minimum covering radius not only for Hamming distance but also for the
“quantized distance measure” defined for codes transmitted over quantized channels.

The rest of the paper is organized as follows. In section 2, we transform the
problem of determining the asymptotic minimum covering radius among block codes
into one that minimizes a spectrum function ΩY‖X(R) among all codeword-selecting
distributions Y . A sufficient condition under which uniform Y minimizes the spec-
trum function is next addressed in section 3. Based on the sufficient condition, the
asymptotic minimum covering radius for arbitrary block codes under J-ary quan-
tized channels and constant weight codes under Hamming distance are established in
section 4 to display the usage of the spectrum formula.

Throughout the paper, the natural logarithm is employed unless otherwise stated.

2. Asymptotic minimum covering radius for block codes. Define a sphere
centered at yn with radius r as

Br(yn) �= {xn ∈ Xn : µn(x
n, yn) ≤ r} .

Definition 2.1 (minimum α-covering radius under codeword set Sn and covering
distribution PXn). Fix α ∈ [0, 1]. The minimum α-covering radius under codeword
set Sn and distribution PXn is given by

ρα (M,Sn ‖Xn)
�
= inf

C⊂Sn
|C|=M

inf

{
r ∈ : PXn

(⋃
yn∈C

Br(yn)
)
≥ α

}
.

The α-covering radius for one specific block code is the smallest sphere radius for
which the probability mass of all words, covered by M spheres, is no smaller than α
(cf. Figure. 2.1). The probability mass placed on each element xn in Xn is assumed to
be defined through the covering distribution PXn . Taking the minimum one among
all α-covering radii yields the minimum α-covering radius.

It can be verified that the conventional definition of the minimum covering ra-
dius ρ(M,Sn) (cf. (1)) is exactly the 1-covering radius under a full-support2 covering

2The support of a distribution is the smallest set with probability mass being equal to 1. Here,
“full-support” means the support of PXn is Xn.

ASYMPTOTIC COVERING RADIUS OF BLOCK CODES 551

The entire space Xn (with distribution PXn defined over Xn)

⋃
yn∈C

Br(yn) = the shaded area

Fig. 2.1. The α-covering radius for a block code is the smallest radius r such that
PXn (∪yn∈CBr(yn)) ≥ α.

distribution PXn . Specifically, given that the support of PXn is Xn,

ρ(M,Sn) �= min
C⊂Sn

|C|=M

max
xn∈Xn

min
yn∈C

µn(x
n, yn)

= inf
C⊂Sn

|C|=M

inf

{
r ∈ : PXn

(⋃
yn∈C

Br(yn)
)

= 1

}

= ρ1(M,Sn ‖Xn) .

Accordingly, the conventional asymptotic covering radius problem is to find the limit,
as n→∞, of the quantity

1

n
ρ(M,Sn) = 1

n
ρ1(M,Sn‖Xn)

under a full-support distribution PXn and a fixed rate R = log(M)/n. Since the quan-
tity is investigated as n goes to infinity, it is justified to takeM = enR as integers. Now
if the targeted quantity becomes (1/n)ρα(M,Sn‖Xn) instead of (1/n)ρ(M,Sn), then
the full-support assumption on covering distribution PXn can be relaxed. Equipped
with the new setting, one can place larger probability mass on those elements that
are considered more essential (to cover) than other elements.

The concept of our method is similar to that of the random coding technique
employed in the channel reliability function [1]. Each codeword is assumed to be
selected independently of all others from Sn through a generic distribution PY n with
PY n(Sn) = 1. Then the sphere centered at each random codeword with radius r
becomes a random variable and so does the resultant codebook. For convenience, we
use Br(Y n) and C to denote the random sphere and the random codebook, respectively.

Lemma 2.2. Fix a sequence of codeword sets

S= {Sn}n≥1, where Sn ⊂ Xn and |Sn| > 0,

552 PO-NING CHEN AND YUNGHSIANG S. HAN

and a triangular array of covering distributions PX = {PXn}∞n=1 . For any triangular-
array codeword-selecting process

Y = Y(S) =
{
Y n =

(
Y

(n)
1 , Y

(n)
2 , . . . , Y (n)

n

)}∞
n=1

satisfying PY n(Sn) = 1 for each n, and any α ∈ [0, 1),

lim sup
n→∞

1

n
ρα(M,Sn‖Xn) ≤ Ω̄Y‖X(R)(2)

and

lim inf
n→∞

1

n
ρα(M,Sn‖Xn) ≤ ΩY‖X(R),(3)

where3

Ω̄Y‖X(R)
�
= inf

{
a ∈ : lim sup

n→∞
EXn

[
Pr

(
1

n
µn(X

n, Y n) > a

∣∣∣∣Xn

)M
]
= 0

}

and

ΩY‖X(R)
�
= inf

{
a ∈ : lim inf

n→∞ EXn

[
Pr

(
1

n
µn(X

n, Y n) > a

∣∣∣∣Xn

)M
]
= 0

}
.

Proof. We will prove only (2). Inequality (3) can be proved by simply following
the same procedure.

Let

λ
�
= inf

{
a ∈ : lim sup

n→∞
EXn

[
Pr

(
1

n
µn(X

n, Y n) > a

∣∣∣∣Xn

)M
]
= 0

}
.

By definition,

lim sup
n→∞

EXn

[
Pr

(
1

n
µn(X

n, Y n) > λ+ ε

∣∣∣∣Xn

)M
]
= 0(4)

for any ε > 0. Equation (4) then implies that for sufficiently large n,

EXn

[
Pr

(
1

n
µn(X

n, Y n) > λ+ ε

∣∣∣∣Xn

)M
]
<

1− α

2
.(5)

Now for a given codebook C, define

φr(x
n| C) �=

1 if xn ∈
⋃
yn∈C

Br(yn),

0 otherwise.

3Here, we adopt the notation that

EXn

[
Pr

(
1

n
µn(X

n, Y n) > a

∣∣∣Xn
)M
]
=

∫
Xn

(PY n|Xn {yn ∈ Sn : µn(x
n, yn) > na})MdPXn (xn)

=

∫
Xn

(PY n {yn ∈ Sn : µn(x
n, yn) > na})M dPXn (xn),

where the last step follows since Xn and Y n are implicitly assumed to be independent.

ASYMPTOTIC COVERING RADIUS OF BLOCK CODES 553

Then

E

[
PXn

{ ⋃
yn∈C

Br(yn)
}]

= E

[∫
Xn

φr(x
n|C)dPXn(xn)

]

=

∫
Xn

E [φr(x
n|C)] dPXn(xn),

where the expectation is taken with respect to the random codebook C drawn inde-
pendently from Sn according to codeword-selecting process Y n. By definition,

E [φr(x
n|C)] = 1− Pr {xn �∈ Br(Y n

1) and xn �∈ Br(Y n
2) and · · · and xn �∈ Br(Y n

M)}
= 1− (Pr {xn �∈ Br(Y n)})M
= 1− (PY n {yn ∈ Sn : µn(x

n, yn) > r})M .

Therefore, by taking r = n(λ+ ε) and for those n satisfying (5), we obtain

E

[
PXn

{ ⋃
yn∈C

Bn(λ+ε)(y
n)

}]

=

∫
Xn

[1− (PY n {yn ∈ Sn : µn(x
n, yn) > n(λ+ ε)})M]dPXn(xn)

= 1− EXn

[(
Pr

{
1

n
µn(X

n, Y n) > λ+ ε

∣∣∣∣Xn

})M
]

> 1− 1− α

2
> α,

which implies that among all possible selections, there exists one codebook C ⊂ Sn
satisfying

PXn

{ ⋃
yn∈C

Bn(λ+ε)(y
n)

}
> α.

Consequently, n(λ+ ε) ≥ ρα(M,Sn‖Xn) or, equivalently,

λ+ ε ≥ 1

n
ρα(M,Sn‖Xn)(6)

for all sufficiently large n. By taking the limsup with respect to n on (6), the proof is
completed since ε is arbitrary.

We are now ready to prove the main theorems of the paper.
Theorem 2.3 (upper bound). Fix a sequence of codeword set S= {Sn}n≥1. For

any covering process X= {Xn}∞n=1,

sup
0≤α<1

lim sup
n→∞

1

n
ρα(M,Sn‖Xn) ≤ inf

Y(S)
Ω̄Y‖X(R)

and

sup
0≤α<1

lim inf
n→∞

1

n
ρα(M,Sn‖Xn) ≤ inf

Y(S)
ΩY‖X(R),

where the infimum is taken over all processes Y with PY n(Sn) = 1 (which for conve-
nience is denoted by Y(S) in what follows).

554 PO-NING CHEN AND YUNGHSIANG S. HAN

Proof. The theorem follows immediately from Lemma 2.2.
Theorem 2.4 (lower bound). Fix a sequence of codeword set S= {Sn}n≥1. For

any covering process X,

sup
0≤α<1

lim sup
n→∞

1

n
ρα(M,Sn‖Xn) ≥ sup

γ>0
inf

Y(S)
Ω̄Y‖X(R+ γ)(7)

and

sup
0≤α<1

lim inf
n→∞

1

n
ρα(M,Sn‖Xn) ≥ sup

γ>0
inf

Y(S)
ΩY‖X(R+ γ).(8)

Proof. Again, we will prove only (7), since (8) can be proved in a similar fashion.
To prove the inequality in (7), it suffices to prove the existence of Y(S) such that

sup
0≤α<1

lim sup
n→∞

1

n
ρα(M,Sn‖Xn) + ε ≥ Ω̄Y‖X(R+ γ)

for any ε > 0. This can be justified as follows.
Fix ε > 0 and define

λ
�
= sup

0≤α<1
lim sup
n→∞

1

n
ρα(M,Sn‖Xn).

By definition of infimum (cf. Definition 2.1), for any integer m > 1, there exists a
code Cn(m) ⊂ Sn of size M (for each n) such that

ρ(m−1)/m(M,Sn‖Xn) ≥ inf

{
r ∈ : PXn

[⋃
yn∈Cn(m)

Br(yn)
]
≥ m− 1

m

}
− ε.

Therefore,

λ ≥ lim sup
n→∞

1

n
ρ(m−1)/m(M,Sn‖Xn)

≥ lim sup
n→∞

1

n
inf

{
r ∈ : PXn

[⋃
yn∈Cn(m)

Br(yn)
]
≥ m− 1

m

}
,

which indicates the existence of Nm such that for all n ≥ Nm,

1

n
inf

{
r ∈ : PXn

[⋃
yn∈Cn(m)

Br(yn)
]
≥ m− 1

m

}
< λ+ ε.

Hence, for n ≥ Nm,

PXn

[⋃
yn∈Cn(m)

Bn(λ+ε)(y
n)

]
≥ m− 1

m
.

Now, for max1<i≤mNm ≤ n < max1<i≤(m+1) Nm, choose Y n to be a uniform
distribution over Cn(m) and let

Vn �=
⋃

yn∈Cn(m)

Bn(λ+ε)(y
n).

ASYMPTOTIC COVERING RADIUS OF BLOCK CODES 555

By noting that for any xn ∈ Vn there exists yn ∈ Cn(m) satisfying

1

n
µn(x

n, yn) ≤ λ+ ε,

we obtain for all n ≥ max1<i≤mNm,

EXn

[
Pr

(
1

n
µn(X

n, Y n) > λ+ ε

∣∣∣∣Xn

)en(R+γ)]

=

∫
Vn

Pr

(
1

n
µn(x

n, Y n) > λ+ ε

)Menγ

dPXn(xn)

+

∫
Vc

n

Pr

(
1

n
µn(x

n, Y n) > λ+ ε

)Menγ

dPXn(xn)

≤
∫
Vn

(
1− 1

M

)Menγ

dPXn(xn) +

∫
Vc

n

1 dPXn(xn)

≤
(
1− 1

M

)Menγ

+

(
1− m− 1

m

)

=

(
1− 1

M

)Menγ

+
1

m
,

where the superscript “c” applied on Vn represents the set complementary operation.
This result immediately gives

lim sup
n→∞

EXn

[
Pr

(
1

n
µn(X

n, Y n) > λ+ ε

∣∣∣∣Xn

)Menγ]
≤ 1

m
.

Since we can take arbitrarily large m,

lim sup
n→∞

EXn

[
Pr

(
1

n
µn(X

n, Y n) > λ+ ε

∣∣∣∣Xn

)Menγ]
= 0.

Consequently, Ω̄Y‖X(R+ γ) ≤ λ+ ε.

Theorems 2.3 and 2.4 together conclude to

inf
Y(S)

Ω̄Y‖X(R+ γ) ≤ sup
0≤α<1

lim sup
n→∞

1

n
ρα(M,Sn‖Xn) ≤ inf

Y(S)
Ω̄Y‖X(R)

and

inf
Y(S)

Ω̄Y‖X(R+ γ) ≤ sup
0≤α<1

lim inf
n→∞

1

n
ρα(M,Sn‖Xn) ≤ inf

Y(S)
ΩY‖X(R)

for every γ > 0. A direct interpretation on the quantity of

sup
0≤α<1

lim sup
n→∞

1

n
ρα(M,Sn‖Xn)

(
resp., sup

0≤α<1
lim inf
n→∞

1

n
ρα(M,Sn‖Xn)

)

is as follows. It represents, in asymptotics, the minimum radius with which M spheres
centered at some node in Sn can cover almost all the words in the support of PXn .

556 PO-NING CHEN AND YUNGHSIANG S. HAN

In other words, the overall probability mass of those words that are not covered can
be made arbitrarily small. This requirement is a little weaker if compared to the con-
ventional definition of covering radius, which dictates (as interpreted probabilistically
under full-support covering distribution) the probability of all uncovered words being
zero.

3. A sufficient condition for the minimization of Ω̄Y‖X(R) and ΩY‖X(R).
The previous section shows that the asymptotic minimum covering radius can be
determined by finding

inf
Y(S)

Ω̄Y‖X(R) and inf
Y(S)

ΩY‖X(R).(9)

A natural query following this result is “What is the minimizer for (9)?” In our view,
there may not exist a universal solution for this query (since in the spectrum formula,
there is no restriction on the distance measure and code alphabet, as well as codeword-
selection set and covering distribution.) However, when the distance measure µn(·, ·)
is symmetric, and a full-support uniform covering distribution under finite alphabet
is taken, a sufficient condition under which the uniform Y (over the codeword set) is
indeed the desired minimizer can be established. We justify this finding as follows.

By rewriting the spectrum formula as

Ω̄Y‖X(R)
�
= inf

{
a ∈ : lim sup

n→∞
EXn

[
Pr

(
1

n
µn(X

n, Y n) > a

∣∣∣∣Xn

)M
]
= 0

}

= inf

{
a ∈ : lim sup

n→∞

∑
xn∈Xn

1

qn
PY n [yn ∈ Sn : xn �∈ Bna(yn)]M = 0

}
,

where q
�
= |X |, we note that if for any a,∑

xn∈Xn

PY n [yn ∈ Sn : xn �∈ Bna(yn)]M(10)

is minimized by uniform Y n over Sn, so is Ω̄Y‖X(R). The next lemma then gives the
basis for the validity of (10) being minimized by the Y n that is uniformly distributed
over Sn.

Lemma 3.1. The function (x1 + x2 + · · · + xk)
M is convex4 in (x1, x2, . . . , xk)

over any pregiven convex set for any positive integer M .
Proof. We prove this lemma by induction.
1. M = 1. The function (x1+x2+· · ·+xk) is apparently convex in (x1,x2,. . . ,xk)

over the desired convex set.
2. Assume that the above claim holds for (M − 1). Then

λ(x1 + · · ·+ xk)
M + (1− λ)(y1 + · · ·+ yk)

M

−[λ(x1 + · · ·+ xk) + (1− λ)(y1 + · · ·+ yk)]
M

≥ λ(x1 + · · ·+ xk)
M + (1− λ)(y1 + · · ·+ yk)

M

− [λ(x1 + · · ·+ xk)
M−1 + (1− λ)(y1 + · · ·+ yk)

M−1
]

4A subset of real vector space is said to be convex if x ∈ A and y ∈ A imply that λx+(1−λ)y ∈ A
for all λ ∈ [0, 1]. A real-valued function f(x) that is defined over a convex set A is called a convex
function if for all λ ∈ [0, 1], and for all x and y in A, f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y).

ASYMPTOTIC COVERING RADIUS OF BLOCK CODES 557

×[λ(x1 + · · ·+ xk) + (1− λ)(y1 + · · ·+ yk)]

= λ(1− λ)(x1 + · · ·+ xk)
M + λ(1− λ)(y1 + · · ·+ yk)

M

−λ(1− λ)(x1 + · · ·+ xk)
M−1(y1 + · · ·+ yk)

−λ(1− λ)(x1 + · · ·+ xk)(y1 + · · ·+ yk)
M−1

= λ(1− λ)[(x1 + · · ·+ xk)− (y1 + · · ·+ yk)]

× [(x1 + · · ·+ xk)
M−1 − (y1 + · · ·+ yk)

M−1
] ≥ 0.

Lemma 3.2. Under the assumption that |X | <∞,∑
xn∈Xn

PY n [yn ∈ Sn : xn �∈ Bna(yn)]M

is a convex function in PY n over the convex set{
(PY n(yn1), . . . , PY n(ynN)) ∈ [0, 1]N :

N∑
i=1

PY n(yni) = 1

}
,

where N = |Sn|.
Proof. This can be proved by Lemma 3.1 and the observation that a finite sum

of convex functions is convex.
When the distance measure is symmetric, the quantity (10) can be reformulated

as ∑
xn∈Xn

PY n [Sn/Bna(xn)]M ,(11)

where “/” represents the set subtraction operation. Since it is a convex function
defined over a convex set, we can use the Lagrange multiplier technique and the
Kuhn–Tucker theorem [1, Thm. A.6] to obtain its global minimizer. To be specific,
let

f
(
PY n(Sn)

) �
=

∑
xn∈Xn

PY n [Sn/Bna(xn)]M + λ

(∑
yn∈Sn

PY n(yn)− 1

)
.

Then

∂f
(
PY n(Sn)

)
∂PY n(yn)

=
∑

xn∈Xn

M · PY n [Sn/Bna(xn)]M−1 · 1 {yn ∈ Sn/Bna(xn)}+ λ

= M ·
∑

xn∈Xn

PY n [Sn/Bna(xn)]M−1 · 1 {xn �∈ Bna(yn)}+ λ = 0,(12)

where (12) follows from the symmetry of the distance measure, and 1(·) is the set
indicator function. Taking uniform PY n on Sn into the above equation, we obtain

∑
xn∈Xn

(
1− |Sn ∩ Bna(x

n)|
|Sn|

)M−1

· 1 {xn �∈ Bna(yn)} = − λ

M
.(13)

Therefore, if the left-hand side of (13) is independent of yn ∈ Sn, then uniform Y n

over Sn is indeed a solution of (12) (and minimizes Ω̄Y‖X(R)).

558 PO-NING CHEN AND YUNGHSIANG S. HAN

We conclude the above discussions in the next corollary.
Corollary 3.3. Assume that |X | < ∞ and the (generalized) distance measure

µ(·, ·) is symmetric. If, for every n,

br(y
n) = br(z

n)(14)

holds for every r and every yn, zn in Sn, then uniform Y over Sminimizes Ω̄Y‖X(R),
where

br(y
n)
�
=

∑
xn∈Xn

(
1− |Sn ∩ Br(x

n)|
|Sn|

)M−1

· 1 {xn �∈ Br(yn)} .

The condition in (14) may not hold in general. A quick example is to take
the codeword set S3 = {000, 001, 011, 111} under the symmetric Hamming distance
metric and binary code alphabet. In such a case, b1(000) = b1(111) = 2 �= b1(001) =
b1(011) = 2.5 for M = 2. As a result, the best codeword-selecting distribution that
minimizes (11) is PY 3(000) = PY 3(111) = 1/2 and PY 3(001) = PY 3(011) = 0, which
is uniformly distributed only over a proper subset of S3.

Two queries can be further studied: whether it suffices to always take Y to be a
uniform distribution over a subset of S as hinted by the previous example and whether
sufficient condition (14) is also necessary. The proof of Theorem 2.4 indicates that
the answer to the first query is affirmative; so to speak, taking Y to be the one

chosen in the proof of Theorem 2.4, which is uniformly distributed over C(m)
n for

max1<i≤mNm ≤ n < max1<i≤(m+1) Nm, and following the proof of Lemma 2.2, we
obtain

Ω̄Y‖X(R+ γ)− ε ≤ sup
0≤α<1

lim sup
n→∞

1

n
ρα(M,Sn‖Xn) ≤ Ω̄Y‖X(R) + ε

for every γ > 0 and arbitrary ε > 0. By noting that Ω̄Y‖X(R) = limγ↓0 Ω̄Y‖X(R+ γ),
except for countably many points in R, the first query is answered. We, however,
have no answer to the second query. From several example trials, it seems affirmative
as well. Nevertheless, equipped with the corollary, we can determine the asymptotic
minimum covering radius for the examples in the next section.

4. Asymptotic minimum covering radius for specific block coding sche-
mes. In this section, we demonstrate the usage of the new formula to investigate the
asymptotic minimum covering radius in terms of two examples: arbitrary block codes
under J-ary quantized channels and constant weight codes under Hamming distance.

4.1. Arbitrary block codes under J-ary quantized channels. We consider
a model that is frequently used in practical channels (especially when the soft-decision
decoding scheme is performed [4]).

Assume that a binary block code is transmitted over a memoryless channel whose

output takes values from NJ
�
= {0, 1, . . . , J − 1}; i.e., the output of the channel is

quantized to J levels. The distance measure for quantized channels is defined as

µn(x
n, yn) =

n−1∑
i=0

|xi − yi|,

where xn and yn are in Nn
J . The codeword set and the entire space are, respectively,

Sn = {0, (J − 1)}n and Xn = Nn
J .

ASYMPTOTIC COVERING RADIUS OF BLOCK CODES 559

To derive the asymptotic minimum covering radius for this channel, we need to
first show that br(y

n) is independent of yn ∈ Sn (and, therefore, uniform Y n over Sn
for each n minimizes Ω̄Y‖X(R)). We justify this claim as follows.

Observe that for any yn ∈ Sn,
(i) xn ∈ Br(0) iff zn ∈ Br(yn), where 0 represents the all-zero element, and

zi = |yi − xi| for 0 ≤ i ≤ n− 1;
(ii) furthermore, for any element xn ∈ Xn, un ∈ Sn∩Br(xn) iff vn ∈ Sn∩Br(zn),

where zn is defined the same as above, and

vi
�
=

{
(J − 1)− ui if xi �= zi,
ui otherwise

for 0 ≤ i ≤ n− 1.

Thus,

br(0) =
∑

xn∈Xn

(
1− |Sn ∩ Br(x

n)|
|Sn|

)M−1

· 1 {xn �∈ Br(0)}

=
∑

zn∈Xn

(
1− |Sn ∩ Br(z

n)|
|Sn|

)M−1

· 1 {zn �∈ Br(yn)} = br(y
n)

for all yn ∈ Sn.
Now, for uniform Y n over Sn = {0, J−1}n (and also uniform Xn over Xn = Nn

J),

Ω̄Y‖X(R)

= inf

{
a ∈ : lim sup

n→∞
1

Jn

∑
xn∈Xn

PY n [yn ∈ Sn : yn �∈ Bna(xn)]M = 0

}

= inf

{
a ∈ : lim sup

n→∞

∑
xn∈Xn

1

Jn

[
1− |Sn ∩ Bna(x

n)|
2n

]M
= 0

}

= inf

{
a ∈ : lim sup

n→∞

∑
n0+n1+...
+n

J−1
=n

n!
n0!n1!···nJ−1

!

Jn

[
1− fna(n0, n1, . . . , nJ−1

)

2n

]M
= 0

}
,

where ni is the number of occurrence i’s in xn, and fna(n0, n1, . . . , nJ−1
) is the sum-

mation of all
(
n0

i0

)(
n1

i1

) · · · (nJ−1

i
J−1

)
satisfying 0 ≤ ij ≤ nj for 0 ≤ j ≤ J − 1 and∑J−1

j=0 [ijj+(nj − ij)(J − j− 1)] ≤ na. By using typical asymptotic approximation for
binomial coefficients, we obtain that for v0 + v1 + · · ·+ v

J−1
= 1,

g(v0, v1, . . . , vJ−1
, a)

�
= lim

n→∞
1

n
log2

2n

fna(nv0, nv1, . . . , nvJ−1
)

560 PO-NING CHEN AND YUNGHSIANG S. HAN

=

∞ if a <
J−1∑
j=0

vj ·min{j, (J − 1)− j},

1− max
(δ0,...,δJ−1

)∈DJ

[
v0H(δ0) + · · ·+ v

J−1
H(δJ−1)

]

if

J−1∑
j=0

vj ·min{j, (J − 1)− j} ≤ a ≤ J − 1

2
,

0 if a >
J − 1

2
,

where H(x)
�
= − x log2(x) − (1 − x) log2(1 − x) is the binary entropy function, DJ

consists of all (δ0, . . . , δJ−1) satisfying 0 ≤ δj ≤ 1 for 0 ≤ j ≤ J−1 and
∑J−1

j=0 [vjδjj+
vj(1 − δj)(J − j − 1)] ≤ a, and the result for a > (J − 1)/2 follows by taking δ1 =
δ2 = · · · = δJ−1 = 1/2. Thus,

sup
0≤α<1

lim
n→∞

1

n
ρα
(
M=enR, {0, J − 1}n)(15)

= inf

{
a ∈ :

R

log(2)
> max

v0+···+v
J−1

=1
g(v0, . . . , vJ−1

, a)

}
.

We can then derive the asymptotic minimum covering radius for different J values
based on (15).

Case A. For J odd,

max
v0+···+v

J−1
=1

g(v0, . . . , vJ−1
, a) =

{ ∞ if a < J−1
2 ,

0 if a ≥ J−1
2 ,

and, therefore,

sup
0≤α<1

lim
n→∞

1

n
ρα
(
M = enR, {0, J − 1}n) = J − 1

2
for 0 < R ≤ log(2).

It can easily be seen that (J − 1)/2 is the trivial lower bound for the asymptotic
minimum covering radius at J odd, since any codeword in {0, J − 1}n require radius
(J − 1)n/2 to cover the all-[(J − 1)/2] element. Here, in lieu of the new formula, we
show that (J − 1)/2 is actually the asymptotic minimum covering radius at J odd.

Case B. J is even.
Since the case of J = 2 reduces to a simple binary block code under Hamming

distance, for which the derivation of its asymptotic minimum covering radius can be
easily computed through combinatorial approaches, we will therefore focus on the case
of J ≥ 4.

To derive the asymptotic minimum covering radius, we first establish a general

lower bound by using the middle point xnmid

�
= (J/2−1, J/2−1, . . . , J/2−1) as follows:

Ω̄Y‖X(R)

= inf

a ∈ : lim sup

n→∞
1

Jn

∑
n0+n1+···
+n

J−1
=n

n!

n0!n1! · · ·nJ−1
!

[
1− |Sn ∩ Bna(x

n)|
2n

]M
= 0

ASYMPTOTIC COVERING RADIUS OF BLOCK CODES 561

≥ inf

{
a ∈ : lim sup

n→∞
1

Jn

[
1− |Sn ∩ Bna(x

n
mid)|

2n

]M
= 0

}

= inf

{
a ∈ :

R

log(2)
> 1−H

(
a−

(
J

2
− 1

))}
for 0 < R ≤ log(2).

We then observe that for v0 + v1 + v2 + v3 = 1 and 1 ≤ a ≤ 3/2,

g(v0, v1, v2, v3, a) = 1− max
(δ0,...,δ3)∈D4

[v0H(δ0) + · · ·+ v3H(δ3)] ≤ 1−H(a− 1),

where the last step follows by taking 1 − δ0 = 1 − δ1 = δ2 = δ3 = a − 1, which is in
the range of the maximization operation. Thus, for 0 < R ≤ log(2),

sup
0≤α<1

lim
n→∞

1

n
ρα
(
M=enR, {0, 3}n)

= inf

{
a ∈ :

R

log(2)
> max

v0+v1+v2+v3=1
g(v0, v1, v2, v3, a)

}

≤ inf

{
a ∈

[
1,

3

2

]
:

R

log(2)
> max

v0+v1+v2+v3=1
g(v0, v1, v2, v3, a)

}

≤ inf

{
a ∈

[
1,

3

2

]
:

R

log(2)
> 1−H(a− 1)

}
.

As a result, the general lower bound is tight at J = 4.
For J ≥ 6 even, there seems no simple expression for the asymptotic minimum

covering radius. However, one can still obtain a numerically plotted curve for the
asymptotic minimum covering radius at J ≥ 6 even, whenever the algorithmic com-
plexity of the optimization operation for (15) is feasible.

4.2. Binary constant weight codes under Hamming distance. Define the
codeword set as

Sn(w) = {yn ∈ {0, 1}n : W (yn) = w} ,
where W (yn) is the number of 1’s in yn. The covering space is assumed to be the
entire space Xn = {0, 1}n. Let the distance measure µn(·, ·) be the n-fold Hamming
distance.

In this case, the asymptotic minimum covering radius for codeword set Sn(nv)
is apparently lower bounded by max{v, 1 − v}, since the code must cover both the
all-zero element and the all-one element. Now, in lieu of the new formula, we can
show that max{v, 1− v} is indeed the exact asymptotic minimum covering radius for
constant weight codes.

Define fr(w, η)
�
= |Sn(w) ∩ Br(xn)|, where η = W (xn). Then, for yn ∈ Sn(w),

br(y
n) =

n∑
η=0

(
1− fr(w, η)(

n
w

)
)M−1 [∑

{xn : W (xn)=η}
1 {xn �∈ Br(yn)}

]

=

n∑
η=0

(
1− fr(w, η)(

n
w

)
)M−1

(|Sn(η)| − |Sn(η) ∩ Br(yn)|)

=

n∑
η=0

(
1− fr(w, η)(

n
w

)
)M−1 [(

n

η

)
− fr(η, w)

]
,

562 PO-NING CHEN AND YUNGHSIANG S. HAN

which is apparently independent of yn ∈ Sn(w) for every r. Hence, uniform Y n over
Sn(w) for each n minimizes Ω̄Y‖X(R).

Now, from the observations that for fixed xn with W (xn) = η the total number
of yn in Sn(w) satisfying that the weights (1’s) of xn and yn coincide with each other
in exactly d positions is equal to

(
η
d

)(
n−η
w−d

)
, and that W (xn) + W (yn) − 2d is the

Hamming distance between xn and yn with d coincidences in their weights, we get5

fr(w, η) =
∑

{
d : 0≤d≤min{w,η}

0≤w−d≤n−η, 0≤w+η−2d≤r

}
(
η

d

)(
n− η

w − d

)

=
∑

{
i :

0≤(w+η−i)/2≤min{w,η}
0≤(w−η+i)/2≤n−η, 0≤i≤r

}
(

η
w+η−i

2

)(
n− η
w−η+i

2

)
× 1 {(w + η − i) even}

=

min{r, w+η, 2n−w−η}∑
i=|w−η|

(
η

η−w+i
2

)(
n− η
w−η+i

2

)
× 1 {(w + η − i) even} .(16)

Accordingly, for uniform Y over S(w) (and also uniform X over the entire space),

Ω̄Y‖X(R) = inf

{
a ∈ : lim sup

n→∞
1

2n

∑
xn∈Xn

PY n [yn ∈ Sn : yn �∈ Bna(xn)]M = 0

}

= inf

a ∈ : lim sup

n→∞
1

2n

n∑
η=0

(
n

η

)[
1− fna(w, η)(

n
w

)
]M

= 0

 .

By using typical asymptotic approximation for binomial coefficients, we obtain6

ḡ(v, v̂, a)
�
= lim

n→∞
1

n
log2

(
n
nv

)
fna(nv, nv̂)

=

H(v)− max
|v−v̂|≤j≤min{a,v+v̂,2−(v+v̂)}

[
v̂H

(
v̂−v+j

2v̂

)
+ (1− v̂)H

(
v−v̂+j
2(1−v̂)

)]
if |v − v̂| ≤ a ≤ 1,

∞ if 0 ≤ a < |v − v̂|

=

H(v)− [v̂ ·H(1− v) + (1− v̂) ·H(v)] if v + v̂ − 2vv̂ ≤ a ≤ 1,

H(v)−
[
v̂ ·H (v̂−v+a

2v̂

)
+ (1− v̂) ·H

(
v−v̂+a
2(1−v̂)

)]
if |v − v̂| ≤ a < v + v̂ − 2vv̂,

∞ if 0 ≤ a < |v − v̂|

=

0 if v + v̂ − 2vv̂ ≤ a ≤ 1,

H(v)−
[
v̂ ·H (v̂−v+a

2v̂

)
+ (1− v̂) ·H

(
v−v̂+a
2(1−v̂)

)]
if |v − v̂| ≤ a < v + v̂ − 2vv̂,

∞ if 0 ≤ a < |v − v̂|.

5By definition, d is the number of coincidences in the weights of xn and yn, and hence 0 ≤ d ≤
min{w, η}.

6The function v̂ · H(v̂−v+j
2v̂

) + (1 − v̂)H(v−v̂+j
2(1−v̂)

) is a concave truncated function of j, and is

maximized at j = v + v̂ − 2vv̂, if |v − v̂| ≤ v + v̂ − 2vv̂ ≤ min{a, v + v̂, 2 − (v + v̂)}. Note that
|v − v̂| ≤ v + v̂ − 2vv̂ ≤ min{v + v̂, 2− (v + v̂)} is valid for every 0 ≤ v, v̂ ≤ 1.

ASYMPTOTIC COVERING RADIUS OF BLOCK CODES 563

Thus, for 0 ≤ v ≤ 1/2 and 0 < R ≤ log(2),

sup
0≤α<1

lim
n→∞

1

n
ρα
(
M = enR,Sn(nv)

)
= Ω̄Y‖X(R)

= inf

{
a ∈ :

R

log(2)
> max

0≤v̂≤1
g(v, v̂, a)

}
= 1− v,

where the last step follows from7

max
0≤v̂≤1

g(v, v̂, a) =

{ ∞ if 0 ≤ a < max{v, 1− v} = 1− v,
0 if max{v, 1− v} ≤ a ≤ 1.

Similarly, for 1/2 < v ≤ 1,

sup
0≤α<1

lim
n→∞

1

n
ρα
(
M = enR,Sn(nv)

)
= v.

Acknowledgment. The authors wish to thank the anonymous reviewers for
their valuable suggestions and comments that greatly helped to improve the paper.

REFERENCES

[1] R. E. Blahut, Principles and Practice of Information Theory, Addison-Wesley, Reading, MA,
1987.

[2] V. M. Blinovskii, Lower asymptotic bound on the number of linear code words in a sphere of
given radius in fnq , Problemy Peredachi Informatsii, 23 (1987), pp. 50–53.

[3] P.-N. Chen, T.-Y. Lee, and Y. S. Han, Distance-spectrum formulas on the largest minimum
distance of block codes, IEEE Trans. Inform. Theory, 46 (2000), pp. 869–885.

[4] G. C. Clark, Jr. and J. B. Cain, Error-Correction Coding for Digital Communications,
Plenum Press, New York, 1981.

[5] G. D. Cohen, A nonconstructive upper bound on covering radius, IEEE Trans. Inform. Theory,
29 (1983), pp. 352–353.

[6] G. D. Cohen and P. Frankl, Good coverings of Hamming spaces with spheres, Discrete Math.,
56 (1985), pp. 125–131.

[7] G. D. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes, North-Holland,
Amsterdam, 1997.

[8] G. D. Cohen, M. G. Karpovsky, H. F. Mattson, Jr., and J. R. Schatz, Covering radius–
survey and recent results, IEEE Trans. Inform. Theory, 31 (1985), pp. 328–343.

[9] G. D. Cohen, S. N. Litsyn, and G. Zémor, On greedy algorithms in coding theory, IEEE
Trans. Inform. Theory, 42 (1996), pp. 2053–2057.

[10] G. D. Cohen, S. N. Litsyn, A. C. Lobstein, and H. F. Mattson, Jr., Covering radius
1985–1994, Appl. Engrg. Comm. Comput., 8 (1997), pp. 173–239.

[11] P. Delsarte and P. Piret, Do most binary linear codes achieve the Goblick bound on the
covering radius?, IEEE Trans. Inform. Theory, 32 (1986), pp. 826–828.

[12] R. L. Graham and N. J. A. Sloane, On the covering radius of codes, IEEE Trans. Inform. The-
ory, 31 (1985), pp. 385–401.

[13] T. S. Han, Information-Spectrum Methods in Information Theory, Baifukan Press, Tokyo,
1998 (in Japanese).

[14] T. Helleseth, T. Kløve, and J. Mykkeltveit, On the covering radius of binary codes, IEEE
Trans. Inform. Theory, 24 (1978), pp. 627–628.

7There exists no v̂ ∈ [0, 1] satisfying |v − v̂| ≤ a < v + v̂ − 2vv̂, 1− v ≤ a ≤ 1, and 0 ≤ v ≤ 1/2.
This observation can easily be justified by

(1− 2v) ≥ (1− 2v)v̂ > a− v ≥ (1− v)− v = 1− 2v for 0 ≤ v̂ ≤ 1.

564 PO-NING CHEN AND YUNGHSIANG S. HAN

[15] H. Janwa, Some new upper bounds on the covering radius of binary linear codes, IEEE
Trans. Inform. Theory, 35 (1989), pp. 110–122.

[16] H. L. Royden, Real Analysis, 3rd ed., Macmillan, New York, 1988.
[17] P. Solé, Asymptotic bounds on the covering radius of binary codes, IEEE Trans. Inform. The-

ory, 36 (1990), pp. 1470–1472.
[18] P. Solé, Packing radius, covering radius, and dual distance, IEEE Trans. Inform. Theory, 41

(1995), pp. 268–272.
[19] A. A. Tietäväinen, An asymptotic bound on the covering radii of binary BCH codes, IEEE

Trans. Inform. Theory, 36 (1990), pp. 211–213.
[20] A. A. Tietäväinen, An upper bound on the covering radius as a function of the dual distance,

IEEE Trans. Inform. Theory, 36 (1990), pp. 1472–1474.
[21] F. Levy-dit-Vehel and S. Litsyn,More on the covering radius of BCH codes, IEEE Trans. In-

form. Theory, 42 (1996), pp. 1023–1028.

	SJDMEC_V14_i1_p0001
	SJDMEC_V14_i1_p0028
	SJDMEC_V14_i1_p0036
	SJDMEC_V14_i1_p0049
	SJDMEC_V14_i1_p0067
	SJDMEC_V14_i1_p0093
	SJDMEC_V14_i1_p0116
	SJDMEC_V14_i1_p0121
	SJDMEC_V14_i1_p0138
	SJDMEC_V14_i2_p0143
	SJDMEC_V14_i2_p0162
	SJDMEC_V14_i2_p0170
	SJDMEC_V14_i2_p0181
	SJDMEC_V14_i2_p0193
	SJDMEC_V14_i2_p0207
	SJDMEC_V14_i2_p0223
	SJDMEC_V14_i2_p0230
	SJDMEC_V14_i2_p0237
	SJDMEC_V14_i2_p0240
	SJDMEC_V14_i2_p0246
	SJDMEC_V14_i2_p0256
	SJDMEC_V14_i2_p0267
	SJDMEC_V14_i3_p0283
	SJDMEC_V14_i3_p0286
	SJDMEC_V14_i3_p0291
	SJDMEC_V14_i3_p0299
	SJDMEC_V14_i3_p0312
	SJDMEC_V14_i3_p0326
	SJDMEC_V14_i3_p0356
	SJDMEC_V14_i3_p0370
	SJDMEC_V14_i3_p0381
	SJDMEC_V14_i3_p0408
	SJDMEC_V14_i3_p0423
	SJDMEC_V14_i4_p0433
	SJDMEC_V14_i4_p0446
	SJDMEC_V14_i4_p0458
	SJDMEC_V14_i4_p0471
	SJDMEC_V14_i4_p0481
	SJDMEC_V14_i4_p0498
	SJDMEC_V14_i4_p0510
	SJDMEC_V14_i4_p0524
	SJDMEC_V14_i4_p0540
	SJDMEC_V14_i4_p0549

